summaryrefslogtreecommitdiff
path: root/agg/inc/agg_span_gradient.h
diff options
context:
space:
mode:
Diffstat (limited to 'agg/inc/agg_span_gradient.h')
-rwxr-xr-xagg/inc/agg_span_gradient.h422
1 files changed, 422 insertions, 0 deletions
diff --git a/agg/inc/agg_span_gradient.h b/agg/inc/agg_span_gradient.h
new file mode 100755
index 000000000000..6bac1c652a84
--- /dev/null
+++ b/agg/inc/agg_span_gradient.h
@@ -0,0 +1,422 @@
+//----------------------------------------------------------------------------
+// Anti-Grain Geometry - Version 2.3
+// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
+//
+// Permission to copy, use, modify, sell and distribute this software
+// is granted provided this copyright notice appears in all copies.
+// This software is provided "as is" without express or implied
+// warranty, and with no claim as to its suitability for any purpose.
+//
+//----------------------------------------------------------------------------
+// Contact: mcseem@antigrain.com
+// mcseemagg@yahoo.com
+// http://www.antigrain.com
+//----------------------------------------------------------------------------
+
+#ifndef AGG_SPAN_GRADIENT_INCLUDED
+#define AGG_SPAN_GRADIENT_INCLUDED
+
+#include <math.h>
+#include <stdlib.h>
+#include <string.h>
+#include "agg_basics.h"
+#include "agg_span_generator.h"
+#include "agg_math.h"
+#include "agg_array.h"
+
+
+namespace agg
+{
+
+ enum
+ {
+ gradient_subpixel_shift = 4, //-----gradient_subpixel_shift
+ gradient_subpixel_size = 1 << gradient_subpixel_shift, //-----gradient_subpixel_size
+ gradient_subpixel_mask = gradient_subpixel_size - 1 //-----gradient_subpixel_mask
+ };
+
+
+
+ //==========================================================span_gradient
+ template<class ColorT,
+ class Interpolator,
+ class GradientF,
+ class ColorF,
+ class Allocator = span_allocator<ColorT> >
+ class span_gradient : public span_generator<ColorT, Allocator>
+ {
+ public:
+ typedef Interpolator interpolator_type;
+ typedef Allocator alloc_type;
+ typedef ColorT color_type;
+ typedef span_generator<color_type, alloc_type> base_type;
+
+ enum
+ {
+ downscale_shift = interpolator_type::subpixel_shift -
+ gradient_subpixel_shift
+ };
+
+ //--------------------------------------------------------------------
+ span_gradient(alloc_type& alloc) : base_type(alloc) {}
+
+ //--------------------------------------------------------------------
+ span_gradient(alloc_type& alloc,
+ interpolator_type& inter,
+ const GradientF& gradient_function_,
+ const ColorF& color_function_,
+ double d1_, double d2_) :
+ base_type(alloc),
+ m_interpolator(&inter),
+ m_gradient_function(&gradient_function_),
+ m_color_function(&color_function_),
+ m_d1(int(d1_ * gradient_subpixel_size)),
+ m_d2(int(d2_ * gradient_subpixel_size))
+ {}
+
+ //--------------------------------------------------------------------
+ interpolator_type& interpolator() { return *m_interpolator; }
+ const GradientF& gradient_function() const { return *m_gradient_function; }
+ const ColorF& color_function() const { return *m_color_function; }
+ double d1() const { return double(m_d1) / gradient_subpixel_size; }
+ double d2() const { return double(m_d2) / gradient_subpixel_size; }
+
+ //--------------------------------------------------------------------
+ void interpolator(interpolator_type& i) { m_interpolator = &i; }
+ void gradient_function(const GradientF& gf) { m_gradient_function = &gf; }
+ void color_function(const ColorF& cf) { m_color_function = &cf; }
+ void d1(double v) { m_d1 = int(v * gradient_subpixel_size); }
+ void d2(double v) { m_d2 = int(v * gradient_subpixel_size); }
+
+ //--------------------------------------------------------------------
+ color_type* generate(int x, int y, unsigned len)
+ {
+ color_type* span = base_type::allocator().span();
+ int dd = m_d2 - m_d1;
+ if(dd < 1) dd = 1;
+ m_interpolator->begin(x+0.5, y+0.5, len);
+ do
+ {
+ m_interpolator->coordinates(&x, &y);
+ int d = m_gradient_function->calculate(x >> downscale_shift,
+ y >> downscale_shift, dd);
+ d = ((d - m_d1) * (int)m_color_function->size()) / dd;
+ if(d < 0) d = 0;
+ if(d >= (int)m_color_function->size()) d = m_color_function->size() - 1;
+ *span++ = (*m_color_function)[d];
+ ++(*m_interpolator);
+ }
+ while(--len);
+ return base_type::allocator().span();
+ }
+
+ private:
+ interpolator_type* m_interpolator;
+ const GradientF* m_gradient_function;
+ const ColorF* m_color_function;
+ int m_d1;
+ int m_d2;
+ };
+
+
+
+
+ //=====================================================gradient_linear_color
+ template<class ColorT>
+ struct gradient_linear_color
+ {
+ typedef ColorT color_type;
+
+ gradient_linear_color() {}
+ gradient_linear_color(const color_type& c1, const color_type& c2,
+ unsigned size = 256) :
+ m_c1(c1), m_c2(c2), m_size(size) {}
+
+ unsigned size() const { return m_size; }
+ color_type operator [] (unsigned v) const
+ {
+ return m_c1.gradient(m_c2, double(v) / double(m_size - 1));
+ }
+
+ void colors(const color_type& c1, const color_type& c2, unsigned size = 256)
+ {
+ m_c1 = c1;
+ m_c2 = c2;
+ m_size = size;
+ }
+
+ color_type m_c1;
+ color_type m_c2;
+ unsigned m_size;
+ };
+
+
+ //==========================================================gradient_circle
+ class gradient_circle
+ {
+ // Actually the same as radial. Just for compatibility
+ public:
+ static AGG_INLINE int calculate(int x, int y, int)
+ {
+ return int(fast_sqrt(x*x + y*y));
+ }
+ };
+
+
+ //==========================================================gradient_radial
+ class gradient_radial
+ {
+ public:
+ static AGG_INLINE int calculate(int x, int y, int)
+ {
+ return int(fast_sqrt(x*x + y*y));
+ }
+ };
+
+
+ //========================================================gradient_radial_d
+ class gradient_radial_d
+ {
+ public:
+ static AGG_INLINE int calculate(int x, int y, int)
+ {
+ return int(sqrt(double(x)*double(x) + double(y)*double(y)));
+ }
+ };
+
+
+ //====================================================gradient_radial_focus
+ class gradient_radial_focus
+ {
+ public:
+ //---------------------------------------------------------------------
+ gradient_radial_focus() :
+ m_radius(100 * gradient_subpixel_size),
+ m_focus_x(0),
+ m_focus_y(0)
+ {
+ update_values();
+ }
+
+ //---------------------------------------------------------------------
+ gradient_radial_focus(double r, double fx, double fy) :
+ m_radius (int(r * gradient_subpixel_size)),
+ m_focus_x(int(fx * gradient_subpixel_size)),
+ m_focus_y(int(fy * gradient_subpixel_size))
+ {
+ update_values();
+ }
+
+ //---------------------------------------------------------------------
+ void init(double r, double fx, double fy)
+ {
+ m_radius = int(r * gradient_subpixel_size);
+ m_focus_x = int(fx * gradient_subpixel_size);
+ m_focus_y = int(fy * gradient_subpixel_size);
+ update_values();
+ }
+
+ //---------------------------------------------------------------------
+ double radius() const { return double(m_radius) / gradient_subpixel_size; }
+ double focus_x() const { return double(m_focus_x) / gradient_subpixel_size; }
+ double focus_y() const { return double(m_focus_y) / gradient_subpixel_size; }
+
+ //---------------------------------------------------------------------
+ int calculate(int x, int y, int d) const
+ {
+ double solution_x;
+ double solution_y;
+
+ // Special case to avoid divide by zero or very near zero
+ //---------------------------------
+ if(x == int(m_focus_x))
+ {
+ solution_x = m_focus_x;
+ solution_y = 0.0;
+ solution_y += (y > m_focus_y) ? m_trivial : -m_trivial;
+ }
+ else
+ {
+ // Slope of the focus-current line
+ //-------------------------------
+ double slope = double(y - m_focus_y) / double(x - m_focus_x);
+
+ // y-intercept of that same line
+ //--------------------------------
+ double yint = double(y) - (slope * x);
+
+ // Use the classical quadratic formula to calculate
+ // the intersection point
+ //--------------------------------
+ double a = (slope * slope) + 1;
+ double b = 2 * slope * yint;
+ double c = yint * yint - m_radius2;
+ double det = sqrt((b * b) - (4.0 * a * c));
+ solution_x = -b;
+
+ // Choose the positive or negative root depending
+ // on where the X coord lies with respect to the focus.
+ solution_x += (x < m_focus_x) ? -det : det;
+ solution_x /= 2.0 * a;
+
+ // Calculating of Y is trivial
+ solution_y = (slope * solution_x) + yint;
+ }
+
+ // Calculate the percentage (0...1) of the current point along the
+ // focus-circumference line and return the normalized (0...d) value
+ //-------------------------------
+ solution_x -= double(m_focus_x);
+ solution_y -= double(m_focus_y);
+ double int_to_focus = solution_x * solution_x + solution_y * solution_y;
+ double cur_to_focus = double(x - m_focus_x) * double(x - m_focus_x) +
+ double(y - m_focus_y) * double(y - m_focus_y);
+
+ return int(sqrt(cur_to_focus / int_to_focus) * d);
+ }
+
+ private:
+ //---------------------------------------------------------------------
+ void update_values()
+ {
+ // For use in the quadractic equation
+ //-------------------------------
+ m_radius2 = double(m_radius) * double(m_radius);
+
+ double dist = sqrt(double(m_focus_x) * double(m_focus_x) +
+ double(m_focus_y) * double(m_focus_y));
+
+ // Test if distance from focus to center is greater than the radius
+ // For the sake of assurance factor restrict the point to be
+ // no further than 99% of the radius.
+ //-------------------------------
+ double r = m_radius * 0.99;
+ if(dist > r)
+ {
+ // clamp focus to radius
+ // x = r cos theta, y = r sin theta
+ //------------------------
+ double a = atan2(double(m_focus_y), double(m_focus_x));
+ m_focus_x = int(r * cos(a));
+ m_focus_y = int(r * sin(a));
+ }
+
+ // Calculate the solution to be used in the case where x == focus_x
+ //------------------------------
+ m_trivial = sqrt(m_radius2 - (m_focus_x * m_focus_x));
+ }
+
+ int m_radius;
+ int m_focus_x;
+ int m_focus_y;
+ double m_radius2;
+ double m_trivial;
+ };
+
+
+
+ //==============================================================gradient_x
+ class gradient_x
+ {
+ public:
+ static int calculate(int x, int, int) { return x; }
+ };
+
+
+ //==============================================================gradient_y
+ class gradient_y
+ {
+ public:
+ static int calculate(int, int y, int) { return y; }
+ };
+
+
+ //========================================================gradient_diamond
+ class gradient_diamond
+ {
+ public:
+ static AGG_INLINE int calculate(int x, int y, int)
+ {
+ int ax = abs(x);
+ int ay = abs(y);
+ return ax > ay ? ax : ay;
+ }
+ };
+
+
+ //=============================================================gradient_xy
+ class gradient_xy
+ {
+ public:
+ static AGG_INLINE int calculate(int x, int y, int d)
+ {
+ return abs(x) * abs(y) / d;
+ }
+ };
+
+
+ //========================================================gradient_sqrt_xy
+ class gradient_sqrt_xy
+ {
+ public:
+ static AGG_INLINE int calculate(int x, int y, int)
+ {
+ return fast_sqrt(abs(x) * abs(y));
+ }
+ };
+
+
+ //==========================================================gradient_conic
+ class gradient_conic
+ {
+ public:
+ static AGG_INLINE int calculate(int x, int y, int d)
+ {
+ return int(fabs(atan2(double(y), double(x))) * double(d) / pi);
+ }
+ };
+
+
+ //=================================================gradient_repeat_adaptor
+ template<class GradientF> class gradient_repeat_adaptor
+ {
+ public:
+ gradient_repeat_adaptor(const GradientF& gradient) :
+ m_gradient(&gradient) {}
+
+ AGG_INLINE int calculate(int x, int y, int d) const
+ {
+ int ret = m_gradient->calculate(x, y, d) % d;
+ if(ret < 0) ret += d;
+ return ret;
+ }
+
+ private:
+ const GradientF* m_gradient;
+ };
+
+
+ //================================================gradient_reflect_adaptor
+ template<class GradientF> class gradient_reflect_adaptor
+ {
+ public:
+ gradient_reflect_adaptor(const GradientF& gradient) :
+ m_gradient(&gradient) {}
+
+ AGG_INLINE int calculate(int x, int y, int d) const
+ {
+ int d2 = d << 1;
+ int ret = m_gradient->calculate(x, y, d) % d2;
+ if(ret < 0) ret += d2;
+ if(ret >= d) ret = d2 - ret;
+ return ret;
+ }
+
+ private:
+ const GradientF* m_gradient;
+ };
+
+
+}
+
+#endif