summaryrefslogtreecommitdiff
path: root/basegfx/source/curve/b2dbeziertools.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'basegfx/source/curve/b2dbeziertools.cxx')
-rw-r--r--basegfx/source/curve/b2dbeziertools.cxx767
1 files changed, 382 insertions, 385 deletions
diff --git a/basegfx/source/curve/b2dbeziertools.cxx b/basegfx/source/curve/b2dbeziertools.cxx
index 3512b87ca992..67c25aacb17a 100644
--- a/basegfx/source/curve/b2dbeziertools.cxx
+++ b/basegfx/source/curve/b2dbeziertools.cxx
@@ -2,9 +2,9 @@
*
* $RCSfile: b2dbeziertools.cxx,v $
*
- * $Revision: 1.3 $
+ * $Revision: 1.4 $
*
- * last change: $Author: aw $ $Date: 2003-11-26 14:40:07 $
+ * last change: $Author: aw $ $Date: 2003-11-28 11:18:00 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
@@ -95,441 +95,438 @@
namespace basegfx
{
- namespace curve
+ namespace
{
- namespace
+ class DistanceErrorFunctor
{
- class DistanceErrorFunctor
+ public:
+ DistanceErrorFunctor( const double& distance ) :
+ mfDistance2( distance*distance ),
+ mfLastDistanceError2( ::std::numeric_limits<double>::max() )
{
- public:
- DistanceErrorFunctor( const double& distance ) :
- mfDistance2( distance*distance ),
- mfLastDistanceError2( ::std::numeric_limits<double>::max() )
- {
- }
-
- bool subdivideFurther( const double& P1x, const double& P1y,
- const double& P2x, const double& P2y,
- const double& P3x, const double& P3y,
- const double& P4x, const double& P4y,
- const double&, const double& ) // last two values not used here
- {
- // Perform bezier flatness test (lecture notes from R. Schaback,
- // Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
- //
- // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
- // 0<=j<=n
- //
- // What is calculated here is an upper bound to the distance from
- // a line through b_0 and b_3 (P1 and P4 in our notation) and the
- // curve. We can drop 0 and n from the running indices, since the
- // argument of max becomes zero for those cases.
- const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) );
- const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) );
- const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) );
- const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) );
- const double distanceError2( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
- fJ2x*fJ2x + fJ2y*fJ2y) );
-
- // stop if error measure does not improve anymore. This is a
- // safety guard against floating point inaccuracies.
- // stop if distance from line is guaranteed to be bounded by d
- bool bRet( mfLastDistanceError2 > distanceError2 &&
- distanceError2 >= mfDistance2 );
-
- mfLastDistanceError2 = distanceError2;
+ }
- return bRet;
- }
+ bool subdivideFurther( const double& P1x, const double& P1y,
+ const double& P2x, const double& P2y,
+ const double& P3x, const double& P3y,
+ const double& P4x, const double& P4y,
+ const double&, const double& ) // last two values not used here
+ {
+ // Perform bezier flatness test (lecture notes from R. Schaback,
+ // Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
+ //
+ // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
+ // 0<=j<=n
+ //
+ // What is calculated here is an upper bound to the distance from
+ // a line through b_0 and b_3 (P1 and P4 in our notation) and the
+ // curve. We can drop 0 and n from the running indices, since the
+ // argument of max becomes zero for those cases.
+ const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) );
+ const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) );
+ const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) );
+ const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) );
+ const double distanceError2( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
+ fJ2x*fJ2x + fJ2y*fJ2y) );
+
+ // stop if error measure does not improve anymore. This is a
+ // safety guard against floating point inaccuracies.
+ // stop if distance from line is guaranteed to be bounded by d
+ bool bRet( mfLastDistanceError2 > distanceError2 &&
+ distanceError2 >= mfDistance2 );
+
+ mfLastDistanceError2 = distanceError2;
+
+ return bRet;
+ }
- private:
- double mfDistance2;
- double mfLastDistanceError2;
- };
+ private:
+ double mfDistance2;
+ double mfLastDistanceError2;
+ };
- class AngleErrorFunctor
+ class AngleErrorFunctor
+ {
+ public:
+ AngleErrorFunctor( const double& angleBounds ) :
+ mfTanAngle( angleBounds * F_PI180 ),
+ mfLastTanAngle( ::std::numeric_limits<double>::max() )
{
- public:
- AngleErrorFunctor( const double& angleBounds ) :
- mfTanAngle( angleBounds * F_PI180 ),
- mfLastTanAngle( ::std::numeric_limits<double>::max() )
- {
- }
+ }
- bool subdivideFurther( const double P1x, const double P1y,
- const double P2x, const double P2y,
- const double P3x, const double P3y,
- const double P4x, const double P4y,
- const double Pdx, const double Pdy )
+ bool subdivideFurther( const double P1x, const double P1y,
+ const double P2x, const double P2y,
+ const double P3x, const double P3y,
+ const double P4x, const double P4y,
+ const double Pdx, const double Pdy )
+ {
+ // Test angle differences between two lines (ad
+ // and bd), meeting in the t=0.5 division point
+ // (d), and the angle from the other ends of those
+ // lines (b and a, resp.) to the tangents to the
+ // curve at this points:
+ //
+ // *__________
+ // ......*b
+ // ...
+ // ..
+ // .
+ // * *d
+ // | .
+ // | .
+ // | .
+ // | .
+ // |.
+ // |.
+ // *
+ // a
+ //
+ // When using half of the angle bound for the
+ // difference to the tangents at a or b, resp.,
+ // this procedure guarantees that no angle in the
+ // resulting line polygon is larger than the
+ // specified angle bound. This is because during
+ // subdivision, adjacent curve segments will have
+ // collinear tangent vectors, thus, when each
+ // side's line segments differs by at most angle/2
+ // from that tangent, the summed difference will
+ // be at most angle (this was modeled after an
+ // idea from Armin Weiss).
+
+ // To stay within the notation above, a equals P1,
+ // the other end point of the tangent starting at
+ // a is P2, d is Pd, and so forth. The
+ const B2DVector vecAD( Pdx - P1x, Pdy - P1y );
+ const B2DVector vecDB( P4x - Pdx, P4y - Pdy );
+
+ const double scalarVecADDB( vecAD.scalar( vecDB ) );
+ const double crossVecADDB( vecAD.cross( vecDB ) );
+
+ const B2DVector vecStartTangent( P2x - P1x, P2y - P1y );
+ const B2DVector vecEndTangent( P4x - P3x, P4y - P3y );
+
+ const double scalarVecStartTangentAD( vecStartTangent.scalar( vecAD ) );
+ const double crossVecStartTangentAD( vecStartTangent.cross( vecAD ) );
+
+ const double scalarVecDBEndTangent( vecDB.scalar( vecEndTangent ) );
+ const double crossVecDBEndTangent( vecDB.cross( vecEndTangent ) );
+
+
+ double fCurrAngle( ::std::numeric_limits<double>::max() );
+
+ // anyone has zero denominator? then we're at
+ // +infinity, anyway
+ if( !fTools::equalZero( scalarVecADDB ) &&
+ !fTools::equalZero( scalarVecStartTangentAD ) &&
+ !fTools::equalZero( scalarVecDBEndTangent ) )
{
- // Test angle differences between two lines (ad
- // and bd), meeting in the t=0.5 division point
- // (d), and the angle from the other ends of those
- // lines (b and a, resp.) to the tangents to the
- // curve at this points:
- //
- // *__________
- // ......*b
- // ...
- // ..
- // .
- // * *d
- // | .
- // | .
- // | .
- // | .
- // |.
- // |.
- // *
- // a
- //
- // When using half of the angle bound for the
- // difference to the tangents at a or b, resp.,
- // this procedure guarantees that no angle in the
- // resulting line polygon is larger than the
- // specified angle bound. This is because during
- // subdivision, adjacent curve segments will have
- // collinear tangent vectors, thus, when each
- // side's line segments differs by at most angle/2
- // from that tangent, the summed difference will
- // be at most angle (this was modeled after an
- // idea from Armin Weiss).
-
- // To stay within the notation above, a equals P1,
- // the other end point of the tangent starting at
- // a is P2, d is Pd, and so forth. The
- const vector::B2DVector vecAD( Pdx - P1x, Pdy - P1y );
- const vector::B2DVector vecDB( P4x - Pdx, P4y - Pdy );
-
- const double scalarVecADDB( vecAD.scalar( vecDB ) );
- const double crossVecADDB( vecAD.cross( vecDB ) );
-
- const vector::B2DVector vecStartTangent( P2x - P1x, P2y - P1y );
- const vector::B2DVector vecEndTangent( P4x - P3x, P4y - P3y );
-
- const double scalarVecStartTangentAD( vecStartTangent.scalar( vecAD ) );
- const double crossVecStartTangentAD( vecStartTangent.cross( vecAD ) );
-
- const double scalarVecDBEndTangent( vecDB.scalar( vecEndTangent ) );
- const double crossVecDBEndTangent( vecDB.cross( vecEndTangent ) );
-
-
- double fCurrAngle( ::std::numeric_limits<double>::max() );
-
- // anyone has zero denominator? then we're at
- // +infinity, anyway
- if( !numeric::fTools::equalZero( scalarVecADDB ) &&
- !numeric::fTools::equalZero( scalarVecStartTangentAD ) &&
- !numeric::fTools::equalZero( scalarVecDBEndTangent ) )
+ if( scalarVecADDB > 0.0 &&
+ scalarVecStartTangentAD > 0.0 &&
+ scalarVecDBEndTangent > 0.0 )
{
- if( scalarVecADDB > 0.0 &&
- scalarVecStartTangentAD > 0.0 &&
- scalarVecDBEndTangent > 0.0 )
- {
- fCurrAngle = ::std::max( fabs( atan2( crossVecADDB, scalarVecADDB ) ),
- ::std::max( fabs( atan2( crossVecStartTangentAD, scalarVecStartTangentAD ) ),
- fabs( atan2( crossVecDBEndTangent, scalarVecDBEndTangent ) ) ) );
- }
+ fCurrAngle = ::std::max( fabs( atan2( crossVecADDB, scalarVecADDB ) ),
+ ::std::max( fabs( atan2( crossVecStartTangentAD, scalarVecStartTangentAD ) ),
+ fabs( atan2( crossVecDBEndTangent, scalarVecDBEndTangent ) ) ) );
}
+ }
- // stop if error measure does not improve anymore. This is a
- // safety guard against floating point inaccuracies.
- // stop if angle difference is guaranteed to be bounded by mfTanAngle
- bool bRet( mfLastTanAngle > fCurrAngle &&
- fCurrAngle >= mfTanAngle );
+ // stop if error measure does not improve anymore. This is a
+ // safety guard against floating point inaccuracies.
+ // stop if angle difference is guaranteed to be bounded by mfTanAngle
+ bool bRet( mfLastTanAngle > fCurrAngle &&
+ fCurrAngle >= mfTanAngle );
- mfLastTanAngle = fCurrAngle;
+ mfLastTanAngle = fCurrAngle;
- return bRet;
- }
+ return bRet;
+ }
- private:
- double mfTanAngle;
- double mfLastTanAngle;
- };
+ private:
+ double mfTanAngle;
+ double mfLastTanAngle;
+ };
- /* Recursively subdivide cubic bezier curve via deCasteljau.
+ /* Recursively subdivide cubic bezier curve via deCasteljau.
- @param rPoly
- Polygon to append generated points to
+ @param rPoly
+ Polygon to append generated points to
- @param d2
- Maximal squared difference of curve to a straight line
+ @param d2
+ Maximal squared difference of curve to a straight line
- @param P*
- Exactly four points, interpreted as support and control points of
- a cubic bezier curve.
+ @param P*
+ Exactly four points, interpreted as support and control points of
+ a cubic bezier curve.
- @param old_distance2
- Last squared distance to line for this recursion
- path. Used as an end condition, if it is no longer
- improving.
+ @param old_distance2
+ Last squared distance to line for this recursion
+ path. Used as an end condition, if it is no longer
+ improving.
- @param recursionDepth
- Depth of recursion. Used as a termination criterion, to
- prevent endless looping.
- */
- template < class ErrorFunctor > int ImplAdaptiveSubdivide( polygon::B2DPolygon& rPoly,
- ErrorFunctor rErrorFunctor,
- const double P1x, const double P1y,
- const double P2x, const double P2y,
- const double P3x, const double P3y,
- const double P4x, const double P4y,
- int recursionDepth )
+ @param recursionDepth
+ Depth of recursion. Used as a termination criterion, to
+ prevent endless looping.
+ */
+ template < class ErrorFunctor > int ImplAdaptiveSubdivide( B2DPolygon& rPoly,
+ ErrorFunctor rErrorFunctor,
+ const double P1x, const double P1y,
+ const double P2x, const double P2y,
+ const double P3x, const double P3y,
+ const double P4x, const double P4y,
+ int recursionDepth )
+ {
+ // Hard limit on recursion depth, empiric number.
+ enum {maxRecursionDepth=128};
+
+ // deCasteljau bezier arc, split at t=0.5
+ // Foley/vanDam, p. 508
+
+ // Note that for the pure distance error method, this
+ // subdivision could be moved into the if-branch. But
+ // since this accounts for saved work only for the
+ // very last subdivision step, and we need the
+ // subdivided curve for the angle criterium, I think
+ // it's justified here.
+ const double L1x( P1x ), L1y( P1y );
+ const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 );
+ const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 );
+ const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 );
+ const double R4x( P4x ), R4y( P4y );
+ const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 );
+ const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 );
+ const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 );
+ const double L4x( R1x ), L4y( R1y );
+
+ // stop at recursion level 128. This is a safety guard against
+ // floating point inaccuracies.
+ if( recursionDepth < maxRecursionDepth &&
+ rErrorFunctor.subdivideFurther( P1x, P1y,
+ P2x, P2y,
+ P3x, P3y,
+ P4x, P4y,
+ R1x, R1y ) )
{
- // Hard limit on recursion depth, empiric number.
- enum {maxRecursionDepth=128};
-
- // deCasteljau bezier arc, split at t=0.5
- // Foley/vanDam, p. 508
-
- // Note that for the pure distance error method, this
- // subdivision could be moved into the if-branch. But
- // since this accounts for saved work only for the
- // very last subdivision step, and we need the
- // subdivided curve for the angle criterium, I think
- // it's justified here.
- const double L1x( P1x ), L1y( P1y );
- const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 );
- const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 );
- const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 );
- const double R4x( P4x ), R4y( P4y );
- const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 );
- const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 );
- const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 );
- const double L4x( R1x ), L4y( R1y );
-
- // stop at recursion level 128. This is a safety guard against
- // floating point inaccuracies.
- if( recursionDepth < maxRecursionDepth &&
- rErrorFunctor.subdivideFurther( P1x, P1y,
- P2x, P2y,
- P3x, P3y,
- P4x, P4y,
- R1x, R1y ) )
- {
- // subdivide further
- ++recursionDepth;
+ // subdivide further
+ ++recursionDepth;
- int nGeneratedPoints(0);
+ int nGeneratedPoints(0);
- nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y, recursionDepth);
- nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y, recursionDepth);
+ nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y, recursionDepth);
+ nGeneratedPoints += ImplAdaptiveSubdivide(rPoly, rErrorFunctor, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y, recursionDepth);
- // return number of points generated in this
- // recursion branch
- return nGeneratedPoints;
- }
- else
- {
- // requested resolution reached. Add end points to
- // output iterator. order is preserved, since
- // this is so to say depth first traversal.
- rPoly.append( point::B2DPoint( P1x, P1y ) );
-
- // return number of points generated in this
- // recursion branch
- return 1;
- }
+ // return number of points generated in this
+ // recursion branch
+ return nGeneratedPoints;
}
+ else
+ {
+ // requested resolution reached. Add end points to
+ // output iterator. order is preserved, since
+ // this is so to say depth first traversal.
+ rPoly.append( B2DPoint( P1x, P1y ) );
+
+ // return number of points generated in this
+ // recursion branch
+ return 1;
+ }
+ }
// LATER
#if 0
- /* Approximate given cubic bezier curve by quadratic bezier segments */
- void ImplQuadBezierApprox( polygon::B2DPolygon& rPoly,
- BitStream& rBits,
- Point& rLastPoint,
- const double d2,
- const double P1x, const double P1y,
- const double P2x, const double P2y,
- const double P3x, const double P3y,
- const double P4x, const double P4y )
+ /* Approximate given cubic bezier curve by quadratic bezier segments */
+ void ImplQuadBezierApprox( B2DPolygon& rPoly,
+ BitStream& rBits,
+ Point& rLastPoint,
+ const double d2,
+ const double P1x, const double P1y,
+ const double P2x, const double P2y,
+ const double P3x, const double P3y,
+ const double P4x, const double P4y )
+ {
+ // Check for degenerate case, where the given cubic bezier curve
+ // is already quadratic: P4 == 3P3 - 3P2 + P1
+ if( P4x == 3.0*P3x - 3.0*P2x + P1x &&
+ P4y == 3.0*P3y - 3.0*P2y + P1y )
+ {
+ Impl_addQuadBezier( rBits, rLastPoint,
+ 3.0/2.0*P2x - 1.0/2.0*P1x, 3.0/2.0*P2y - 1.0/2.0*P1y,
+ P4x, P4y);
+ }
+ else
{
- // Check for degenerate case, where the given cubic bezier curve
- // is already quadratic: P4 == 3P3 - 3P2 + P1
- if( P4x == 3.0*P3x - 3.0*P2x + P1x &&
- P4y == 3.0*P3y - 3.0*P2y + P1y )
+ // Create quadratic segment for given cubic:
+ // Start and end point must coincide, determine quadratic control
+ // point in such a way that it lies on the intersection of the
+ // tangents at start and end point, resp. Thus, both cubic and
+ // quadratic curve segments will match in 0th and 1st derivative
+ // at the start and end points
+
+ // Intersection of P2P1 and P4P3
+ // (P2y-P4y)(P3x-P4x)-(P2x-P4x)(P3y-P4y)
+ // lambda = -------------------------------------
+ // (P1x-P2x)(P3y-P4y)-(P1y-P2y)(P3x-P4x)
+ //
+ // Intersection point IP is now
+ // IP = P2 + lambda(P1-P2)
+ //
+ const double nominator( (P2y-P4y)*(P3x-P4x) - (P2x-P4x)*(P3y-P4y) );
+ const double denominator( (P1x-P2x)*(P3y-P4y) - (P1y-P2y)*(P3x-P4x) );
+ const double lambda( nominator / denominator );
+
+ const double IPx( P2x + lambda*( P1x - P2x) );
+ const double IPy( P2y + lambda*( P1y - P2y) );
+
+ // Introduce some alias names: quadratic start point is P1, end
+ // point is P4, control point is IP
+ const double QP1x( P1x );
+ const double QP1y( P1y );
+ const double QP2x( IPx );
+ const double QP2y( IPy );
+ const double QP3x( P4x );
+ const double QP3y( P4y );
+
+ // Adapted bezier flatness test (lecture notes from R. Schaback,
+ // Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
+ //
+ // ||C(t) - Q(t)|| <= max ||c_j - q_j||
+ // 0<=j<=n
+ //
+ // In this case, we don't need the distance from the cubic bezier
+ // to a straight line, but to a quadratic bezier. The c_j's are
+ // the cubic bezier's bernstein coefficients, the q_j's the
+ // quadratic bezier's. We have the c_j's given, the q_j's can be
+ // calculated from QPi like this (sorry, mixed index notation, we
+ // use [1,n], formulas use [0,n-1]):
+ //
+ // q_0 = QP1 = P1
+ // q_1 = 1/3 QP1 + 2/3 QP2
+ // q_2 = 2/3 QP2 + 1/3 QP3
+ // q_3 = QP3 = P4
+ //
+ // We can drop case 0 and 3, since there the curves coincide
+ // (distance is zero)
+
+ // calculate argument of max for j=1 and j=2
+ const double fJ1x( P2x - 1.0/3.0*QP1x - 2.0/3.0*QP2x );
+ const double fJ1y( P2y - 1.0/3.0*QP1y - 2.0/3.0*QP2y );
+ const double fJ2x( P3x - 2.0/3.0*QP2x - 1.0/3.0*QP3x );
+ const double fJ2y( P3y - 2.0/3.0*QP2y - 1.0/3.0*QP3y );
+
+ // stop if distance from cubic curve is guaranteed to be bounded by d
+ // Should denominator be 0: then P1P2 and P3P4 are parallel (P1P2^T R[90,P3P4] = 0.0),
+ // meaning that either we have a straight line or an inflexion point (see else block below)
+ if( 0.0 != denominator &&
+ ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
+ fJ2x*fJ2x + fJ2y*fJ2y) < d2 )
{
+ // requested resolution reached.
+ // Add end points to output file.
+ // order is preserved, since this is so to say depth first traversal.
Impl_addQuadBezier( rBits, rLastPoint,
- 3.0/2.0*P2x - 1.0/2.0*P1x, 3.0/2.0*P2y - 1.0/2.0*P1y,
- P4x, P4y);
+ QP2x, QP2y,
+ QP3x, QP3y);
}
else
{
- // Create quadratic segment for given cubic:
- // Start and end point must coincide, determine quadratic control
- // point in such a way that it lies on the intersection of the
- // tangents at start and end point, resp. Thus, both cubic and
- // quadratic curve segments will match in 0th and 1st derivative
- // at the start and end points
-
- // Intersection of P2P1 and P4P3
- // (P2y-P4y)(P3x-P4x)-(P2x-P4x)(P3y-P4y)
- // lambda = -------------------------------------
- // (P1x-P2x)(P3y-P4y)-(P1y-P2y)(P3x-P4x)
- //
- // Intersection point IP is now
- // IP = P2 + lambda(P1-P2)
- //
- const double nominator( (P2y-P4y)*(P3x-P4x) - (P2x-P4x)*(P3y-P4y) );
- const double denominator( (P1x-P2x)*(P3y-P4y) - (P1y-P2y)*(P3x-P4x) );
- const double lambda( nominator / denominator );
-
- const double IPx( P2x + lambda*( P1x - P2x) );
- const double IPy( P2y + lambda*( P1y - P2y) );
-
- // Introduce some alias names: quadratic start point is P1, end
- // point is P4, control point is IP
- const double QP1x( P1x );
- const double QP1y( P1y );
- const double QP2x( IPx );
- const double QP2y( IPy );
- const double QP3x( P4x );
- const double QP3y( P4y );
-
- // Adapted bezier flatness test (lecture notes from R. Schaback,
+ // Maybe subdivide further
+
+ // This is for robustness reasons, since the line intersection
+ // method below gets instable if the curve gets closer to a
+ // straight line. If the given cubic bezier does not deviate by
+ // more than d/4 from a straight line, either:
+ // - take the line (that's what we do here)
+ // - express the line by a quadratic bezier
+
+ // Perform bezier flatness test (lecture notes from R. Schaback,
// Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
//
- // ||C(t) - Q(t)|| <= max ||c_j - q_j||
+ // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
// 0<=j<=n
//
- // In this case, we don't need the distance from the cubic bezier
- // to a straight line, but to a quadratic bezier. The c_j's are
- // the cubic bezier's bernstein coefficients, the q_j's the
- // quadratic bezier's. We have the c_j's given, the q_j's can be
- // calculated from QPi like this (sorry, mixed index notation, we
- // use [1,n], formulas use [0,n-1]):
- //
- // q_0 = QP1 = P1
- // q_1 = 1/3 QP1 + 2/3 QP2
- // q_2 = 2/3 QP2 + 1/3 QP3
- // q_3 = QP3 = P4
- //
- // We can drop case 0 and 3, since there the curves coincide
- // (distance is zero)
-
- // calculate argument of max for j=1 and j=2
- const double fJ1x( P2x - 1.0/3.0*QP1x - 2.0/3.0*QP2x );
- const double fJ1y( P2y - 1.0/3.0*QP1y - 2.0/3.0*QP2y );
- const double fJ2x( P3x - 2.0/3.0*QP2x - 1.0/3.0*QP3x );
- const double fJ2y( P3y - 2.0/3.0*QP2y - 1.0/3.0*QP3y );
-
- // stop if distance from cubic curve is guaranteed to be bounded by d
- // Should denominator be 0: then P1P2 and P3P4 are parallel (P1P2^T R[90,P3P4] = 0.0),
- // meaning that either we have a straight line or an inflexion point (see else block below)
- if( 0.0 != denominator &&
- ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
- fJ2x*fJ2x + fJ2y*fJ2y) < d2 )
+ // What is calculated here is an upper bound to the distance from
+ // a line through b_0 and b_3 (P1 and P4 in our notation) and the
+ // curve. We can drop 0 and n from the running indices, since the
+ // argument of max becomes zero for those cases.
+ const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) );
+ const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) );
+ const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) );
+ const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) );
+
+ // stop if distance from line is guaranteed to be bounded by d/4
+ if( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
+ fJ2x*fJ2x + fJ2y*fJ2y) < d2/16.0 )
{
- // requested resolution reached.
- // Add end points to output file.
- // order is preserved, since this is so to say depth first traversal.
- Impl_addQuadBezier( rBits, rLastPoint,
- QP2x, QP2y,
- QP3x, QP3y);
+ // do not subdivide further, add straight line instead
+ Impl_addStraightLine( rBits, rLastPoint, P4x, P4y);
}
else
{
- // Maybe subdivide further
-
- // This is for robustness reasons, since the line intersection
- // method below gets instable if the curve gets closer to a
- // straight line. If the given cubic bezier does not deviate by
- // more than d/4 from a straight line, either:
- // - take the line (that's what we do here)
- // - express the line by a quadratic bezier
-
- // Perform bezier flatness test (lecture notes from R. Schaback,
- // Mathematics of Computer-Aided Design, Uni Goettingen, 2000)
- //
- // ||P(t) - L(t)|| <= max ||b_j - b_0 - j/n(b_n - b_0)||
- // 0<=j<=n
- //
- // What is calculated here is an upper bound to the distance from
- // a line through b_0 and b_3 (P1 and P4 in our notation) and the
- // curve. We can drop 0 and n from the running indices, since the
- // argument of max becomes zero for those cases.
- const double fJ1x( P2x - P1x - 1.0/3.0*(P4x - P1x) );
- const double fJ1y( P2y - P1y - 1.0/3.0*(P4y - P1y) );
- const double fJ2x( P3x - P1x - 2.0/3.0*(P4x - P1x) );
- const double fJ2y( P3y - P1y - 2.0/3.0*(P4y - P1y) );
-
- // stop if distance from line is guaranteed to be bounded by d/4
- if( ::std::max( fJ1x*fJ1x + fJ1y*fJ1y,
- fJ2x*fJ2x + fJ2y*fJ2y) < d2/16.0 )
- {
- // do not subdivide further, add straight line instead
- Impl_addStraightLine( rBits, rLastPoint, P4x, P4y);
- }
- else
- {
- // deCasteljau bezier arc, split at t=0.5
- // Foley/vanDam, p. 508
- const double L1x( P1x ), L1y( P1y );
- const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 );
- const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 );
- const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 );
- const double R4x( P4x ), R4y( P4y );
- const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 );
- const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 );
- const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 );
- const double L4x( R1x ), L4y( R1y );
-
- // subdivide further
- Impl_quadBezierApprox(rBits, rLastPoint, d2, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y);
- Impl_quadBezierApprox(rBits, rLastPoint, d2, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y);
- }
+ // deCasteljau bezier arc, split at t=0.5
+ // Foley/vanDam, p. 508
+ const double L1x( P1x ), L1y( P1y );
+ const double L2x( (P1x + P2x)*0.5 ), L2y( (P1y + P2y)*0.5 );
+ const double Hx ( (P2x + P3x)*0.5 ), Hy ( (P2y + P3y)*0.5 );
+ const double L3x( (L2x + Hx)*0.5 ), L3y( (L2y + Hy)*0.5 );
+ const double R4x( P4x ), R4y( P4y );
+ const double R3x( (P3x + P4x)*0.5 ), R3y( (P3y + P4y)*0.5 );
+ const double R2x( (Hx + R3x)*0.5 ), R2y( (Hy + R3y)*0.5 );
+ const double R1x( (L3x + R2x)*0.5 ), R1y( (L3y + R2y)*0.5 );
+ const double L4x( R1x ), L4y( R1y );
+
+ // subdivide further
+ Impl_quadBezierApprox(rBits, rLastPoint, d2, L1x, L1y, L2x, L2y, L3x, L3y, L4x, L4y);
+ Impl_quadBezierApprox(rBits, rLastPoint, d2, R1x, R1y, R2x, R2y, R3x, R3y, R4x, R4y);
}
}
}
-#endif
- }
-
- sal_Int32 adaptiveSubdivideByDistance( polygon::B2DPolygon& rPoly,
- const B2DCubicBezier& rCurve,
- double distanceBounds )
- {
- const point::B2DPoint start( rCurve.getStartPoint() );
- const point::B2DPoint control1( rCurve.getControlPointA() );
- const point::B2DPoint control2( rCurve.getControlPointB() );
- const point::B2DPoint end( rCurve.getEndPoint() );
-
- return ImplAdaptiveSubdivide( rPoly,
- DistanceErrorFunctor( distanceBounds ),
- start.getX(), start.getY(),
- control1.getX(), control1.getY(),
- control2.getX(), control2.getY(),
- end.getX(), end.getY(),
- 0 );
}
+#endif
+ }
- sal_Int32 adaptiveSubdivideByAngle( polygon::B2DPolygon& rPoly,
+ sal_Int32 adaptiveSubdivideByDistance( B2DPolygon& rPoly,
const B2DCubicBezier& rCurve,
- double angleBounds )
- {
- const point::B2DPoint start( rCurve.getStartPoint() );
- const point::B2DPoint control1( rCurve.getControlPointA() );
- const point::B2DPoint control2( rCurve.getControlPointB() );
- const point::B2DPoint end( rCurve.getEndPoint() );
-
- return ImplAdaptiveSubdivide( rPoly,
- AngleErrorFunctor( angleBounds ),
- start.getX(), start.getY(),
- control1.getX(), control1.getY(),
- control2.getX(), control2.getY(),
- end.getX(), end.getY(),
- 0 );
- }
+ double distanceBounds )
+ {
+ const B2DPoint start( rCurve.getStartPoint() );
+ const B2DPoint control1( rCurve.getControlPointA() );
+ const B2DPoint control2( rCurve.getControlPointB() );
+ const B2DPoint end( rCurve.getEndPoint() );
+
+ return ImplAdaptiveSubdivide( rPoly,
+ DistanceErrorFunctor( distanceBounds ),
+ start.getX(), start.getY(),
+ control1.getX(), control1.getY(),
+ control2.getX(), control2.getY(),
+ end.getX(), end.getY(),
+ 0 );
+ }
- sal_Int32 adaptiveSubdivideByDistance( polygon::B2DPolygon& rPoly,
- const B2DQuadraticBezier& rCurve,
- double distanceBounds )
- {
- // TODO
- return 0;
- }
+ sal_Int32 adaptiveSubdivideByAngle( B2DPolygon& rPoly,
+ const B2DCubicBezier& rCurve,
+ double angleBounds )
+ {
+ const B2DPoint start( rCurve.getStartPoint() );
+ const B2DPoint control1( rCurve.getControlPointA() );
+ const B2DPoint control2( rCurve.getControlPointB() );
+ const B2DPoint end( rCurve.getEndPoint() );
+
+ return ImplAdaptiveSubdivide( rPoly,
+ AngleErrorFunctor( angleBounds ),
+ start.getX(), start.getY(),
+ control1.getX(), control1.getY(),
+ control2.getX(), control2.getY(),
+ end.getX(), end.getY(),
+ 0 );
+ }
+
+ sal_Int32 adaptiveSubdivideByDistance( B2DPolygon& rPoly,
+ const B2DQuadraticBezier& rCurve,
+ double distanceBounds )
+ {
+ // TODO
+ return 0;
}
}