summaryrefslogtreecommitdiff
path: root/drawinglayer/source/processor3d/zbufferprocessor3d.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'drawinglayer/source/processor3d/zbufferprocessor3d.cxx')
-rw-r--r--drawinglayer/source/processor3d/zbufferprocessor3d.cxx747
1 files changed, 747 insertions, 0 deletions
diff --git a/drawinglayer/source/processor3d/zbufferprocessor3d.cxx b/drawinglayer/source/processor3d/zbufferprocessor3d.cxx
new file mode 100644
index 000000000000..48c1bee86575
--- /dev/null
+++ b/drawinglayer/source/processor3d/zbufferprocessor3d.cxx
@@ -0,0 +1,747 @@
+/*************************************************************************
+ *
+ * OpenOffice.org - a multi-platform office productivity suite
+ *
+ * $RCSfile: zbufferprocessor3d.cxx,v $
+ *
+ * $Revision: 1.5 $
+ *
+ * last change: $Author: aw $ $Date: 2008-06-24 15:31:09 $
+ *
+ * The Contents of this file are made available subject to
+ * the terms of GNU Lesser General Public License Version 2.1.
+ *
+ *
+ * GNU Lesser General Public License Version 2.1
+ * =============================================
+ * Copyright 2005 by Sun Microsystems, Inc.
+ * 901 San Antonio Road, Palo Alto, CA 94303, USA
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License version 2.1, as published by the Free Software Foundation.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ *
+ ************************************************************************/
+
+// MARKER(update_precomp.py): autogen include statement, do not remove
+#include "precompiled_drawinglayer.hxx"
+
+#include <drawinglayer/processor3d/zbufferprocessor3d.hxx>
+#include <basegfx/raster/bpixelraster.hxx>
+#include <vcl/bmpacc.hxx>
+#include <basegfx/raster/rasterconvert3d.hxx>
+#include <basegfx/raster/bzpixelraster.hxx>
+#include <drawinglayer/attribute/materialattribute3d.hxx>
+#include <drawinglayer/texture/texture.hxx>
+#include <drawinglayer/attribute/sdrattribute3d.hxx>
+#include <drawinglayer/primitive3d/drawinglayer_primitivetypes3d.hxx>
+#include <drawinglayer/primitive3d/textureprimitive3d.hxx>
+#include <drawinglayer/primitive3d/polygonprimitive3d.hxx>
+#include <drawinglayer/primitive3d/polypolygonprimitive3d.hxx>
+#include <drawinglayer/geometry/viewinformation2d.hxx>
+#include <basegfx/polygon/b3dpolygontools.hxx>
+
+//////////////////////////////////////////////////////////////////////////////
+
+using namespace com::sun::star;
+
+//////////////////////////////////////////////////////////////////////////////
+
+namespace
+{
+ BitmapEx BPixelRasterToBitmapEx(const basegfx::BPixelRaster& rRaster, sal_uInt16 mnAntiAlialize)
+ {
+ BitmapEx aRetval;
+ const sal_uInt32 nWidth(mnAntiAlialize ? rRaster.getWidth()/mnAntiAlialize : rRaster.getWidth());
+ const sal_uInt32 nHeight(mnAntiAlialize ? rRaster.getHeight()/mnAntiAlialize : rRaster.getHeight());
+
+ if(nWidth && nHeight)
+ {
+ const Size aDestSize(nWidth, nHeight);
+ sal_uInt8 nInitAlpha(255);
+ Bitmap aContent(aDestSize, 24);
+ AlphaMask aAlpha(aDestSize, &nInitAlpha);
+ BitmapWriteAccess* pContent = aContent.AcquireWriteAccess();
+ BitmapWriteAccess* pAlpha = aAlpha.AcquireWriteAccess();
+
+ if(pContent && pAlpha)
+ {
+ if(mnAntiAlialize)
+ {
+ const sal_uInt16 nDivisor(mnAntiAlialize * mnAntiAlialize);
+
+ for(sal_uInt32 y(0L); y < nHeight; y++)
+ {
+ for(sal_uInt32 x(0L); x < nWidth; x++)
+ {
+ sal_uInt16 nRed(0);
+ sal_uInt16 nGreen(0);
+ sal_uInt16 nBlue(0);
+ sal_uInt16 nOpacity(0);
+ sal_uInt32 nIndex(rRaster.getIndexFromXY(x * mnAntiAlialize, y * mnAntiAlialize));
+
+ for(sal_uInt32 c(0); c < mnAntiAlialize; c++)
+ {
+ for(sal_uInt32 d(0); d < mnAntiAlialize; d++)
+ {
+ const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
+ nRed = nRed + rPixel.getRed();
+ nGreen = nGreen + rPixel.getGreen();
+ nBlue = nBlue + rPixel.getBlue();
+ nOpacity = nOpacity + rPixel.getOpacity();
+ }
+
+ nIndex += rRaster.getWidth() - mnAntiAlialize;
+ }
+
+ nOpacity = nOpacity / nDivisor;
+
+ if(nOpacity)
+ {
+ pContent->SetPixel(y, x, BitmapColor(
+ (sal_uInt8)(nRed / nDivisor),
+ (sal_uInt8)(nGreen / nDivisor),
+ (sal_uInt8)(nBlue / nDivisor)));
+ pAlpha->SetPixel(y, x, BitmapColor(255 - (sal_uInt8)nOpacity));
+ }
+ }
+ }
+ }
+ else
+ {
+ sal_uInt32 nIndex(0L);
+
+ for(sal_uInt32 y(0L); y < nHeight; y++)
+ {
+ for(sal_uInt32 x(0L); x < nWidth; x++)
+ {
+ const basegfx::BPixel& rPixel(rRaster.getBPixel(nIndex++));
+
+ if(rPixel.getOpacity())
+ {
+ pContent->SetPixel(y, x, BitmapColor(rPixel.getRed(), rPixel.getGreen(), rPixel.getBlue()));
+ pAlpha->SetPixel(y, x, BitmapColor(255 - rPixel.getOpacity()));
+ }
+ }
+ }
+ }
+
+ delete pContent;
+ delete pAlpha;
+ }
+
+ aRetval = BitmapEx(aContent, aAlpha);
+
+ // #i101811# set PrefMapMode and PrefSize at newly created Bitmap
+ aRetval.SetPrefMapMode(MAP_100TH_MM);
+ aRetval.SetPrefSize(Size(nWidth, nHeight));
+ }
+
+ return aRetval;
+ }
+} // end of anonymous namespace
+
+//////////////////////////////////////////////////////////////////////////////
+
+class ZBufferRasterConverter3D : public basegfx::RasterConverter3D
+{
+private:
+ const drawinglayer::processor3d::DefaultProcessor3D& mrProcessor;
+ basegfx::BZPixelRaster& mrBuffer;
+
+ // interpolators for a single line span
+ basegfx::ip_single maIntZ;
+ basegfx::ip_triple maIntColor;
+ basegfx::ip_triple maIntNormal;
+ basegfx::ip_double maIntTexture;
+ basegfx::ip_triple maIntInvTexture;
+
+ // current material to use for ratsreconversion
+ const drawinglayer::attribute::MaterialAttribute3D* mpCurrentMaterial;
+
+ // bitfield
+ // some boolean flags for line span interpolator usages
+ unsigned mbModifyColor : 1;
+ unsigned mbUseTex : 1;
+ unsigned mbHasTexCoor : 1;
+ unsigned mbHasInvTexCoor : 1;
+ unsigned mbUseNrm : 1;
+ unsigned mbUseCol : 1;
+
+ void getTextureCoor(basegfx::B2DPoint& rTarget) const
+ {
+ if(mbHasTexCoor)
+ {
+ rTarget.setX(maIntTexture.getX().getVal());
+ rTarget.setY(maIntTexture.getY().getVal());
+ }
+ else if(mbHasInvTexCoor)
+ {
+ const double fZFactor(maIntInvTexture.getZ().getVal());
+ const double fInvZFactor(basegfx::fTools::equalZero(fZFactor) ? 1.0 : 1.0 / fZFactor);
+ rTarget.setX(maIntInvTexture.getX().getVal() * fInvZFactor);
+ rTarget.setY(maIntInvTexture.getY().getVal() * fInvZFactor);
+ }
+ }
+
+ void incrementLineSpanInterpolators(double fStep)
+ {
+ maIntZ.increment(fStep);
+
+ if(mbUseTex)
+ {
+ if(mbHasTexCoor)
+ {
+ maIntTexture.increment(fStep);
+ }
+ else if(mbHasInvTexCoor)
+ {
+ maIntInvTexture.increment(fStep);
+ }
+ }
+
+ if(mbUseNrm)
+ {
+ maIntNormal.increment(fStep);
+ }
+
+ if(mbUseCol)
+ {
+ maIntColor.increment(fStep);
+ }
+ }
+
+ double decideColorAndOpacity(basegfx::BColor& rColor)
+ {
+ // init values with full opacity and material color
+ OSL_ENSURE(0 != mpCurrentMaterial, "CurrentMaterial not set (!)");
+ double fOpacity(1.0);
+ rColor = mpCurrentMaterial->getColor();
+
+ if(mbUseTex)
+ {
+ basegfx::B2DPoint aTexCoor(0.0, 0.0);
+ getTextureCoor(aTexCoor);
+
+ if(mrProcessor.getGeoTexSvx())
+ {
+ // calc color in spot. This may also set to invisible already when
+ // e.g. bitmap textures have transparent parts
+ mrProcessor.getGeoTexSvx()->modifyBColor(aTexCoor, rColor, fOpacity);
+ }
+
+ if(basegfx::fTools::more(fOpacity, 0.0) && mrProcessor.getTransparenceGeoTexSvx())
+ {
+ // calc opacity. Object has a 2nd texture, a transparence texture
+ mrProcessor.getTransparenceGeoTexSvx()->modifyOpacity(aTexCoor, fOpacity);
+ }
+ }
+
+ if(basegfx::fTools::more(fOpacity, 0.0))
+ {
+ if(mrProcessor.getGeoTexSvx())
+ {
+ if(mbUseNrm)
+ {
+ // blend texture with phong
+ rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
+ basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
+ rColor,
+ mpCurrentMaterial->getSpecular(),
+ mpCurrentMaterial->getEmission(),
+ mpCurrentMaterial->getSpecularIntensity());
+ }
+ else if(mbUseCol)
+ {
+ // blend texture with gouraud
+ basegfx::BColor aBlendColor(maIntColor.getX().getVal(), maIntColor.getY().getVal(), maIntColor.getZ().getVal());
+ rColor *= aBlendColor;
+ }
+ else if(mrProcessor.getModulate())
+ {
+ // blend texture with single material color
+ rColor *= mpCurrentMaterial->getColor();
+ }
+ }
+ else
+ {
+ if(mbUseNrm)
+ {
+ // modify color with phong
+ rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
+ basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
+ rColor,
+ mpCurrentMaterial->getSpecular(),
+ mpCurrentMaterial->getEmission(),
+ mpCurrentMaterial->getSpecularIntensity());
+ }
+ else if(mbUseCol)
+ {
+ // modify color with gouraud
+ rColor.setRed(maIntColor.getX().getVal());
+ rColor.setGreen(maIntColor.getY().getVal());
+ rColor.setBlue(maIntColor.getZ().getVal());
+ }
+ }
+
+ if(mbModifyColor)
+ {
+ rColor = mrProcessor.getBColorModifierStack().getModifiedColor(rColor);
+ }
+ }
+
+ return fOpacity;
+ }
+
+ void setupLineSpanInterpolators(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB)
+ {
+ // get inverse XDelta
+ const double xInvDelta(1.0 / (rB.getX().getVal() - rA.getX().getVal()));
+
+ // prepare Z-interpolator
+ const double fZA(rA.getZ().getVal());
+ const double fZB(rB.getZ().getVal());
+ maIntZ = basegfx::ip_single(fZA, (fZB - fZA) * xInvDelta);
+
+ // get bools and init other interpolators on demand accordingly
+ mbModifyColor = mrProcessor.getBColorModifierStack().count();
+ mbHasTexCoor = SCANLINE_EMPTY_INDEX != rA.getTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getTextureIndex();
+ mbHasInvTexCoor = SCANLINE_EMPTY_INDEX != rA.getInverseTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getInverseTextureIndex();
+ const bool bTextureActive(mrProcessor.getGeoTexSvx() || mrProcessor.getTransparenceGeoTexSvx());
+ mbUseTex = bTextureActive && (mbHasTexCoor || mbHasInvTexCoor || mrProcessor.getSimpleTextureActive());
+ const bool bUseColorTex(mbUseTex && mrProcessor.getGeoTexSvx());
+ const bool bNeedNrmOrCol(!bUseColorTex || (bUseColorTex && mrProcessor.getModulate()));
+ mbUseNrm = bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getNormalIndex() && SCANLINE_EMPTY_INDEX != rB.getNormalIndex();
+ mbUseCol = !mbUseNrm && bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getColorIndex() && SCANLINE_EMPTY_INDEX != rB.getColorIndex();
+
+ if(mbUseTex)
+ {
+ if(mbHasTexCoor)
+ {
+ const basegfx::ip_double& rTA(getTextureInterpolators()[rA.getTextureIndex()]);
+ const basegfx::ip_double& rTB(getTextureInterpolators()[rB.getTextureIndex()]);
+ maIntTexture = basegfx::ip_double(
+ rTA.getX().getVal(), (rTB.getX().getVal() - rTA.getX().getVal()) * xInvDelta,
+ rTA.getY().getVal(), (rTB.getY().getVal() - rTA.getY().getVal()) * xInvDelta);
+ }
+ else if(mbHasInvTexCoor)
+ {
+ const basegfx::ip_triple& rITA(getInverseTextureInterpolators()[rA.getInverseTextureIndex()]);
+ const basegfx::ip_triple& rITB(getInverseTextureInterpolators()[rB.getInverseTextureIndex()]);
+ maIntInvTexture = basegfx::ip_triple(
+ rITA.getX().getVal(), (rITB.getX().getVal() - rITA.getX().getVal()) * xInvDelta,
+ rITA.getY().getVal(), (rITB.getY().getVal() - rITA.getY().getVal()) * xInvDelta,
+ rITA.getZ().getVal(), (rITB.getZ().getVal() - rITA.getZ().getVal()) * xInvDelta);
+ }
+ }
+
+ if(mbUseNrm)
+ {
+ const basegfx::ip_triple& rNA(getNormalInterpolators()[rA.getNormalIndex()]);
+ const basegfx::ip_triple& rNB(getNormalInterpolators()[rB.getNormalIndex()]);
+ maIntNormal = basegfx::ip_triple(
+ rNA.getX().getVal(), (rNB.getX().getVal() - rNA.getX().getVal()) * xInvDelta,
+ rNA.getY().getVal(), (rNB.getY().getVal() - rNA.getY().getVal()) * xInvDelta,
+ rNA.getZ().getVal(), (rNB.getZ().getVal() - rNA.getZ().getVal()) * xInvDelta);
+ }
+
+ if(mbUseCol)
+ {
+ const basegfx::ip_triple& rCA(getColorInterpolators()[rA.getColorIndex()]);
+ const basegfx::ip_triple& rCB(getColorInterpolators()[rB.getColorIndex()]);
+ maIntColor = basegfx::ip_triple(
+ rCA.getX().getVal(), (rCB.getX().getVal() - rCA.getX().getVal()) * xInvDelta,
+ rCA.getY().getVal(), (rCB.getY().getVal() - rCA.getY().getVal()) * xInvDelta,
+ rCA.getZ().getVal(), (rCB.getZ().getVal() - rCA.getZ().getVal()) * xInvDelta);
+ }
+ }
+
+ virtual void processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount);
+
+public:
+ ZBufferRasterConverter3D(basegfx::BZPixelRaster& rBuffer, const drawinglayer::processor3d::ZBufferProcessor3D& rProcessor)
+ : basegfx::RasterConverter3D(),
+ mrProcessor(rProcessor),
+ mrBuffer(rBuffer),
+ maIntZ(),
+ maIntColor(),
+ maIntNormal(),
+ maIntTexture(),
+ maIntInvTexture(),
+ mpCurrentMaterial(0),
+ mbModifyColor(false),
+ mbUseTex(false),
+ mbHasTexCoor(false),
+ mbUseNrm(false),
+ mbUseCol(false)
+ {}
+
+ void setCurrentMaterial(const drawinglayer::attribute::MaterialAttribute3D& rMaterial)
+ {
+ mpCurrentMaterial = &rMaterial;
+ }
+};
+
+void ZBufferRasterConverter3D::processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount)
+{
+ if(!(nSpanCount & 0x0001))
+ {
+ if(nLine >= 0 && nLine < (sal_Int32)mrBuffer.getHeight())
+ {
+ sal_uInt32 nXA(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rA.getX().getVal()))));
+ const sal_uInt32 nXB(::std::min(mrBuffer.getWidth(), (sal_uInt32)::std::max((sal_Int32)0, basegfx::fround(rB.getX().getVal()))));
+
+ if(nXA < nXB)
+ {
+ // prepare the span interpolators
+ setupLineSpanInterpolators(rA, rB);
+
+ // bring span interpolators to start condition by incrementing with the possible difference of
+ // clamped and non-clamped XStart. Interpolators are setup relying on double precision
+ // X-values, so that difference is the correct value to compensate for possible clampings
+ incrementLineSpanInterpolators(static_cast<double>(nXA) - rA.getX().getVal());
+
+ // prepare scanline index
+ sal_uInt32 nScanlineIndex(mrBuffer.getIndexFromXY(nXA, static_cast<sal_uInt32>(nLine)));
+ basegfx::BColor aNewColor;
+
+ while(nXA < nXB)
+ {
+ // early-test Z values if we need to do anything at all
+ const double fNewZ(::std::max(0.0, ::std::min((double)0xffff, maIntZ.getVal())));
+ const sal_uInt16 nNewZ(static_cast< sal_uInt16 >(fNewZ));
+ sal_uInt16& rOldZ(mrBuffer.getZ(nScanlineIndex));
+
+ if(nNewZ > rOldZ)
+ {
+ // detect color and opacity for this pixel
+ const sal_uInt16 nOpacity(::std::max((sal_Int16)0, static_cast< sal_Int16 >(decideColorAndOpacity(aNewColor) * 255.0)));
+
+ if(nOpacity > 0)
+ {
+ // avoid color overrun
+ aNewColor.clamp();
+
+ if(nOpacity >= 0x00ff)
+ {
+ // full opacity, set z and color
+ rOldZ = nNewZ;
+ mrBuffer.getBPixel(nScanlineIndex) = basegfx::BPixel(aNewColor, 0xff);
+ }
+ else
+ {
+ basegfx::BPixel& rDest = mrBuffer.getBPixel(nScanlineIndex);
+
+ if(rDest.getOpacity())
+ {
+ // both transparent, mix color based on front pixel's opacity
+ // (the new one)
+ const sal_uInt16 nTransparence(0x0100 - nOpacity);
+ rDest.setRed((sal_uInt8)(((rDest.getRed() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getRed()) * nOpacity)) >> 8));
+ rDest.setGreen((sal_uInt8)(((rDest.getGreen() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getGreen()) * nOpacity)) >> 8));
+ rDest.setBlue((sal_uInt8)(((rDest.getBlue() * nTransparence) + ((sal_uInt16)(255.0 * aNewColor.getBlue()) * nOpacity)) >> 8));
+
+ if(0xff != rDest.getOpacity())
+ {
+ // destination is also transparent, mix opacities by weighting
+ // old opacity with new pixel's transparence and adding new opacity
+ rDest.setOpacity((sal_uInt8)(((rDest.getOpacity() * nTransparence) >> 8) + nOpacity));
+ }
+ }
+ else
+ {
+ // dest is not visible. Set color.
+ rDest = basegfx::BPixel(aNewColor, (sal_uInt8)nOpacity);
+ }
+ }
+ }
+ }
+
+ // increments
+ nScanlineIndex++;
+ nXA++;
+ incrementLineSpanInterpolators(1.0);
+ }
+ }
+ }
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
+namespace drawinglayer
+{
+ namespace processor3d
+ {
+ // the processing method for a single, known primitive
+ void ZBufferProcessor3D::processBasePrimitive3D(const primitive3d::BasePrimitive3D& rBasePrimitive)
+ {
+ // it is a BasePrimitive3D implementation, use getPrimitive3DID() call for switch
+ switch(rBasePrimitive.getPrimitive3DID())
+ {
+ case PRIMITIVE3D_ID_ALPHATEXTUREPRIMITIVE3D :
+ {
+ // AlphaTexturePrimitive3D
+ const primitive3d::AlphaTexturePrimitive3D& rPrimitive = static_cast< const primitive3d::AlphaTexturePrimitive3D& >(rBasePrimitive);
+
+ if(mbProcessTransparent)
+ {
+ impRenderGradientTexturePrimitive3D(rPrimitive, true);
+ }
+ else
+ {
+ mbContainsTransparent = true;
+ }
+ break;
+ }
+ case PRIMITIVE3D_ID_POLYGONHAIRLINEPRIMITIVE3D :
+ {
+ // directdraw of PolygonHairlinePrimitive3D
+ const primitive3d::PolygonHairlinePrimitive3D& rPrimitive = static_cast< const primitive3d::PolygonHairlinePrimitive3D& >(rBasePrimitive);
+
+ // do something when either not transparent and no transMap, or transparent and a TransMap
+ if((bool)mbProcessTransparent == (0 != getTransparenceGeoTexSvx()))
+ {
+ impRenderPolygonHairlinePrimitive3D(rPrimitive);
+ }
+ break;
+ }
+ case PRIMITIVE3D_ID_POLYPOLYGONMATERIALPRIMITIVE3D :
+ {
+ // directdraw of PolyPolygonMaterialPrimitive3D
+ const primitive3d::PolyPolygonMaterialPrimitive3D& rPrimitive = static_cast< const primitive3d::PolyPolygonMaterialPrimitive3D& >(rBasePrimitive);
+
+ // do something when either not transparent and no transMap, or transparent and a TransMap
+ if((bool)mbProcessTransparent == (0 != getTransparenceGeoTexSvx()))
+ {
+ impRenderPolyPolygonMaterialPrimitive3D(rPrimitive);
+ }
+ break;
+ }
+ default:
+ {
+ // use the DefaultProcessor3D::processBasePrimitive3D()
+ DefaultProcessor3D::processBasePrimitive3D(rBasePrimitive);
+ break;
+ }
+ }
+ }
+
+ void ZBufferProcessor3D::processNonTransparent(const primitive3d::Primitive3DSequence& rSource)
+ {
+ if(mpBZPixelRaster)
+ {
+ mbProcessTransparent = false;
+ mbContainsTransparent = false;
+ process(rSource);
+ }
+ }
+
+ void ZBufferProcessor3D::processTransparent(const primitive3d::Primitive3DSequence& rSource)
+ {
+ if(mpBZPixelRaster && mbContainsTransparent)
+ {
+ mbProcessTransparent = true;
+ process(rSource);
+ }
+ }
+
+ void ZBufferProcessor3D::rasterconvertB3DPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolygon& rHairline) const
+ {
+ if(mpBZPixelRaster)
+ {
+ mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
+
+ if(mnAntiAlialize > 1)
+ {
+ const bool bForceLineSnap(getOptionsDrawinglayer().IsAntiAliasing() && getOptionsDrawinglayer().IsSnapHorVerLinesToDiscrete());
+
+ if(bForceLineSnap)
+ {
+ basegfx::B3DHomMatrix aTransform;
+ basegfx::B3DPolygon aSnappedHairline(rHairline);
+ const double fScaleDown(1.0 / mnAntiAlialize);
+ const double fScaleUp(mnAntiAlialize);
+
+ // take oversampling out
+ aTransform.scale(fScaleDown, fScaleDown, 1.0);
+ aSnappedHairline.transform(aTransform);
+
+ // snap to integer
+ aSnappedHairline = basegfx::tools::snapPointsOfHorizontalOrVerticalEdges(aSnappedHairline);
+
+ // add oversampling again
+ aTransform.identity();
+ aTransform.scale(fScaleUp, fScaleUp, 1.0);
+
+ if(false)
+ {
+ // when really want to go to single pixel lines, move to center.
+ // Without this translation, all hor/ver hairlines will be centered exactly
+ // between two pixel lines (which looks best)
+ const double fTranslateToCenter(mnAntiAlialize * 0.5);
+ aTransform.translate(fTranslateToCenter, fTranslateToCenter, 0.0);
+ }
+
+ aSnappedHairline.transform(aTransform);
+
+ mpZBufferRasterConverter3D->rasterconvertB3DPolygon(aSnappedHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
+ }
+ else
+ {
+ mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), mnAntiAlialize);
+ }
+ }
+ else
+ {
+ mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, 0, mpBZPixelRaster->getHeight(), 1);
+ }
+ }
+ }
+
+ void ZBufferProcessor3D::rasterconvertB3DPolyPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolyPolygon& rFill) const
+ {
+ if(mpBZPixelRaster)
+ {
+ mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
+ mpZBufferRasterConverter3D->rasterconvertB3DPolyPolygon(rFill, &maInvEyeToView, 0, mpBZPixelRaster->getHeight());
+ }
+ }
+
+ ZBufferProcessor3D::ZBufferProcessor3D(
+ const geometry::ViewInformation3D& rViewInformation3D,
+ const geometry::ViewInformation2D& rViewInformation2D,
+ const attribute::SdrSceneAttribute& rSdrSceneAttribute,
+ const attribute::SdrLightingAttribute& rSdrLightingAttribute,
+ double fSizeX,
+ double fSizeY,
+ const basegfx::B2DRange& rVisiblePart,
+ sal_uInt16 nAntiAlialize)
+ : DefaultProcessor3D(rViewInformation3D, rSdrSceneAttribute, rSdrLightingAttribute),
+ mpBZPixelRaster(0),
+ maInvEyeToView(),
+ mpZBufferRasterConverter3D(0),
+ mnAntiAlialize(nAntiAlialize),
+ mbProcessTransparent(false),
+ mbContainsTransparent(false)
+ {
+ // generate ViewSizes
+ const double fFullViewSizeX((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(fSizeX, 0.0)).getLength());
+ const double fFullViewSizeY((rViewInformation2D.getObjectToViewTransformation() * basegfx::B2DVector(0.0, fSizeY)).getLength());
+ const double fViewSizeX(fFullViewSizeX * rVisiblePart.getWidth());
+ const double fViewSizeY(fFullViewSizeY * rVisiblePart.getHeight());
+
+ // generate RasterWidth and RasterHeight
+ const sal_uInt32 nRasterWidth((sal_uInt32)basegfx::fround(fViewSizeX) + 1);
+ const sal_uInt32 nRasterHeight((sal_uInt32)basegfx::fround(fViewSizeY) + 1);
+
+ if(nRasterWidth && nRasterHeight)
+ {
+ // create view unit buffer
+ mpBZPixelRaster = new basegfx::BZPixelRaster(
+ mnAntiAlialize ? nRasterWidth * mnAntiAlialize : nRasterWidth,
+ mnAntiAlialize ? nRasterHeight * mnAntiAlialize : nRasterHeight);
+ OSL_ENSURE(mpBZPixelRaster, "ZBufferProcessor3D: Could not allocate basegfx::BZPixelRaster (!)");
+
+ // create DeviceToView for Z-Buffer renderer since Z is handled
+ // different from standard 3D transformations (Z is mirrored). Also
+ // the transformation includes the step from unit device coordinates
+ // to discrete units ([-1.0 .. 1.0] -> [minDiscrete .. maxDiscrete]
+
+ basegfx::B3DHomMatrix aDeviceToView;
+
+ {
+ // step one:
+ //
+ // bring from [-1.0 .. 1.0] in X,Y and Z to [0.0 .. 1.0]. Also
+ // necessary to
+ // - flip Y due to screen orientation
+ // - flip Z due to Z-Buffer orientation from back to front
+
+ aDeviceToView.scale(0.5, -0.5, -0.5);
+ aDeviceToView.translate(0.5, 0.5, 0.5);
+ }
+
+ {
+ // step two:
+ //
+ // bring from [0.0 .. 1.0] in X,Y and Z to view cordinates
+ //
+ // #i102611#
+ // also: scale Z to [1.5 .. 65534.5]. Normally, a range of [0.0 .. 65535.0]
+ // could be used, but a 'unused' value is needed, so '0' is used what reduces
+ // the range to [1.0 .. 65535.0]. It has also shown that small numerical errors
+ // (smaller as basegfx::fTools::mfSmallValue, which is 0.000000001) happen.
+ // Instead of checking those by basegfx::fTools methods which would cost
+ // runtime, just add another 0.5 tolerance to the start and end of the Z-Buffer
+ // range, thus resulting in [1.5 .. 65534.5]
+ const double fMaxZDepth(65533.0);
+ aDeviceToView.translate(-rVisiblePart.getMinX(), -rVisiblePart.getMinY(), 0.0);
+
+ if(mnAntiAlialize)
+ aDeviceToView.scale(fFullViewSizeX * mnAntiAlialize, fFullViewSizeY * mnAntiAlialize, fMaxZDepth);
+ else
+ aDeviceToView.scale(fFullViewSizeX, fFullViewSizeY, fMaxZDepth);
+
+ aDeviceToView.translate(0.0, 0.0, 1.5);
+ }
+
+ // update local ViewInformation3D with own DeviceToView
+ const geometry::ViewInformation3D aNewViewInformation3D(
+ getViewInformation3D().getObjectTransformation(),
+ getViewInformation3D().getOrientation(),
+ getViewInformation3D().getProjection(),
+ aDeviceToView,
+ getViewInformation3D().getViewTime(),
+ getViewInformation3D().getExtendedInformationSequence());
+ updateViewInformation(aNewViewInformation3D);
+
+ // prepare inverse EyeToView transformation. This can be done in constructor
+ // since changes in object transformations when processing TransformPrimitive3Ds
+ // do not influence this prepared partial transformation
+ maInvEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection();
+ maInvEyeToView.invert();
+
+ // prepare maRasterRange
+ maRasterRange.reset();
+ maRasterRange.expand(basegfx::B2DPoint(0.0, 0.0));
+ maRasterRange.expand(basegfx::B2DPoint(mpBZPixelRaster->getWidth(), mpBZPixelRaster->getHeight()));
+
+ // create the raster converter
+ mpZBufferRasterConverter3D = new ZBufferRasterConverter3D(*mpBZPixelRaster, *this);
+ }
+ }
+
+ ZBufferProcessor3D::~ZBufferProcessor3D()
+ {
+ if(mpBZPixelRaster)
+ {
+ delete mpZBufferRasterConverter3D;
+ delete mpBZPixelRaster;
+ }
+ }
+
+ BitmapEx ZBufferProcessor3D::getBitmapEx() const
+ {
+ if(mpBZPixelRaster)
+ {
+ return BPixelRasterToBitmapEx(*mpBZPixelRaster, mnAntiAlialize);
+ }
+
+ return BitmapEx();
+ }
+ } // end of namespace processor3d
+} // end of namespace drawinglayer
+
+//////////////////////////////////////////////////////////////////////////////
+// eof