summaryrefslogtreecommitdiff
path: root/regexp
diff options
context:
space:
mode:
authorVladimir Glazounov <vg@openoffice.org>2003-04-24 11:34:09 +0000
committerVladimir Glazounov <vg@openoffice.org>2003-04-24 11:34:09 +0000
commit0aa98809b9bdb8baf185145efce384561bb35a23 (patch)
treeed6b7d83a0eea97de612a0ea2652d0ab2b6dcd12 /regexp
parent5b58927e9af3abf4f728686b43d36d1cd0210a7a (diff)
cws_srx644_i18napi -> HEAD
Diffstat (limited to 'regexp')
-rw-r--r--regexp/prj/build.lst3
-rw-r--r--regexp/prj/d.lst15
-rw-r--r--regexp/source/makefile.mk117
-rw-r--r--regexp/source/reclass.cxx2920
-rw-r--r--regexp/source/reclass.hxx395
5 files changed, 3450 insertions, 0 deletions
diff --git a/regexp/prj/build.lst b/regexp/prj/build.lst
new file mode 100644
index 000000000000..1eea02defc87
--- /dev/null
+++ b/regexp/prj/build.lst
@@ -0,0 +1,3 @@
+re regexp : offapi comphelper i18nutil NULL
+re regexp usr1 - all re_mkout NULL
+re regexp\source nmake - all re_source NULL
diff --git a/regexp/prj/d.lst b/regexp/prj/d.lst
new file mode 100644
index 000000000000..dfa18318e17e
--- /dev/null
+++ b/regexp/prj/d.lst
@@ -0,0 +1,15 @@
+mkdir: %_DEST%\inc%_EXT%\external\regexp
+
+..\source\reclass.hxx %_DEST%\inc%_EXT%\external\regexp\reclass.hxx
+
+..\%__SRC%\bin\i18nregexp*.dll %_DEST%\bin%_EXT%\i18nregexp*.dll
+..\%__SRC%\lib\libi18nregexp*.so %_DEST%\lib%_EXT%\libi18nregexp*.so
+..\%__SRC%\lib\libi18nregexp*.dylib %_DEST%\lib%_EXT%\libi18nregexp*.dylib
+..\%__SRC%\lib\ii18nregexp.lib %_DEST%\lib%_EXT%\ii18nregexp.lib
+
+..\%__SRC%\lib\lib*static*.dylib %_DEST%\lib%_EXT%\lib*static*.dylib
+..\%__SRC%\misc\*staticdatamembers.cxx %_DEST%\inc%_EXT%\*staticdatamembers.cxx
+..\%__SRC%\misc\*staticdatamembers.h* %_DEST%\inc%_EXT%\*staticdatamembers.h*
+
+dos: sh -c "if test %OS% = MACOSX; then create-bundle %_DEST%\lib%_EXT%\*.dylib; fi"
+dos: sh -c "if test %OS% = MACOSX; then create-libstatic-link %_DEST%\lib%_EXT%; fi"
diff --git a/regexp/source/makefile.mk b/regexp/source/makefile.mk
new file mode 100644
index 000000000000..b091d0d7fdfa
--- /dev/null
+++ b/regexp/source/makefile.mk
@@ -0,0 +1,117 @@
+#*************************************************************************
+#
+# $RCSfile: makefile.mk,v $
+#
+# $Revision: 1.2 $
+#
+# last change: $Author: vg $ $Date: 2003-04-24 12:34:08 $
+#
+# The Contents of this file are made available subject to the terms of
+# either of the following licenses
+#
+# - GNU Lesser General Public License Version 2.1
+# - Sun Industry Standards Source License Version 1.1
+#
+# Sun Microsystems Inc., October, 2000
+#
+# GNU Lesser General Public License Version 2.1
+# =============================================
+# Copyright 2000 by Sun Microsystems, Inc.
+# 901 San Antonio Road, Palo Alto, CA 94303, USA
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License version 2.1, as published by the Free Software Foundation.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+# MA 02111-1307 USA
+#
+#
+# Sun Industry Standards Source License Version 1.1
+# =================================================
+# The contents of this file are subject to the Sun Industry Standards
+# Source License Version 1.1 (the "License"); You may not use this file
+# except in compliance with the License. You may obtain a copy of the
+# License at http://www.openoffice.org/license.html.
+#
+# Software provided under this License is provided on an "AS IS" basis,
+# WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
+# WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
+# MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
+# See the License for the specific provisions governing your rights and
+# obligations concerning the Software.
+#
+# The Initial Developer of the Original Code is: Sun Microsystems, Inc.
+#
+# Copyright: 2000 by Sun Microsystems, Inc.
+#
+# All Rights Reserved.
+#
+# Contributor(s): _______________________________________
+#
+#
+#
+#*************************************************************************
+
+PRJ=..
+
+PRJNAME=regexp
+TARGET=i18nregexp
+LIBTARGET=NO
+
+# --- Settings -----------------------------------------------------
+
+.INCLUDE : settings.mk
+
+# --- Files --------------------------------------------------------
+
+UNOTYPES+= \
+ com.sun.star.i18n.TransliterationModules \
+ com.sun.star.i18n.XExtendedTransliteration \
+ com.sun.star.util.SearchFlags \
+ com.sun.star.util.SearchOptions
+
+EXCEPTIONSFILES= \
+ $(SLO)$/reclass.obj
+
+SLOFILES= \
+ $(EXCEPTIONSFILES)
+
+.IF "$(OS)" == "SOLARIS"
+.IF "$(CPU)" == "I"
+NOOPTFILES=$(SLO)$/reclass.obj
+.ENDIF
+.ENDIF
+
+SHL1TARGET= $(TARGET)$(COMID)
+SHL1IMPLIB= i$(TARGET)
+DEF1DEPN= $(MISC)$/$(SHL1TARGET).flt
+SHL1DEF= $(MISC)$/$(SHL1TARGET).def
+DEF1NAME= $(SHL1TARGET)
+DEFLIB1NAME= $(SHL1TARGET)
+
+SHL1OBJS= $(SLOFILES)
+
+LIB1TARGET= $(SLB)$/$(SHL1TARGET).lib
+LIB1OBJFILES= $(SHL1OBJS)
+
+SHL1STDLIBS= \
+ $(SALLIB) \
+ $(I18NUTILLIB)
+
+# --- Targets ------------------------------------------------------
+
+.INCLUDE : target.mk
+
+$(MISC)$/$(SHL1TARGET).flt: makefile.mk
+ @echo ------------------------------
+ @echo Making: $@
+ @echo CLEAR_THE_FILE > $@
+ @echo __CT >> $@
diff --git a/regexp/source/reclass.cxx b/regexp/source/reclass.cxx
new file mode 100644
index 000000000000..9722411cc89e
--- /dev/null
+++ b/regexp/source/reclass.cxx
@@ -0,0 +1,2920 @@
+/* Extended regular expression matching and search library,
+ version 0.12.
+ (Implements POSIX draft P1003.2/D11.2, except for some of the
+ internationalization features.)
+ Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/*
+ Modified for OpenOffice.org to use sal_Unicode and Transliteration service.
+ */
+
+
+#if 0
+/* If for any reason (porting, debug) we can't use alloca() use malloc()
+ instead. Use alloca() if possible for performance reasons, this _is_
+ significant, with malloc() the re_match2() method makes heavy use of regexps
+ through the TextSearch interface up to three times slower. This is _the_
+ bottleneck in some spreadsheet documents. */
+#define REGEX_MALLOC
+#endif
+
+/* AIX requires this to be the first thing in the file. */
+#if defined _AIX && !defined REGEX_MALLOC
+ #pragma alloca
+#endif
+
+#include <string.h>
+#include <assert.h>
+
+#include <rtl/ustring.hxx>
+#include <com/sun/star/i18n/TransliterationModules.hpp>
+
+#include "reclass.hxx"
+
+
+/* Maximum number of duplicates an interval can allow. Some systems
+ (erroneously) define this in other header files, but we want our
+ value, so remove any previous define. */
+#ifdef RE_DUP_MAX
+# undef RE_DUP_MAX
+#endif
+/* If sizeof(int) == 2, then ((1 << 15) - 1) overflows. */
+#define RE_DUP_MAX (0x7fff)
+
+
+/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
+ `re_match_2' returns information about at least this many registers
+ the first time a `regs' structure is passed. */
+#ifndef RE_NREGS
+# define RE_NREGS 30
+#endif
+
+
+// Macros
+#define INIT_COMPILE_STACK_SIZE 32
+#define INIT_BUF_SIZE ((1 << BYTEWIDTH)/BYTEWIDTH)
+#define MAX_BUF_SIZE 65535L
+#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
+#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
+
+/* Since we have one byte reserved for the register number argument to
+ {start,stop}_memory, the maximum number of groups we can report
+ things about is what fits in that byte. */
+#define MAX_REGNUM 255
+
+#define MIN(x, y) ( (x) < (y) ? (x) : (y) )
+#define MAX(x, y) ( (x) > (y) ? (x) : (y) )
+
+
+// Always. We're not in Emacs and don't use relocating allocators.
+#define MATCH_MAY_ALLOCATE
+
+/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
+ use `alloca' instead of `malloc'. This is because malloc is slower and
+ causes storage fragmentation. On the other hand, malloc is more portable,
+ and easier to debug.
+
+ Because we sometimes use alloca, some routines have to be macros,
+ not functions -- `alloca'-allocated space disappears at the end of the
+ function it is called in. */
+
+#ifdef REGEX_MALLOC
+
+# define REGEX_ALLOCATE malloc
+# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+# define REGEX_FREE free
+
+#else /* not REGEX_MALLOC */
+
+/* Emacs already defines alloca, sometimes. So does MSDEV. */
+# ifndef alloca
+
+/* Make alloca work the best possible way. */
+# ifdef __GNUC__
+# define alloca __builtin_alloca
+# else /* not __GNUC__ */
+# if defined( FREEBSD )
+# include <stdlib.h>
+# elif defined( WNT )
+# include <malloc.h>
+# else
+# include <alloca.h>
+# endif /* HAVE_ALLOCA_H */
+# endif /* not __GNUC__ */
+
+# endif /* not alloca */
+
+# define REGEX_ALLOCATE alloca
+
+/* Assumes a `char *destination' variable. */
+# define REGEX_REALLOCATE(source, osize, nsize) \
+ (destination = (char *) alloca (nsize), \
+ memcpy (destination, source, osize))
+
+/* No need to do anything to free, after alloca. */
+# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
+
+#endif /* not REGEX_MALLOC */
+
+
+/* Define how to allocate the failure stack. */
+
+#ifdef REGEX_MALLOC
+
+# define REGEX_ALLOCATE_STACK malloc
+# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
+# define REGEX_FREE_STACK free
+
+#else /* not REGEX_MALLOC */
+
+# define REGEX_ALLOCATE_STACK alloca
+
+# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
+ REGEX_REALLOCATE (source, osize, nsize)
+/* No need to explicitly free anything. */
+# define REGEX_FREE_STACK(arg)
+
+#endif /* not REGEX_MALLOC */
+
+
+/* (Re)Allocate N items of type T using malloc, or fail. */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define RETALLOC_IF(addr, n, t) \
+ if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 16 /* In bits (assuming sizeof(sal_Unicode)*8) */
+
+
+#define CHAR_CLASS_MAX_LENGTH 256
+
+/* Fetch the next character in the uncompiled pattern, with no
+ translation. */
+#define PATFETCH_RAW(c) \
+ do { \
+ if (p == pend) return REG_EEND; \
+ c = (sal_Unicode) *p++; \
+ } while (0)
+
+/* Go backwards one character in the pattern. */
+#define PATUNFETCH p--
+
+#define FREE_STACK_RETURN(value) \
+ return(free(compile_stack.stack), value)
+
+#define GET_BUFFER_SPACE(n) \
+ while ((sal_uInt32)(b - bufp->buffer + (n)) > bufp->allocated) \
+ EXTEND_BUFFER()
+
+/* Extend the buffer by twice its current size via realloc and
+ reset the pointers that pointed into the old block to point to the
+ correct places in the new one. If extending the buffer results in it
+ being larger than MAX_BUF_SIZE, then flag memory exhausted. */
+#define EXTEND_BUFFER() \
+ do { \
+ sal_Unicode *old_buffer = bufp->buffer; \
+ if (bufp->allocated == MAX_BUF_SIZE) \
+ return REG_ESIZE; \
+ bufp->allocated <<= 1; \
+ if (bufp->allocated > MAX_BUF_SIZE) \
+ bufp->allocated = MAX_BUF_SIZE; \
+ bufp->buffer = (sal_Unicode *) realloc(bufp->buffer, \
+ bufp->allocated * \
+ sizeof(sal_Unicode)); \
+ if (bufp->buffer == NULL) \
+ return REG_ESPACE; \
+ /* If the buffer moved, move all the pointers into it. */ \
+ if (old_buffer != bufp->buffer) { \
+ b = (b - old_buffer) + bufp->buffer; \
+ begalt = (begalt - old_buffer) + bufp->buffer; \
+ if (fixup_alt_jump) \
+ fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
+ if (laststart) \
+ laststart = (laststart - old_buffer) + bufp->buffer; \
+ if (pending_exact) \
+ pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
+ } \
+ } while (0)
+
+#define BUF_PUSH(c) \
+ do { \
+ GET_BUFFER_SPACE(1); \
+ *b++ = (sal_Unicode)(c); \
+ } while(0)
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
+#define BUF_PUSH_2(c1, c2) \
+ do { \
+ GET_BUFFER_SPACE(2); \
+ *b++ = (sal_Unicode) (c1); \
+ *b++ = (sal_Unicode) (c2); \
+ } while (0)
+
+/* As with BUF_PUSH_2, except for three bytes. */
+#define BUF_PUSH_3(c1, c2, c3) \
+ do { \
+ GET_BUFFER_SPACE(3); \
+ *b++ = (sal_Unicode) (c1); \
+ *b++ = (sal_Unicode) (c2); \
+ *b++ = (sal_Unicode) (c3); \
+ } while (0)
+
+/* Store a jump with opcode OP at LOC to location TO. We store a
+ relative address offset by the three bytes the jump itself occupies. */
+#define STORE_JUMP(op, loc, to) \
+ store_op1(op, loc, (int) ((to) - (loc) - 3))
+
+/* Likewise, for a two-argument jump. */
+#define STORE_JUMP2(op, loc, to, arg) \
+ store_op2(op, loc, (int) ((to) - (loc) - 3), arg)
+
+/* Store NUMBER in two contiguous sal_Unicode starting at DESTINATION. */
+
+inline
+void
+Regexpr::store_number( sal_Unicode * destination, sal_Int32 number )
+{
+ (destination)[0] = sal_Unicode((number) & 0xffff);
+ (destination)[1] = sal_Unicode((number) >> 16);
+}
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+ the byte after where the number is stored. Therefore, DESTINATION
+ must be an lvalue. */
+
+inline
+void
+Regexpr::store_number_and_incr( sal_Unicode *& destination, sal_Int32 number )
+{
+ store_number( destination, number );
+ (destination) += 2;
+}
+
+/* Put into DESTINATION a number stored in two contiguous sal_Unicode starting
+ at SOURCE. */
+
+inline void Regexpr::extract_number( sal_Int32 & dest, sal_Unicode *source )
+{
+ dest = (((sal_Int32) source[1]) << 16) | (source[0] & 0xffff);
+}
+
+/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP(op, loc, to) \
+ insert_op1(op, loc, (sal_Int32) ((to) - (loc) - 3), b)
+
+/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
+#define INSERT_JUMP2(op, loc, to, arg) \
+ insert_op2(op, loc, (sal_Int32) ((to) - (loc) - 3), arg, b)
+
+#define STREQ(s1, s2) (rtl_ustr_compare((s1), (s2)) ? (0) : (1))
+
+#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
+
+/* The next available element. */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+/* Get the next unsigned number in the uncompiled pattern. */
+#define GET_UNSIGNED_NUMBER(num) { \
+ if (p != pend) { \
+ PATFETCH_RAW(c); \
+ while (c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9') { \
+ if (num < 0) \
+ num = 0; \
+ num = num * 10 + c - (sal_Unicode)'0'; \
+ if (p == pend) \
+ break; \
+ PATFETCH_RAW(c); \
+ } \
+ } \
+}
+
+/* Get the next hex number in the uncompiled pattern. */
+#define GET_HEX_NUMBER(num) { \
+ if (p != pend) { \
+ sal_Bool stop = false; \
+ sal_Int16 hexcnt = 1; \
+ PATFETCH_RAW(c); \
+ while ( (c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9') || (c >= (sal_Unicode)'a' && c <= (sal_Unicode)'f') || (c >= (sal_Unicode)'A' && c <= (sal_Unicode)'F') ) { \
+ if (num < 0) \
+ num = 0; \
+ if ( c >= (sal_Unicode)'0' && c <= (sal_Unicode)'9' ) \
+ num = num * 16 + c - (sal_Unicode)'0'; \
+ else if ( c >= (sal_Unicode)'a' && c <= (sal_Unicode)'f' ) \
+ num = num * 16 + (10 + c - (sal_Unicode)'a'); \
+ else \
+ num = num * 16 + (10 + c - (sal_Unicode)'A'); \
+ if (p == pend || hexcnt == 4) { \
+ stop = true; \
+ break; \
+ } \
+ PATFETCH_RAW(c); \
+ hexcnt++; \
+ } \
+ \
+ if ( ! stop ) { \
+ PATUNFETCH; \
+ hexcnt--; \
+ } \
+ if ( hexcnt > 4 || (num < 0 || num > 0xffff) ) num = -1;\
+ } \
+}
+
+
+/* Number of failure points for which to initially allocate space
+ when matching. If this number is exceeded, we allocate more
+ space, so it is not a hard limit. */
+#ifndef INIT_FAILURE_ALLOC
+# define INIT_FAILURE_ALLOC 5
+#endif
+
+#define INIT_FAIL_STACK() \
+ do { \
+ fail_stack.stack = (fail_stack_elt_t *) \
+ REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
+ \
+ if (fail_stack.stack == NULL) \
+ return -2; \
+ \
+ fail_stack.size = INIT_FAILURE_ALLOC; \
+ fail_stack.avail = 0; \
+ } while (0)
+
+#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
+
+/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
+
+ Return 1 if succeeds, and 0 if either ran out of memory
+ allocating space for it or it was already too large.
+
+ REGEX_REALLOCATE_STACK requires `destination' be declared. */
+
+#define DOUBLE_FAIL_STACK(fail_stack) \
+ ((fail_stack).size > (sal_uInt32) (re_max_failures * MAX_FAILURE_ITEMS) \
+ ? 0 \
+ : ((fail_stack).stack = (fail_stack_elt_t *) \
+ REGEX_REALLOCATE_STACK ((fail_stack).stack, \
+ (fail_stack).size * sizeof (fail_stack_elt_t), \
+ ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
+ \
+ (fail_stack).stack == NULL \
+ ? 0 \
+ : ((fail_stack).size <<= 1, \
+ 1)))
+
+
+#define REG_UNSET_VALUE (&reg_unset_dummy)
+#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
+
+#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
+#define IS_ACTIVE(R) ((R).bits.is_active)
+#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
+#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
+
+/* Call this when have matched a real character; it sets `matched' flags
+ for the subexpressions which we are currently inside. Also records
+ that those subexprs have matched. */
+#define SET_REGS_MATCHED() \
+ do { \
+ if (!set_regs_matched_done) { \
+ sal_uInt32 r; \
+ set_regs_matched_done = 1; \
+ for (r = lowest_active_reg; r <= highest_active_reg; r++) { \
+ MATCHED_SOMETHING(reg_info[r]) \
+ = EVER_MATCHED_SOMETHING(reg_info[r]) \
+ = 1; \
+ } \
+ } \
+ } \
+ while (0)
+
+#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
+
+/* This converts PTR, a pointer into the search string `string2' into an offset from the beginning of that string. */
+#define POINTER_TO_OFFSET(ptr) ((sal_Int32) ((ptr) - string2))
+
+/* This is the number of items that are pushed and popped on the stack
+ for each register. */
+#define NUM_REG_ITEMS 3
+
+/* Individual items aside from the registers. */
+# define NUM_NONREG_ITEMS 4
+
+/* We push at most this many items on the stack. */
+/* We used to use (num_regs - 1), which is the number of registers
+ this regexp will save; but that was changed to 5
+ to avoid stack overflow for a regexp with lots of parens. */
+#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
+
+/* We actually push this many items. */
+#define NUM_FAILURE_ITEMS \
+ (((0 \
+ ? 0 : highest_active_reg - lowest_active_reg + 1) \
+ * NUM_REG_ITEMS) \
+ + NUM_NONREG_ITEMS)
+
+/* How many items can still be added to the stack without overflowing it. */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+/* Push a pointer value onto the failure stack.
+ Assumes the variable `fail_stack'. Probably should only
+ be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_POINTER(item) \
+ fail_stack.stack[fail_stack.avail++].pointer = (sal_Unicode *) (item)
+
+/* This pushes an integer-valued item onto the failure stack.
+ Assumes the variable `fail_stack'. Probably should only
+ be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_INT(item) \
+ fail_stack.stack[fail_stack.avail++].integer = (item)
+
+/* Push a fail_stack_elt_t value onto the failure stack.
+ Assumes the variable `fail_stack'. Probably should only
+ be called from within `PUSH_FAILURE_POINT'. */
+#define PUSH_FAILURE_ELT(item) \
+ fail_stack.stack[fail_stack.avail++] = (item)
+
+/* These three POP... operations complement the three PUSH... operations.
+ All assume that `fail_stack' is nonempty. */
+#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
+#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
+#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
+
+/* Test if at very beginning or at very end of `string2'. */
+#define AT_STRINGS_BEG(d) ((d) == string2 || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+/* Checking for end of string */
+#define PREFETCH() \
+do { \
+ if ( d == end2 ) { \
+ goto fail; \
+ } \
+} while (0)
+
+
+sal_Bool
+Regexpr::iswordbegin(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize)
+{
+ if ( d == string || ! ssize ) return true;
+
+ if ( !unicode::isAlphaDigit(d[-1]) && unicode::isAlphaDigit(d[0])) {
+ return true;
+ }
+ return false;
+}
+
+sal_Bool
+Regexpr::iswordend(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize)
+{
+ if ( d == (string+ssize) ) return true;
+
+ if ( !unicode::isAlphaDigit(d[0]) && unicode::isAlphaDigit(d[-1])) {
+ return true;
+ }
+ return false;
+}
+
+/* Push the information about the state we will need
+ if we ever fail back to it.
+
+ Requires variables fail_stack, regstart, regend, and reg_info
+ be declared. DOUBLE_FAIL_STACK requires `destination'
+ be declared.
+
+ Does `return FAILURE_CODE' if runs out of memory. */
+
+#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
+ do { \
+ char *destination; \
+ /* Must be int, so when we don't save any registers, the arithmetic \
+ of 0 + -1 isn't done as unsigned. */ \
+ /* Can't be int, since there is not a shred of a guarantee that int \
+ is wide enough to hold a value of something to which pointer can \
+ be assigned */ \
+ sal_uInt32 this_reg; \
+ \
+ /* Ensure we have enough space allocated for what we will push. */ \
+ while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) { \
+ if (!DOUBLE_FAIL_STACK(fail_stack)) \
+ return failure_code; \
+ } \
+ \
+ /* Push the info, starting with the registers. */ \
+ if (1) \
+ for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
+ this_reg++) { \
+ PUSH_FAILURE_POINTER(regstart[this_reg]); \
+ \
+ PUSH_FAILURE_POINTER (regend[this_reg]); \
+ \
+ PUSH_FAILURE_ELT(reg_info[this_reg].word); \
+ } \
+ \
+ PUSH_FAILURE_INT(lowest_active_reg); \
+ \
+ PUSH_FAILURE_INT(highest_active_reg); \
+ \
+ PUSH_FAILURE_POINTER(pattern_place); \
+ \
+ PUSH_FAILURE_POINTER(string_place); \
+ \
+ } while (0)
+
+/* Pops what PUSH_FAIL_STACK pushes.
+
+ We restore into the parameters, all of which should be lvalues:
+ STR -- the saved data position.
+ PAT -- the saved pattern position.
+ LOW_REG, HIGH_REG -- the highest and lowest active registers.
+ REGSTART, REGEND -- arrays of string positions.
+ REG_INFO -- array of information about each subexpression.
+
+ Also assumes the variables `fail_stack' and (if debugging), `bufp',
+ `pend', `string2', and `size2'. */
+
+#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info) {\
+ sal_uInt32 this_reg; \
+ sal_Unicode *string_temp; \
+ \
+ assert(!FAIL_STACK_EMPTY()); \
+ \
+ /* Remove failure points and point to how many regs pushed. */ \
+ assert(fail_stack.avail >= NUM_NONREG_ITEMS); \
+ \
+ /* If the saved string location is NULL, it came from an \
+ on_failure_keep_string_jump opcode, and we want to throw away the \
+ saved NULL, thus retaining our current position in the string. */ \
+ string_temp = POP_FAILURE_POINTER(); \
+ if (string_temp != NULL) \
+ str = (const sal_Unicode *) string_temp; \
+ \
+ pat = (sal_Unicode *) POP_FAILURE_POINTER(); \
+ \
+ /* Restore register info. */ \
+ high_reg = (sal_uInt32) POP_FAILURE_INT(); \
+ \
+ low_reg = (sal_uInt32) POP_FAILURE_INT(); \
+ \
+ if (1) \
+ for (this_reg = high_reg; this_reg >= low_reg; this_reg--) { \
+ \
+ reg_info[this_reg].word = POP_FAILURE_ELT(); \
+ \
+ regend[this_reg] = (const sal_Unicode *) POP_FAILURE_POINTER(); \
+ \
+ regstart[this_reg] = (const sal_Unicode *) POP_FAILURE_POINTER(); \
+ } else { \
+ for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) {\
+ reg_info[this_reg].word.integer = 0; \
+ regend[this_reg] = 0; \
+ regstart[this_reg] = 0; \
+ } \
+ highest_active_reg = high_reg; \
+ } \
+ \
+ set_regs_matched_done = 0; \
+} /* POP_FAILURE_POINT */
+
+inline
+void
+Regexpr::extract_number_and_incr( sal_Int32 & destination, sal_Unicode *& source )
+{
+ extract_number(destination, source);
+ source += 2;
+}
+
+
+inline
+void
+Regexpr::store_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg)
+{
+ *loc = (sal_Unicode) op;
+ store_number(loc + 1, arg);
+}
+
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+inline
+void
+Regexpr::store_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1, sal_Int32 arg2)
+{
+ *loc = (sal_Unicode) op;
+ store_number(loc + 1, arg1);
+ store_number(loc + 3, arg2);
+}
+
+void
+Regexpr::insert_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg, sal_Unicode *end)
+{
+ register sal_Unicode *pfrom = end;
+ register sal_Unicode *pto = end + 3;
+
+ while (pfrom != loc) {
+ *--pto = *--pfrom;
+ }
+
+ store_op1(op, loc, arg);
+}
+
+
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
+
+void
+Regexpr::insert_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1, sal_Int32 arg2, sal_Unicode *end)
+{
+ register sal_Unicode *pfrom = end;
+ register sal_Unicode *pto = end + 5;
+
+ while (pfrom != loc)
+ *--pto = *--pfrom;
+
+ store_op2 (op, loc, arg1, arg2);
+}
+
+/* P points to just after a ^ in PATTERN. Return true if that ^ comes
+ after an alternative or a begin-subexpression. We assume there is at
+ least one character before the ^. */
+
+sal_Bool
+Regexpr::at_begline_loc_p(const sal_Unicode *pattern, const sal_Unicode *p)
+{
+ const sal_Unicode *prev = p - 2;
+ sal_Bool prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+
+ return(
+ /* After a subexpression? */
+ (*prev == (sal_Unicode)'(' && prev_prev_backslash)
+ /* After an alternative? */
+ || (*prev == (sal_Unicode)'|' && prev_prev_backslash));
+}
+
+/* The dual of at_begline_loc_p. This one is for $. We assume there is
+ at least one character after the $, i.e., `P < PEND'. */
+
+sal_Bool
+Regexpr::at_endline_loc_p(const sal_Unicode *p, const sal_Unicode *pend)
+{
+ const sal_Unicode *next = p;
+ sal_Bool next_backslash = *next == (sal_Unicode)'\\';
+ const sal_Unicode *next_next = p + 1 < pend ? p + 1 : 0;
+
+ return(
+ /* Before a subexpression? */
+ *next == (sal_Unicode)')'
+ // (next_backslash && next_next && *next_next == (sal_Unicode)')')
+ /* Before an alternative? */
+ || *next == (sal_Unicode)'|' );
+ // || (next_backslash && next_next && *next_next == (sal_Unicode)'|'));
+}
+
+reg_errcode_t
+Regexpr::compile_range(sal_Unicode range_start, sal_Unicode range_end, sal_Unicode *b)
+{
+ sal_uInt32 this_char;
+
+ /* If the start is after the end, the range is empty. */
+ if (range_start > range_end)
+ return REG_NOERROR;
+
+ /* Here we see why `this_char' has to be larger than an `sal_Unicode'
+ -- the range is inclusive, so if `range_end' == 0xffff
+ (assuming 16-bit characters), we would otherwise go into an infinite
+ loop, since all characters <= 0xffff. */
+ for (this_char = range_start; this_char <= range_end; this_char++) {
+ set_list_bit( sal_Unicode(this_char), b);
+ }
+
+ return REG_NOERROR;
+}
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+ false if it's not. */
+
+sal_Bool
+Regexpr::group_in_compile_stack(compile_stack_type compile_stack, sal_Int32 regnum)
+{
+ sal_Int32 this_element;
+
+ for (this_element = compile_stack.avail - 1;
+ this_element >= 0;
+ this_element--) {
+ if (compile_stack.stack[this_element].regnum == regnum) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+
+Regexpr::Regexpr( const ::com::sun::star::util::SearchOptions & rOptions,
+ ::com::sun::star::uno::Reference<
+ ::com::sun::star::i18n::XExtendedTransliteration > XTrans)
+{
+ bufp = NULL;
+ pattern = NULL;
+
+ if ( rOptions.algorithmType != ::com::sun::star::util::SearchAlgorithms_REGEXP ) {
+ return;
+ }
+
+ if ( rOptions.searchString == NULL ||
+ rOptions.searchString.getLength() <= 0) {
+ return;
+ }
+
+ pattern = (sal_Unicode *)rOptions.searchString.getStr();
+ patsize = rOptions.searchString.getLength();
+
+ re_max_failures = 2000;
+
+ translit = XTrans;
+ translate = translit.is() ? 1 : 0;
+
+ bufp = NULL;
+
+ isIgnoreCase = ((rOptions.transliterateFlags &
+ ::com::sun::star::i18n::TransliterationModules_IGNORE_CASE) != 0);
+
+ // Compile Regular expression pattern
+ if ( regcomp() != REG_NOERROR )
+ {
+ if ( bufp )
+ {
+ if ( bufp->buffer )
+ free(bufp->buffer);
+ if( bufp->fastmap )
+ free(bufp->fastmap);
+
+ free(bufp);
+ bufp = NULL;
+ }
+ }
+}
+
+Regexpr::~Regexpr()
+{
+ // translit->remove();
+ if( bufp )
+ {
+ if( bufp->buffer )
+ free(bufp->buffer);
+ if( bufp->fastmap )
+ free(bufp->fastmap);
+
+ free(bufp);
+ bufp = NULL;
+ }
+
+}
+
+// sets a new line to search in (restore start/end_ptr)
+void
+Regexpr::set_line(const sal_Unicode *new_line, sal_Int32 len)
+{
+ line = new_line;
+ linelen = len;
+}
+
+// main function for searching the pattern
+// returns negative or startpos and sets regs
+sal_Int32
+Regexpr::re_search(struct re_registers *regs, sal_Int32 pOffset)
+{
+ // Check if pattern buffer is NULL
+ if ( bufp == NULL ) {
+ return(-3);
+ }
+
+ sal_Int32 range;
+ sal_Int32 startpos;
+ sal_Int32 stoppos;
+
+ startpos = pOffset;
+ if ( linelen < 0 ) {
+ range = linelen + 1;
+ linelen = -(linelen);
+ stoppos = pOffset + 1;
+ } else {
+ range = linelen - 1;
+ stoppos = linelen;
+ }
+ for ( ; ; ) {
+ sal_Int32 val = re_match2(regs, startpos, stoppos);
+
+#ifndef REGEX_MALLOC
+# ifdef C_ALLOCA
+ alloca (0);
+# endif
+#endif
+
+ // Return success if match found
+ if (val == 0) {
+ break;
+ }
+
+ if (val == -2) {
+ return(-2);
+ }
+
+ // If match only beginning of string (startpos)
+ if (!range) {
+ break;
+ }
+
+ // If search match from startpos to startpos+range
+ else if (range > 0) { // Forward string search
+ range--;
+ startpos++;
+ } else { // Reverse string search
+ range++;
+ startpos--;
+ }
+ }
+
+ if ( regs->num_of_match > 0 )
+ return(0);
+ else
+ return(-1);
+}
+
+sal_Int32
+Regexpr::regcomp()
+{
+ bufp = (struct re_pattern_buffer *)malloc(sizeof(struct re_pattern_buffer));
+ if ( bufp == NULL ) {
+ return(-1);
+ }
+
+ bufp->buffer = 0;
+ bufp->allocated = 0;
+ bufp->used = 0;
+
+ //bufp->fastmap = (sal_Unicode*) malloc((1 << BYTEWIDTH) * sizeof(sal_Unicode));
+ // No fastmap with Unicode
+ bufp->fastmap = NULL;
+
+ return(regex_compile());
+}
+
+sal_Int32
+Regexpr::regex_compile()
+{
+ register sal_Unicode c, c1;
+ const sal_Unicode *p1;
+ register sal_Unicode *b;
+
+ /* Keeps track of unclosed groups. */
+ compile_stack_type compile_stack;
+
+ /* Points to the current (ending) position in the pattern. */
+ const sal_Unicode *p = pattern;
+ const sal_Unicode *pend = pattern + patsize;
+
+ /* Address of the count-byte of the most recently inserted `exactn'
+ command. This makes it possible to tell if a new exact-match
+ character can be added to that command or if the character requires
+ a new `exactn' command. */
+ sal_Unicode *pending_exact = 0;
+
+ /* Address of start of the most recently finished expression.
+ This tells, e.g., postfix * where to find the start of its
+ operand. Reset at the beginning of groups and alternatives. */
+ sal_Unicode *laststart = 0;
+
+ /* Address of beginning of regexp, or inside of last group. */
+ sal_Unicode *begalt;
+
+ /* Place in the uncompiled pattern (i.e., the {) to
+ which to go back if the interval is invalid. */
+ const sal_Unicode *beg_interval;
+
+ /* Address of the place where a forward jump should go to the end of
+ the containing expression. Each alternative of an `or' -- except the
+ last -- ends with a forward jump of this sort. */
+ sal_Unicode *fixup_alt_jump = 0;
+
+ /* Counts open-groups as they are encountered. Remembered for the
+ matching close-group on the compile stack, so the same register
+ number is put in the stop_memory as the start_memory. */
+ sal_Int32 regnum = 0;
+
+ /* Initialize the compile stack. */
+ compile_stack.stack = (compile_stack_elt_t *)malloc(INIT_COMPILE_STACK_SIZE * sizeof(compile_stack_elt_t));
+ if (compile_stack.stack == NULL)
+ return(REG_ESPACE);
+
+ compile_stack.size = INIT_COMPILE_STACK_SIZE;
+ compile_stack.avail = 0;
+
+ /* Initialize the pattern buffer. */
+ bufp->fastmap_accurate = 0;
+ bufp->not_bol = 0;
+ bufp->not_eol = 0;
+ bufp->newline_anchor = 1;
+
+ /* Set `used' to zero, so that if we return an error, the pattern
+ printer (for debugging) will think there's no pattern. We reset it
+ at the end. */
+ bufp->used = 0;
+
+ /* Always count groups. */
+ bufp->re_nsub = 0;
+
+ if (bufp->allocated == 0) {
+ if (bufp->buffer) {
+ /* If zero allocated, but buffer is non-null, try to realloc
+ enough space. This loses if buffer's address is bogus, but
+ that is the user's responsibility. */
+ bufp->buffer = (sal_Unicode *)realloc(bufp->buffer, INIT_BUF_SIZE * sizeof(sal_Unicode));
+ } else { /* Caller did not allocate a buffer. Do it for them. */
+ bufp->buffer = (sal_Unicode *)malloc(INIT_BUF_SIZE * sizeof(sal_Unicode));
+ }
+ if (!bufp->buffer) FREE_STACK_RETURN(REG_ESPACE);
+
+ bufp->allocated = INIT_BUF_SIZE;
+ }
+
+ begalt = b = bufp->buffer;
+
+ /* Loop through the uncompiled pattern until we're at the end. */
+ while (p != pend) {
+ PATFETCH_RAW(c);
+
+ switch (c) {
+ case (sal_Unicode)'^': {
+ if ( /* If at start of pattern, it's an operator. */
+ p == pattern + 1
+ /* Otherwise, depends on what's come before. */
+ || at_begline_loc_p(pattern, p))
+ BUF_PUSH(begline);
+ else
+ goto normal_char;
+ }
+ break;
+
+ case (sal_Unicode)'$': {
+ if ( /* If at end of pattern, it's an operator. */
+ p == pend
+ /* Otherwise, depends on what's next. */
+ || at_endline_loc_p(p, pend)) {
+ BUF_PUSH(endline);
+ } else {
+ goto normal_char;
+ }
+ }
+ break;
+
+ case (sal_Unicode)'+':
+ case (sal_Unicode)'?':
+ case (sal_Unicode)'*':
+ /* If there is no previous pattern... */
+ if (!laststart) {
+ goto normal_char;
+ }
+
+ {
+ /* Are we optimizing this jump? */
+ sal_Bool keep_string_p = false;
+
+ /* 1 means zero (many) matches is allowed. */
+ sal_Unicode zero_times_ok = 0, many_times_ok = 0;
+
+ /* If there is a sequence of repetition chars, collapse it
+ down to just one (the right one). We can't combine
+ interval operators with these because of, e.g., `a{2}*',
+ which should only match an even number of `a's. */
+
+ for (;;) {
+ zero_times_ok |= c != (sal_Unicode)'+';
+ many_times_ok |= c != (sal_Unicode)'?';
+
+ if (p == pend)
+ break;
+
+ PATFETCH_RAW(c);
+
+ if (c == (sal_Unicode)'*' || (c == (sal_Unicode)'+'
+ || c == (sal_Unicode)'?')) {
+ } else {
+ PATUNFETCH;
+ break;
+ }
+
+ /* If we get here, we found another repeat character. */
+ }
+
+ /* Star, etc. applied to an empty pattern is equivalent
+ to an empty pattern. */
+ if (!laststart) {
+ break;
+ }
+
+ /* Now we know whether or not zero matches is allowed
+ and also whether or not two or more matches is allowed. */
+ if (many_times_ok) {
+ /* More than one repetition is allowed, so put in at the
+ end a backward relative jump from `b' to before the next
+ jump we're going to put in below (which jumps from
+ laststart to after this jump).
+
+ But if we are at the `*' in the exact sequence `.*\n',
+ insert an unconditional jump backwards to the .,
+ instead of the beginning of the loop. This way we only
+ push a failure point once, instead of every time
+ through the loop. */
+ assert(p - 1 > pattern);
+
+ /* Allocate the space for the jump. */
+ GET_BUFFER_SPACE(3);
+
+ /* We know we are not at the first character of the pattern,
+ because laststart was nonzero. And we've already
+ incremented `p', by the way, to be the character after
+ the `*'. Do we have to do something analogous here
+ for null bytes, because of RE_DOT_NOT_NULL? */
+ if (*(p - 2) == (sal_Unicode)'.'
+ && zero_times_ok
+ && p < pend && *p == (sal_Unicode)'\n') {
+ /* We have .*\n. */
+ STORE_JUMP(jump, b, laststart);
+ keep_string_p = true;
+ } else {
+ /* Anything else. */
+ STORE_JUMP(maybe_pop_jump, b, laststart - 3);
+ }
+
+ /* We've added more stuff to the buffer. */
+ b += 3;
+ }
+
+ /* On failure, jump from laststart to b + 3, which will be the
+ end of the buffer after this jump is inserted. */
+ GET_BUFFER_SPACE(3);
+ INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
+ : on_failure_jump,
+ laststart, b + 3);
+ pending_exact = 0;
+ b += 3;
+
+ if (!zero_times_ok) {
+ /* At least one repetition is required, so insert a
+ `dummy_failure_jump' before the initial
+ `on_failure_jump' instruction of the loop. This
+ effects a skip over that instruction the first time
+ we hit that loop. */
+ GET_BUFFER_SPACE(3);
+ INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6);
+ b += 3;
+ }
+ }
+ break;
+
+ case (sal_Unicode)'.':
+ laststart = b;
+ BUF_PUSH(anychar);
+ break;
+
+
+ case (sal_Unicode)'[': {
+ sal_Bool have_range = false;
+ sal_Unicode last_char = 0xffff;
+ sal_Unicode first_range = 0xffff;
+ sal_Unicode second_range = 0xffff;
+ sal_Int16 bsiz;
+
+ if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
+
+ /* Ensure that we have enough space to push a charset: the
+ opcode, the length count, and the bitset;
+ 1 + 1 + (1 << BYTEWIDTH) / BYTEWIDTH "bytes" in all. */
+ bsiz = 2 + ((1 << BYTEWIDTH) / BYTEWIDTH);
+ GET_BUFFER_SPACE(bsiz);
+
+ laststart = b;
+
+ /* We test `*p == '^' twice, instead of using an if
+ statement, so we only need one BUF_PUSH. */
+ BUF_PUSH (*p == (sal_Unicode)'^' ? charset_not : charset);
+ if (*p == (sal_Unicode)'^')
+ p++;
+
+ /* Remember the first position in the bracket expression. */
+ p1 = p;
+
+ /* Push the number of "bytes" in the bitmap. */
+ BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
+
+ /* Clear the whole map. */
+ memset(b, 0, ((1 << BYTEWIDTH) / BYTEWIDTH) * sizeof(sal_Unicode));
+
+ /* Read in characters and ranges, setting map bits. */
+ for (;;) {
+ if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
+
+ PATFETCH_RAW(c);
+
+ if ( c == (sal_Unicode)'\\' ) {
+
+ PATFETCH_RAW(c);
+
+ if ( c == (sal_Unicode)'x' ) {
+ sal_Int32 UniChar = -1;
+
+ GET_HEX_NUMBER(UniChar);
+ if (UniChar < 0 || UniChar > 0xffff) FREE_STACK_RETURN(REG_BADPAT);
+ c = (sal_Unicode) UniChar;
+ last_char = c;
+ set_list_bit(last_char, b);
+ } else {
+ last_char = c;
+ set_list_bit(last_char, b);
+ }
+ } else if (c == (sal_Unicode)']') {
+ /* Could be the end of the bracket expression. If it's
+ not (i.e., when the bracket expression is `[]' so
+ far), the ']' character bit gets set way below. */
+ break;
+ } else if ( c == (sal_Unicode)'-' ) {
+ if ( !have_range ) {
+ if ( last_char != 0xffff ) {
+ first_range = last_char;
+ have_range = true;
+ continue;
+ } else {
+ last_char = (sal_Unicode)'-';
+ set_list_bit(last_char, b);
+ }
+ }
+ }
+
+ /* See if we're at the beginning of a possible character
+ class. */
+ else if (c == (sal_Unicode)':' && p[-2] == (sal_Unicode)'[') {
+ /* Leave room for the null. */
+ sal_Unicode str[CHAR_CLASS_MAX_LENGTH + 1];
+
+ PATFETCH_RAW(c);
+ c1 = 0;
+
+ /* If pattern is `[[:'. */
+ if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
+
+ str[c1++] = c;
+ for (;;) {
+ PATFETCH_RAW(c);
+ if ((c == (sal_Unicode)':' && *p == (sal_Unicode)']') || p == pend)
+ break;
+ if (c1 < CHAR_CLASS_MAX_LENGTH)
+ str[c1++] = c;
+ else
+ /* This is in any case an invalid class name. */
+ str[0] = (sal_Unicode)'\0';
+ }
+ str[c1] = (sal_Unicode)'\0';
+
+ /* If isn't a word bracketed by `[:' and `:]':
+ undo the ending character, the letters, and leave
+ the leading `:' and `[' (but set bits for them). */
+ if (c == (sal_Unicode)':' && *p == (sal_Unicode)']') {
+ sal_Int32 ch;
+ // no support for GRAPH, PUNCT, or XDIGIT yet
+ sal_Bool is_alnum = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"alnum").getStr());
+ sal_Bool is_alpha = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"alpha").getStr());
+ sal_Bool is_cntrl = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"cntrl").getStr());
+ sal_Bool is_digit = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"digit").getStr());
+ sal_Bool is_lower = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"lower").getStr());
+ sal_Bool is_print = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"print").getStr());
+ sal_Bool is_space = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"space").getStr());
+ sal_Bool is_upper = STREQ(str, ::rtl::OUString::createFromAscii((const sal_Char*)"upper").getStr());
+
+ if (!(is_alnum || is_alpha || is_cntrl ||
+ is_digit || is_lower || is_print || is_space || is_upper) )
+ FREE_STACK_RETURN(REG_ECTYPE);
+
+ /* Throw away the ] at the end of the character
+ class. */
+ PATFETCH_RAW(c);
+
+ if (p == pend) FREE_STACK_RETURN(REG_EBRACK);
+
+ for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
+ /* This was split into 3 if's to
+ avoid an arbitrary limit in some compiler. */
+ if ( (is_alnum && unicode::isAlphaDigit(sal_Unicode(ch))) ||
+ (is_alpha && unicode::isAlpha(sal_Unicode(ch))) ||
+ (is_cntrl && unicode::isControl(sal_Unicode(ch))))
+ set_list_bit(sal_Unicode(ch), b);
+ if ( (is_digit && unicode::isDigit(sal_Unicode(ch))) ||
+ (is_lower && unicode::isLower(sal_Unicode(ch))) ||
+ (is_print && unicode::isPrint(sal_Unicode(ch))))
+ set_list_bit(sal_Unicode(ch), b);
+ if ( (is_space && unicode::isSpace(sal_Unicode(ch))) ||
+ (is_upper && unicode::isUpper(sal_Unicode(ch))) )
+ set_list_bit(sal_Unicode(ch), b);
+ if ( isIgnoreCase && (is_upper || is_lower) &&
+ (unicode::isUpper(sal_Unicode(ch)) || unicode::isLower(sal_Unicode(ch))))
+ set_list_bit(sal_Unicode(ch), b);
+ }
+ break;
+ } else {
+ p = p1+1;
+ last_char = (sal_Unicode)':';
+ set_list_bit(last_char, b);
+ }
+ } else {
+ last_char = c;
+ set_list_bit(last_char, b);
+ }
+ if ( have_range ) {
+ if ( last_char != 0xffff ) {
+ second_range = last_char;
+ have_range = false;
+ compile_range(first_range, second_range, b);
+ } else FREE_STACK_RETURN(REG_EBRACK);
+ } else {
+ if ( last_char != 0xffff ) {
+ set_list_bit(last_char, b);
+ } else FREE_STACK_RETURN(REG_EBRACK);
+ }
+ }
+
+ /* Discard any (non)matching list bytes that are all 0 at the
+ end of the map. Decrease the map-length byte too. */
+ bsiz = b[-1];
+ while ((sal_Int16) bsiz > 0 && b[bsiz - 1] == 0)
+ bsiz--;
+ b[-1] = (sal_Unicode)bsiz;
+ b += bsiz;
+ }
+ break;
+
+ case (sal_Unicode)'(':
+ goto handle_open;
+
+ case (sal_Unicode)')':
+ goto handle_close;
+
+ case (sal_Unicode)'\n':
+ goto normal_char;
+
+ case (sal_Unicode)'|':
+ goto handle_alt;
+
+ case (sal_Unicode)'{':
+ goto handle_interval;
+
+ case (sal_Unicode)'\\':
+ if (p == pend) FREE_STACK_RETURN(REG_EESCAPE);
+
+ /* Do not translate the character after the \, so that we can
+ distinguish, e.g., \B from \b, even if we normally would
+ translate, e.g., B to b. */
+ PATFETCH_RAW(c);
+
+ switch (c) {
+ case (sal_Unicode)'(':
+ goto normal_backslash;
+
+ handle_open:
+ bufp->re_nsub++;
+ regnum++;
+
+ if (COMPILE_STACK_FULL) {
+ compile_stack.stack = (compile_stack_elt_t *)realloc(compile_stack.stack, (compile_stack.size << 1) * sizeof(compile_stack_elt_t));
+ if (compile_stack.stack == NULL) return(REG_ESPACE);
+
+ compile_stack.size <<= 1;
+ }
+
+ /* These are the values to restore when we hit end of this
+ group. They are all relative offsets, so that if the
+ whole pattern moves because of realloc, they will still
+ be valid. */
+ COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+ COMPILE_STACK_TOP.fixup_alt_jump
+ = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+ COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+ COMPILE_STACK_TOP.regnum = regnum;
+
+ /* We will eventually replace the 0 with the number of
+ groups inner to this one. But do not push a
+ start_memory for groups beyond the last one we can
+ represent in the compiled pattern. */
+ if (regnum <= MAX_REGNUM) {
+ COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
+ BUF_PUSH_3 (start_memory, regnum, 0);
+ }
+
+ compile_stack.avail++;
+
+ fixup_alt_jump = 0;
+ laststart = 0;
+ begalt = b;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+ break;
+
+
+ case (sal_Unicode)')':
+ goto normal_backslash;
+
+ if (COMPILE_STACK_EMPTY) {
+ FREE_STACK_RETURN(REG_ERPAREN);
+ }
+
+ handle_close:
+ if (fixup_alt_jump) {
+ /* Push a dummy failure point at the end of the
+ alternative for a possible future
+ `pop_failure_jump' to pop. See comments at
+ `push_dummy_failure' in `re_match2'. */
+ BUF_PUSH(push_dummy_failure);
+
+ /* We allocated space for this jump when we assigned
+ to `fixup_alt_jump', in the `handle_alt' case below. */
+ STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
+ }
+
+ /* See similar code for backslashed left paren above. */
+ if (COMPILE_STACK_EMPTY) {
+ FREE_STACK_RETURN(REG_ERPAREN);
+ }
+
+ /* Since we just checked for an empty stack above, this
+ ``can't happen''. */
+ assert (compile_stack.avail != 0);
+
+ {
+ /* We don't just want to restore into `regnum', because
+ later groups should continue to be numbered higher,
+ as in `(ab)c(de)' -- the second group is #2. */
+ sal_Int32 this_group_regnum;
+
+ compile_stack.avail--;
+ begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+ fixup_alt_jump
+ = COMPILE_STACK_TOP.fixup_alt_jump
+ ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+ : 0;
+ laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+ this_group_regnum = COMPILE_STACK_TOP.regnum;
+ /* If we've reached MAX_REGNUM groups, then this open
+ won't actually generate any code, so we'll have to
+ clear pending_exact explicitly. */
+ pending_exact = 0;
+
+ /* We're at the end of the group, so now we know how many
+ groups were inside this one. */
+ if (this_group_regnum <= MAX_REGNUM) {
+ sal_Unicode *inner_group_loc
+ = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
+
+ *inner_group_loc = regnum - this_group_regnum;
+ BUF_PUSH_3 (stop_memory, this_group_regnum,
+ regnum - this_group_regnum);
+ }
+ }
+ break;
+
+
+ case (sal_Unicode)'|': /* `\|'.
+ * */
+ goto normal_backslash;
+ handle_alt:
+
+ /* Insert before the previous alternative a jump which
+ jumps to this alternative if the former fails. */
+ GET_BUFFER_SPACE (3);
+ INSERT_JUMP (on_failure_jump, begalt, b + 6);
+ pending_exact = 0;
+ b += 3;
+
+ /* The alternative before this one has a jump after it
+ which gets executed if it gets matched. Adjust that
+ jump so it will jump to this alternative's analogous
+ jump (put in below, which in turn will jump to the next
+ (if any) alternative's such jump, etc.). The last such
+ jump jumps to the correct final destination. A picture:
+ _____ _____
+ | | | |
+ | v | v
+ a | b | c
+
+ If we are at `b', then fixup_alt_jump right now points to a
+ three-byte space after `a'. We'll put in the jump, set
+ fixup_alt_jump to right after `b', and leave behind three
+ bytes which we'll fill in when we get to after `c'. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
+
+ /* Mark and leave space for a jump after this alternative,
+ to be filled in later either by next alternative or
+ when know we're at the end of a series of alternatives. */
+ fixup_alt_jump = b;
+ GET_BUFFER_SPACE (3);
+ b += 3;
+
+ laststart = 0;
+ begalt = b;
+ break;
+
+
+ case (sal_Unicode)'{':
+ goto normal_backslash;
+
+ handle_interval:
+ {
+ /* allows intervals. */
+ /* At least (most) this many matches must be made. */
+ sal_Int32 lower_bound = -1, upper_bound = -1;
+
+ beg_interval = p - 1;
+
+ if (p == pend) {
+ goto unfetch_interval;
+ }
+
+ GET_UNSIGNED_NUMBER(lower_bound);
+
+ if (c == (sal_Unicode)',') {
+ GET_UNSIGNED_NUMBER(upper_bound);
+ if (upper_bound < 0) upper_bound = RE_DUP_MAX;
+ } else
+ /* Interval such as `{1}' => match exactly once. */
+ upper_bound = lower_bound;
+
+ if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+ || lower_bound > upper_bound) {
+ goto unfetch_interval;
+ }
+
+ if (c != (sal_Unicode)'}') {
+ goto unfetch_interval;
+ }
+
+ /* We just parsed a valid interval. */
+
+ /* If it's invalid to have no preceding re. */
+ if (!laststart) {
+ goto unfetch_interval;
+ }
+
+ /* If the upper bound is zero, don't want to succeed at
+ all; jump from `laststart' to `b + 3', which will be
+ the end of the buffer after we insert the jump. */
+ if (upper_bound == 0) {
+ GET_BUFFER_SPACE(3);
+ INSERT_JUMP(jump, laststart, b + 3);
+ b += 3;
+ }
+
+ /* Otherwise, we have a nontrivial interval. When
+ we're all done, the pattern will look like:
+ set_number_at <jump count> <upper bound>
+ set_number_at <succeed_n count> <lower bound>
+ succeed_n <after jump addr> <succeed_n count>
+ <body of loop>
+ jump_n <succeed_n addr> <jump count>
+ (The upper bound and `jump_n' are omitted if
+ `upper_bound' is 1, though.) */
+ else {
+ /* If the upper bound is > 1, we need to insert
+ more at the end of the loop. */
+ unsigned nbytes = 10 + (upper_bound > 1) * 10;
+
+ GET_BUFFER_SPACE(nbytes);
+
+ /* Initialize lower bound of the `succeed_n', even
+ though it will be set during matching by its
+ attendant `set_number_at' (inserted next),
+ because `re_compile_fastmap' needs to know.
+ Jump to the `jump_n' we might insert below. */
+ INSERT_JUMP2(succeed_n, laststart,
+ b + 5 + (upper_bound > 1) * 5,
+ lower_bound);
+ b += 5;
+
+ /* Code to initialize the lower bound. Insert
+ before the `succeed_n'. The `5' is the last two
+ bytes of this `set_number_at', plus 3 bytes of
+ the following `succeed_n'. */
+ insert_op2(set_number_at, laststart, 5, lower_bound, b);
+ b += 5;
+
+ if (upper_bound > 1) {
+ /* More than one repetition is allowed, so
+ append a backward jump to the `succeed_n'
+ that starts this interval.
+
+ When we've reached this during matching,
+ we'll have matched the interval once, so
+ jump back only `upper_bound - 1' times. */
+ STORE_JUMP2(jump_n, b, laststart + 5,
+ upper_bound - 1);
+ b += 5;
+
+ /* The location we want to set is the second
+ parameter of the `jump_n'; that is `b-2' as
+ an absolute address. `laststart' will be
+ the `set_number_at' we're about to insert;
+ `laststart+3' the number to set, the source
+ for the relative address. But we are
+ inserting into the middle of the pattern --
+ so everything is getting moved up by 5.
+ Conclusion: (b - 2) - (laststart + 3) + 5,
+ i.e., b - laststart.
+
+ We insert this at the beginning of the loop
+ so that if we fail during matching, we'll
+ reinitialize the bounds. */
+ insert_op2(set_number_at, laststart, b - laststart,
+ upper_bound - 1, b);
+ b += 5;
+ }
+ }
+ pending_exact = 0;
+ beg_interval = NULL;
+ }
+ break;
+
+ unfetch_interval:
+ /* If an invalid interval, match the characters as literals. */
+ assert (beg_interval);
+ p = beg_interval;
+ beg_interval = NULL;
+
+ /* normal_char and normal_backslash need `c'. */
+ PATFETCH_RAW(c);
+
+ goto normal_char;
+
+ case (sal_Unicode)'`':
+ BUF_PUSH(begbuf);
+ break;
+
+ case (sal_Unicode)'\'':
+ BUF_PUSH(endbuf);
+ break;
+
+ case (sal_Unicode)'1': case (sal_Unicode)'2':
+ case (sal_Unicode)'3': case (sal_Unicode)'4':
+ case (sal_Unicode)'5': case (sal_Unicode)'6':
+ case (sal_Unicode)'7': case (sal_Unicode)'8':
+ case (sal_Unicode)'9':
+ c1 = c - (sal_Unicode)'0';
+
+ if (c1 > regnum)
+ FREE_STACK_RETURN(REG_ESUBREG);
+
+ /* Can't back reference to a subexpression if inside of it. */
+ if (group_in_compile_stack(compile_stack, (sal_Int32) c1)) {
+ goto normal_char;
+ }
+
+ laststart = b;
+ BUF_PUSH_2(duplicate, c1);
+ break;
+
+
+ case (sal_Unicode)'+':
+ case (sal_Unicode)'?':
+ goto normal_backslash;
+
+ case (sal_Unicode)'x': // Unicode char
+ {
+ sal_Int32 UniChar = -1;
+
+ GET_HEX_NUMBER(UniChar);
+ if (UniChar < 0 || UniChar > 0xffff) FREE_STACK_RETURN(REG_BADPAT);
+ c = (sal_Unicode) UniChar;
+ goto normal_char;
+ }
+ break;
+
+ case (sal_Unicode)'<': // begin Word boundary
+ BUF_PUSH(wordbeg);
+ break;
+
+ case (sal_Unicode)'>': // end Word boundary
+ BUF_PUSH(wordend);
+ break;
+
+ case (sal_Unicode)'n':
+ c = 0x0a;
+ goto normal_char;
+
+ case (sal_Unicode)'t':
+ c = 0x09;
+ goto normal_char;
+
+ default:
+ normal_backslash:
+ goto normal_char;
+ }
+ break;
+
+ default:
+ /* Expects the character in `c'. */
+ normal_char:
+ /* If no exactn currently being built. */
+ if ( pending_exact == NULL
+
+ /* If last exactn not at current position. */
+ || pending_exact + *pending_exact + 1 != b
+
+ /* We have only one sal_Unicode char following the
+ exactn for the count. */
+ || *pending_exact == (1 << BYTEWIDTH) - 1
+
+ /* If followed by a repetition operator. */
+ || *p == (sal_Unicode)'*' || *p == (sal_Unicode)'^'
+ || *p == (sal_Unicode)'+' || *p == (sal_Unicode)'?'
+ || *p == (sal_Unicode) '{' ) {
+ /* Start building a new exactn. */
+ laststart = b;
+ BUF_PUSH_2(exactn, 0);
+ pending_exact = b - 1;
+ }
+
+ if ( translate ) {
+ try {
+ sal_Unicode tmp = translit->transliterateChar2Char(c);
+ BUF_PUSH(tmp);
+ (*pending_exact)++;
+ } catch (::com::sun::star::i18n::MultipleCharsOutputException e) {
+ ::rtl::OUString o2( translit->transliterateChar2String( c));
+ sal_Int32 len2 = o2.getLength();
+ const sal_Unicode * k2 = o2.getStr();
+ for (sal_Int32 nmatch = 0; nmatch < len2; nmatch++) {
+ BUF_PUSH(k2[nmatch]);
+ (*pending_exact)++;
+ }
+ }
+ } else {
+ BUF_PUSH(c);
+ (*pending_exact)++;
+ }
+ break;
+ } /* switch (c) */
+ } /* while p != pend */
+
+ /* Through the pattern now. */
+
+ if (fixup_alt_jump)
+ STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
+
+ if (!COMPILE_STACK_EMPTY)
+ FREE_STACK_RETURN(REG_EPAREN);
+
+ // Assumes no backtracking
+ BUF_PUSH(succeed);
+
+ if ( compile_stack.stack )
+ free(compile_stack.stack);
+ compile_stack.stack = NULL;
+
+ /* We have succeeded; set the length of the buffer. */
+ bufp->used = b - bufp->buffer;
+
+ return REG_NOERROR;
+} /* regex_compile */
+
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+ bytes; nonzero otherwise. */
+
+sal_Int32
+Regexpr::bcmp_translate(const sal_Unicode *s1, const sal_Unicode *s2, sal_Int32 len)
+{
+ for (sal_Int32 nmatch = 0; nmatch < len; nmatch++) {
+ if (*s1++ != *s2++) {
+ return(1);
+ }
+ }
+
+ return(0);
+}
+
+
+/* We are passed P pointing to a register number after a start_memory.
+
+ Return true if the pattern up to the corresponding stop_memory can
+ match the empty string, and false otherwise.
+
+ If we find the matching stop_memory, sets P to point to one past its number.
+ Otherwise, sets P to an undefined byte less than or equal to END.
+
+ We don't handle duplicates properly (yet). */
+
+sal_Bool
+Regexpr::group_match_null_string_p(sal_Unicode **p, sal_Unicode *end, register_info_type *reg_info)
+{
+ sal_Int32 mcnt;
+/* Point to after the args to the start_memory. */
+ sal_Unicode *p1 = *p + 2;
+
+ while (p1 < end) {
+ /* Skip over opcodes that can match nothing, and return true or
+ false, as appropriate, when we get to one that can't, or to the
+ matching stop_memory. */
+
+ switch ((re_opcode_t) *p1) {
+ /* Could be either a loop or a series of alternatives. */
+ case on_failure_jump:
+ p1++;
+ extract_number_and_incr(mcnt, p1);
+
+ /* If the next operation is not a jump backwards in the
+ pattern. */
+
+ if (mcnt >= 0) {
+ /* Go through the on_failure_jumps of the alternatives,
+ seeing if any of the alternatives cannot match nothing.
+ The last alternative starts with only a jump,
+ whereas the rest start with on_failure_jump and end
+ with a jump, e.g., here is the pattern for `a|b|c':
+
+ /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
+ /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
+ /exactn/1/c
+
+ So, we have to first go through the first (n-1)
+ alternatives and then deal with the last one separately. */
+
+
+ /* Deal with the first (n-1) alternatives, which start
+ with an on_failure_jump (see above) that jumps to right
+ past a jump_past_alt. */
+
+ while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) {
+ /* `mcnt' holds how many bytes long the alternative
+ is, including the ending `jump_past_alt' and
+ its number. */
+
+ if (!alt_match_null_string_p(p1, p1 + mcnt - 3, reg_info))
+ return false;
+
+ /* Move to right after this alternative, including the
+ jump_past_alt. */
+ p1 += mcnt;
+
+ /* Break if it's the beginning of an n-th alternative
+ that doesn't begin with an on_failure_jump. */
+ if ((re_opcode_t) *p1 != on_failure_jump)
+ break;
+
+ /* Still have to check that it's not an n-th
+ alternative that starts with an on_failure_jump. */
+ p1++;
+ extract_number_and_incr(mcnt, p1);
+ if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) {
+ /* Get to the beginning of the n-th alternative. */
+ p1 -= 3;
+ break;
+ }
+ }
+
+ /* Deal with the last alternative: go back and get number
+ of the `jump_past_alt' just before it. `mcnt' contains
+ the length of the alternative. */
+ extract_number(mcnt, p1 - 2);
+
+ if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
+ return false;
+
+ p1 += mcnt; /* Get past the n-th alternative. */
+ } /* if mcnt > 0 */
+ break;
+
+
+ case stop_memory:
+ assert (p1[1] == **p);
+ *p = p1 + 2;
+ return true;
+
+
+ default:
+ if (!common_op_match_null_string_p(&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return false;
+} /* group_match_null_string_p */
+
+/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
+ It expects P to be the first byte of a single alternative and END one
+ byte past the last. The alternative can contain groups. */
+
+sal_Bool
+Regexpr::alt_match_null_string_p(sal_Unicode *p, sal_Unicode *end, register_info_type *reg_info)
+{
+ sal_Int32 mcnt;
+ sal_Unicode *p1 = p;
+
+ while (p1 < end) {
+ /* Skip over opcodes that can match nothing, and break when we get
+ to one that can't. */
+
+ switch ((re_opcode_t) *p1) {
+ /* It's a loop. */
+ case on_failure_jump:
+ p1++;
+ extract_number_and_incr(mcnt, p1);
+ p1 += mcnt;
+ break;
+
+ default:
+ if (!common_op_match_null_string_p(&p1, end, reg_info))
+ return false;
+ }
+ } /* while p1 < end */
+
+ return true;
+} /* alt_match_null_string_p */
+
+
+/* Deals with the ops common to group_match_null_string_p and
+ alt_match_null_string_p.
+
+ Sets P to one after the op and its arguments, if any. */
+
+sal_Bool
+Regexpr::common_op_match_null_string_p(sal_Unicode **p, sal_Unicode *end, register_info_type *reg_info)
+{
+ sal_Int32 mcnt;
+ sal_Bool ret;
+ sal_Int32 reg_no;
+ sal_Unicode *p1 = *p;
+
+ switch ((re_opcode_t) *p1++) {
+ case no_op:
+ case begline:
+ case endline:
+ case begbuf:
+ case endbuf:
+ break;
+
+ case start_memory:
+ reg_no = *p1;
+ assert (reg_no > 0 && reg_no <= MAX_REGNUM);
+ ret = group_match_null_string_p(&p1, end, reg_info);
+ /* Have to set this here in case we're checking a group which
+ contains a group and a back reference to it. */
+
+ if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
+
+ if (!ret)
+ return false;
+ break;
+
+ /* If this is an optimized succeed_n for zero times, make the jump. */
+ case jump:
+ extract_number_and_incr(mcnt, p1);
+ if (mcnt >= 0)
+ p1 += mcnt;
+ else
+ return false;
+ break;
+
+ case succeed_n:
+ /* Get to the number of times to succeed. */
+ p1 += 2;
+ extract_number_and_incr(mcnt, p1);
+
+ if (mcnt == 0)
+ {
+ p1 -= 4;
+ extract_number_and_incr(mcnt, p1);
+ p1 += mcnt;
+ }
+ else
+ return false;
+ break;
+
+ case duplicate:
+ if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
+ return false;
+ break;
+
+ case set_number_at:
+ p1 += 4;
+
+ default:
+ /* All other opcodes mean we cannot match the empty string. */
+ return false;
+ }
+
+ *p = p1;
+ return true;
+} /* common_op_match_null_string_p */
+
+
+
+/* Free everything we malloc. */
+#ifdef MATCH_MAY_ALLOCATE
+# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
+# define FREE_VARIABLES() \
+ do { \
+ REGEX_FREE_STACK (fail_stack.stack); \
+ FREE_VAR (regstart); \
+ FREE_VAR (regend); \
+ FREE_VAR (old_regstart); \
+ FREE_VAR (old_regend); \
+ FREE_VAR (best_regstart); \
+ FREE_VAR (best_regend); \
+ FREE_VAR (reg_info); \
+ FREE_VAR (reg_dummy); \
+ FREE_VAR (reg_info_dummy); \
+ } while (0)
+#else
+# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
+#endif /* not MATCH_MAY_ALLOCATE */
+
+/* This is a separate function so that we can force an alloca cleanup
+ afterwards. */
+sal_Int32
+Regexpr::re_match2(struct re_registers *regs, sal_Int32 pos, sal_Int32 range)
+{
+ /* General temporaries. */
+ sal_Int32 mcnt;
+ sal_Unicode *p1;
+
+ /* Just past the end of the corresponding string. */
+ sal_Unicode *end2;
+
+ /* Pointers into string2, just past the last characters in
+ each to consider matching. */
+ sal_Unicode *end_match_2;
+
+ /* Where we are in the data, and the end of the current string. */
+ const sal_Unicode *d, *dend;
+
+ /* Where we are in the compiled pattern, and the end of the compiled
+ pattern. */
+ sal_Unicode *p = bufp->buffer;
+ register sal_Unicode *pend = p + bufp->used;
+
+ /* Mark the opcode just after a start_memory, so we can test for an
+ empty subpattern when we get to the stop_memory. */
+ sal_Unicode *just_past_start_mem = 0;
+
+ /* Failure point stack. Each place that can handle a failure further
+ down the line pushes a failure point on this stack. It consists of
+ restart, regend, and reg_info for all registers corresponding to
+ the subexpressions we're currently inside, plus the number of such
+ registers, and, finally, two sal_Unicode *'s. The first
+ sal_Unicode * is where to resume scanning the pattern; the second
+ one is where to resume scanning the strings. If the latter is
+ zero, the failure point is a ``dummy''; if a failure happens and
+ the failure point is a dummy, it gets discarded and the next next
+ one is tried. */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
+ fail_stack_type fail_stack;
+#endif
+
+ /* We fill all the registers internally, independent of what we
+ return, for use in backreferences. The number here includes
+ an element for register zero. */
+ size_t num_regs = bufp->re_nsub + 1;
+
+ /* The currently active registers. */
+ sal_uInt32 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ sal_uInt32 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+
+ /* Information on the contents of registers. These are pointers into
+ the input strings; they record just what was matched (on this
+ attempt) by a subexpression part of the pattern, that is, the
+ regnum-th regstart pointer points to where in the pattern we began
+ matching and the regnum-th regend points to right after where we
+ stopped matching the regnum-th subexpression. (The zeroth register
+ keeps track of what the whole pattern matches.) */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
+ const sal_Unicode **regstart, **regend;
+#endif
+
+ /* If a group that's operated upon by a repetition operator fails to
+ match anything, then the register for its start will need to be
+ restored because it will have been set to wherever in the string we
+ are when we last see its open-group operator. Similarly for a
+ register's end. */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
+ const sal_Unicode **old_regstart, **old_regend;
+#endif
+
+ /* The is_active field of reg_info helps us keep track of which (possibly
+ nested) subexpressions we are currently in. The matched_something
+ field of reg_info[reg_num] helps us tell whether or not we have
+ matched any of the pattern so far this time through the reg_num-th
+ subexpression. These two fields get reset each time through any
+ loop their register is in. */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
+ register_info_type *reg_info;
+#endif
+
+ /* The following record the register info as found in the above
+ variables when we find a match better than any we've seen before.
+ This happens as we backtrack through the failure points, which in
+ turn happens only if we have not yet matched the entire string. */
+ unsigned best_regs_set = false;
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
+ const sal_Unicode **best_regstart, **best_regend;
+#endif
+
+ /* Logically, this is `best_regend[0]'. But we don't want to have to
+ allocate space for that if we're not allocating space for anything
+ else (see below). Also, we never need info about register 0 for
+ any of the other register vectors, and it seems rather a kludge to
+ treat `best_regend' differently than the rest. So we keep track of
+ the end of the best match so far in a separate variable. We
+ initialize this to NULL so that when we backtrack the first time
+ and need to test it, it's not garbage. */
+ const sal_Unicode *match_end = NULL;
+
+ /* This helps SET_REGS_MATCHED avoid doing redundant work. */
+ sal_Int32 set_regs_matched_done = 0;
+
+ /* Used when we pop values we don't care about. */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
+ const sal_Unicode **reg_dummy;
+ register_info_type *reg_info_dummy;
+#endif
+
+ INIT_FAIL_STACK();
+
+#ifdef MATCH_MAY_ALLOCATE
+ /* Do not bother to initialize all the register variables if there are
+ no groups in the pattern, as it takes a fair amount of time. If
+ there are groups, we include space for register 0 (the whole
+ pattern), even though we never use it, since it simplifies the
+ array indexing. We should fix this. */
+ if (bufp->re_nsub)
+ {
+ regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
+ regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
+ old_regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
+ old_regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
+ best_regstart = REGEX_TALLOC (num_regs, const sal_Unicode *);
+ best_regend = REGEX_TALLOC (num_regs, const sal_Unicode *);
+ reg_info = REGEX_TALLOC (num_regs, register_info_type);
+ reg_dummy = REGEX_TALLOC (num_regs, const sal_Unicode *);
+ reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
+
+ if (!(regstart && regend && old_regstart && old_regend && reg_info
+ && best_regstart && best_regend && reg_dummy && reg_info_dummy))
+ {
+ FREE_VARIABLES ();
+ return -2;
+ }
+ }
+ else
+ {
+ /* We must initialize all our variables to NULL, so that
+ `FREE_VARIABLES' doesn't try to free them. */
+ regstart = regend = old_regstart = old_regend = best_regstart
+ = best_regend = reg_dummy = NULL;
+ reg_info = reg_info_dummy = (register_info_type *) NULL;
+ }
+#endif /* MATCH_MAY_ALLOCATE */
+
+ sal_Unicode *string2 = (sal_Unicode *)line;
+ sal_Int32 size2 = linelen;
+ sal_Int32 stop = range;
+
+ /* The starting position is bogus. */
+ if (pos < 0 || pos >= size2 || linelen <= 0 ) {
+ FREE_VARIABLES ();
+ return(-1);
+ }
+
+ /* Initialize subexpression text positions to -1 to mark ones that no
+ start_memory/stop_memory has been seen for. Also initialize the
+ register information struct. */
+ for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) {
+ regstart[mcnt] = regend[mcnt]
+ = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
+
+ REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
+ IS_ACTIVE (reg_info[mcnt]) = 0;
+ MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+ EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
+ }
+
+ end2 = (sal_Unicode *)(string2 + size2);
+
+ end_match_2 = (sal_Unicode *)(string2 + stop);
+
+ /* `p' scans through the pattern as `d' scans through the data.
+ `dend' is the end of the input string that `d' points within. `d'
+ is advanced into the following input string whenever necessary, but
+ this happens before fetching; therefore, at the beginning of the
+ loop, `d' can be pointing at the end of a string, but it cannot
+ equal `string2'. */
+ d = string2 + pos;
+ dend = end_match_2;
+
+ /* This loops over pattern commands. It exits by returning from the
+ function if the match is complete, or it drops through if the match
+ fails at this starting point in the input data. */
+ for (;;) {
+ if (p == pend) {
+ /* End of pattern means we might have succeeded. */
+
+ /* If we haven't matched the entire string, and we want the
+ longest match, try backtracking. */
+ if (d != end_match_2) {
+ if (!FAIL_STACK_EMPTY()) {
+ goto fail;
+ }
+ } /* d != end_match_2 */
+
+ succeed_label:
+
+ /* If caller wants register contents data back, do it. */
+ if (regs) {
+ /* Have the register data arrays been allocated? */
+ if (regs->num_regs == 0) {
+ /* No. So allocate them with malloc. We need one
+ extra element beyond `num_regs' for the `-1' marker
+ GNU code uses. */
+ regs->num_of_match = 0;
+ regs->num_regs = MAX(RE_NREGS, num_regs + 1);
+ regs->start = (sal_Int32 *) malloc(regs->num_regs * sizeof(sal_Int32));
+ regs->end = (sal_Int32 *) malloc(regs->num_regs * sizeof(sal_Int32));
+ if (regs->start == NULL || regs->end == NULL) {
+ FREE_VARIABLES ();
+ return(-2);
+ }
+ } else if ( regs->num_regs > 0 ) {
+ /* Yes. If we need more elements than were already
+ allocated, reallocate them. If we need fewer, just
+ leave it alone. */
+ if (regs->num_regs < num_regs + 1) {
+ regs->num_regs = num_regs + 1;
+ regs->start = (sal_Int32 *) realloc(regs->start, regs->num_regs * sizeof(sal_Int32));
+ regs->end = (sal_Int32 *) realloc(regs->end, regs->num_regs * sizeof(sal_Int32));
+ if (regs->start == NULL || regs->end == NULL) {
+ FREE_VARIABLES ();
+ return(-2);
+ }
+ }
+ } else { // num_regs is negative
+ FREE_VARIABLES ();
+ return(-2);
+ }
+
+ /* Convert the pointer data in `regstart' and `regend' to
+ indices. Register zero has to be set differently,
+ since we haven't kept track of any info for it. */
+ if (regs->num_regs > 0) {
+ // Make sure a valid location
+ sal_Int32 dpos = d - string2;
+ if (pos == dpos || (d - 1) >= dend ) {
+ FREE_VARIABLES ();
+ return(-1);
+ }
+ regs->start[regs->num_of_match] = pos;
+ regs->end[regs->num_of_match] = ((sal_Int32) (d - string2));
+ regs->num_of_match++;
+ }
+
+ /* Go through the first `min (num_regs, regs->num_regs)'
+ registers, since that is all we initialized. */
+ for (mcnt = regs->num_of_match; (unsigned) mcnt < MIN(num_regs, regs->num_regs);
+ mcnt++) {
+ if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt]))
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ else {
+ regs->start[mcnt] = (sal_Int32) POINTER_TO_OFFSET(regstart[mcnt]);
+ regs->end[mcnt] = (sal_Int32) POINTER_TO_OFFSET(regend[mcnt]);
+ }
+ }
+
+ /* If the regs structure we return has more elements than
+ were in the pattern, set the extra elements to -1. If
+ we (re)allocated the registers, this is the case,
+ because we always allocate enough to have at least one
+ -1 at the end. */
+ for (mcnt = regs->num_of_match; (unsigned) mcnt < regs->num_regs; mcnt++)
+ regs->start[mcnt] = regs->end[mcnt] = -1;
+ } /* regs */
+
+ mcnt = d - pos - string2;
+
+ FREE_VARIABLES ();
+ return(0);
+ }
+ /* Otherwise match next pattern command. */
+ switch ((re_opcode_t) *p++) {
+ /* Ignore these. Used to ignore the n of succeed_n's which
+ currently have n == 0. */
+ case no_op:
+ break;
+
+ case succeed:
+ goto succeed_label;
+
+ /* Match the next n pattern characters exactly. The following
+ byte in the pattern defines n, and the n bytes after that
+ are the characters to match. */
+ case exactn:
+ mcnt = *p++;
+
+ do {
+ PREFETCH();
+ if ((sal_Unicode)*d++ != (sal_Unicode) *p++) goto fail;
+ } while (--mcnt);
+ SET_REGS_MATCHED();
+ break;
+
+ /* Match any character except possibly a newline or a null. */
+ case anychar:
+
+ PREFETCH();
+ if ( *d == (sal_Unicode)'\n' ||
+ *d == (sal_Unicode)'\000' )
+ goto fail;
+
+ SET_REGS_MATCHED();
+ d++;
+ break;
+
+ case charset:
+ case charset_not: {
+ register sal_Unicode c;
+ sal_Bool knot = (re_opcode_t) *(p - 1) == charset_not;
+
+ PREFETCH();
+ c = *d; /* The character to match. */
+ /* Cast to `sal_uInt32' instead of `sal_Unicode' in case the
+ bit list is a full 32 bytes long. */
+ if ((c < (sal_uInt32) (*p * BYTEWIDTH)) && (p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))))
+ knot = !knot;
+
+ p += 1 + *p;
+
+ if (!knot) {
+ goto fail;
+ }
+
+ SET_REGS_MATCHED();
+ d++;
+ break;
+ }
+
+ /* The beginning of a group is represented by start_memory.
+ The arguments are the register number in the next byte, and the
+ number of groups inner to this one in the next. The text
+ matched within the group is recorded (in the internal
+ registers data structure) under the register number. */
+ case start_memory:
+
+ /* Find out if this group can match the empty string. */
+ p1 = p; /* To send to group_match_null_string_p. */
+
+ if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
+ REG_MATCH_NULL_STRING_P(reg_info[*p]) = group_match_null_string_p(&p1, pend, reg_info);
+
+ /* Save the position in the string where we were the last time
+ we were at this open-group operator in case the group is
+ operated upon by a repetition operator, e.g., with `(a*)*b'
+ against `ab'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
+ ? REG_UNSET(regstart[*p]) ? d : regstart[*p]
+ : regstart[*p];
+
+ regstart[*p] = d;
+
+ IS_ACTIVE (reg_info[*p]) = 1;
+ MATCHED_SOMETHING(reg_info[*p]) = 0;
+
+ /* Clear this whenever we change the register activity status. */
+ set_regs_matched_done = 0;
+
+ /* This is the new highest active register. */
+ highest_active_reg = *p;
+
+ /* If nothing was active before, this is the new lowest active
+ register. */
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *p;
+
+ /* Move past the register number and inner group count. */
+ p += 2;
+ just_past_start_mem = p;
+
+ break;
+
+ /* The stop_memory opcode represents the end of a group. Its
+ arguments are the same as start_memory's: the register
+ number, and the number of inner groups. */
+ case stop_memory:
+
+ /* We need to save the string position the last time we were at
+ this close-group operator in case the group is operated
+ upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
+ against `aba'; then we want to ignore where we are now in
+ the string in case this attempt to match fails. */
+ old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
+ ? REG_UNSET(regend[*p]) ? d : regend[*p]
+ : regend[*p];
+
+ regend[*p] = d;
+
+ /* This register isn't active anymore. */
+ IS_ACTIVE(reg_info[*p]) = 0;
+
+ /* Clear this whenever we change the register activity status. */
+ set_regs_matched_done = 0;
+
+ /* If this was the only register active, nothing is active
+ anymore. */
+ if (lowest_active_reg == highest_active_reg) {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ } else { /* We must scan for the new highest active register, since
+ it isn't necessarily one less than now: consider
+ (a(b)c(d(e)f)g). When group 3 ends, after the f), the
+ new highest active register is 1. */
+ sal_Unicode r = *p - 1;
+ while (r > 0 && !IS_ACTIVE (reg_info[r]))
+ r--;
+
+ /* If we end up at register zero, that means that we saved
+ the registers as the result of an `on_failure_jump', not
+ a `start_memory', and we jumped to past the innermost
+ `stop_memory'. For example, in ((.)*) we save
+ registers 1 and 2 as a result of the *, but when we pop
+ back to the second ), we are at the stop_memory 1.
+ Thus, nothing is active. */
+ if (r == 0) {
+ lowest_active_reg = NO_LOWEST_ACTIVE_REG;
+ highest_active_reg = NO_HIGHEST_ACTIVE_REG;
+ } else
+ highest_active_reg = r;
+ }
+
+ /* If just failed to match something this time around with a
+ group that's operated on by a repetition operator, try to
+ force exit from the ``loop'', and restore the register
+ information for this group that we had before trying this
+ last match. */
+ if ((!MATCHED_SOMETHING (reg_info[*p])
+ || just_past_start_mem == p - 1)
+ && (p + 2) < pend) {
+ sal_Bool is_a_jump_n = false;
+
+ p1 = p + 2;
+ mcnt = 0;
+ switch ((re_opcode_t) *p1++) {
+ case jump_n:
+ is_a_jump_n = true;
+ case pop_failure_jump:
+ case maybe_pop_jump:
+ case jump:
+ case dummy_failure_jump:
+ extract_number_and_incr(mcnt, p1);
+ if (is_a_jump_n)
+ p1 += 2;
+ break;
+
+ default:
+ /* do nothing */ ;
+ }
+ p1 += mcnt;
+
+ /* If the next operation is a jump backwards in the pattern
+ to an on_failure_jump right before the start_memory
+ corresponding to this stop_memory, exit from the loop
+ by forcing a failure after pushing on the stack the
+ on_failure_jump's jump in the pattern, and d. */
+ if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
+ && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
+ /* If this group ever matched anything, then restore
+ what its registers were before trying this last
+ failed match, e.g., with `(a*)*b' against `ab' for
+ regstart[1], and, e.g., with `((a*)*(b*)*)*'
+ against `aba' for regend[3].
+
+ Also restore the registers for inner groups for,
+ e.g., `((a*)(b*))*' against `aba' (register 3 would
+ otherwise get trashed). */
+
+ if (EVER_MATCHED_SOMETHING (reg_info[*p])) {
+ unsigned r;
+
+ EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
+
+ /* Restore this and inner groups' (if any) registers. */
+ for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
+ r++) {
+ regstart[r] = old_regstart[r];
+
+ /* xx why this test? */
+ if (old_regend[r] >= regstart[r])
+ regend[r] = old_regend[r];
+ }
+ }
+ p1++;
+ extract_number_and_incr(mcnt, p1);
+ PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
+
+ goto fail;
+ }
+ }
+
+ /* Move past the register number and the inner group count. */
+ p += 2;
+ break;
+
+
+ /* \<digit> has been turned into a `duplicate' command which is
+ followed by the numeric value of <digit> as the register number. */
+ case duplicate:
+ {
+ register const sal_Unicode *d2, *dend2;
+ sal_Unicode regno = *p++; /* Get which register to match against. */
+
+ /* Can't back reference a group which we've never matched. */
+ if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno])) {
+ goto fail;
+ }
+
+ /* Where in input to try to start matching. */
+ d2 = regstart[regno];
+
+ /* Where to stop matching; if both the place to start and
+ the place to stop matching are in the same string, then
+ set to the place to stop, otherwise, for now have to use
+ the end of the first string. */
+
+ dend2 = regend[regno];
+ for (;;) {
+ /* If necessary, advance to next segment in register
+ contents. */
+ while (d2 == dend2) {
+ if (dend2 == end_match_2) break;
+ if (dend2 == regend[regno]) break;
+ }
+ /* At end of register contents => success */
+ if (d2 == dend2) break;
+
+ PREFETCH();
+
+ /* How many characters left in this segment to match. */
+ mcnt = dend - d;
+
+ /* Want how many consecutive characters we can match in
+ one shot, so, if necessary, adjust the count. */
+ if (mcnt > dend2 - d2)
+ mcnt = dend2 - d2;
+
+ /* Compare that many; failure if mismatch, else move
+ past them. */
+ if (translate
+ ? bcmp_translate(d, d2, mcnt)
+ : memcmp(d, d2, mcnt * sizeof(sal_Unicode))) {
+ goto fail;
+ }
+ d += mcnt, d2 += mcnt;
+ /* Do this because we've match some characters. */
+ SET_REGS_MATCHED();
+ }
+ }
+ break;
+
+ /* begline matches the empty string at the beginning of the string
+ (unless `not_bol' is set in `bufp'), and, if
+ `newline_anchor' is set, after newlines. */
+ case begline:
+
+ if (AT_STRINGS_BEG (d)) {
+ if (!bufp->not_bol) break;
+ } else if (d[-1] == '\n' && bufp->newline_anchor) {
+ break;
+ }
+ /* In all other cases, we fail. */
+ goto fail;
+
+ /* endline is the dual of begline. */
+ case endline:
+
+ if (AT_STRINGS_END(d)) {
+ if (!bufp->not_eol) break;
+ } else if (*d == '\n' && bufp->newline_anchor) {
+ break;
+ }
+ goto fail;
+
+ /* Match at the very beginning of the data. */
+ case begbuf:
+ if (AT_STRINGS_BEG (d))
+ break;
+ goto fail;
+
+
+ /* Match at the very end of the data. */
+ case endbuf:
+ if (AT_STRINGS_END (d))
+ break;
+ goto fail;
+
+
+ /* on_failure_keep_string_jump is used to optimize `.*\n'. It
+ pushes NULL as the value for the string on the stack. Then
+ `pop_failure_point' will keep the current value for the
+ string, instead of restoring it. To see why, consider
+ matching `foo\nbar' against `.*\n'. The .* matches the foo;
+ then the . fails against the \n. But the next thing we want
+ to do is match the \n against the \n; if we restored the
+ string value, we would be back at the foo.
+
+ Because this is used only in specific cases, we don't need to
+ check all the things that `on_failure_jump' does, to make
+ sure the right things get saved on the stack. Hence we don't
+ share its code. The only reason to push anything on the
+ stack at all is that otherwise we would have to change
+ `anychar's code to do something besides goto fail in this
+ case; that seems worse than this. */
+ case on_failure_keep_string_jump:
+
+ extract_number_and_incr(mcnt, p);
+
+ PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
+ break;
+
+
+ /* Uses of on_failure_jump:
+
+ Each alternative starts with an on_failure_jump that points
+ to the beginning of the next alternative. Each alternative
+ except the last ends with a jump that in effect jumps past
+ the rest of the alternatives. (They really jump to the
+ ending jump of the following alternative, because tensioning
+ these jumps is a hassle.)
+
+ Repeats start with an on_failure_jump that points past both
+ the repetition text and either the following jump or
+ pop_failure_jump back to this on_failure_jump. */
+ case on_failure_jump:
+ on_failure:
+
+ extract_number_and_incr(mcnt, p);
+
+ /* If this on_failure_jump comes right before a group (i.e.,
+ the original * applied to a group), save the information
+ for that group and all inner ones, so that if we fail back
+ to this point, the group's information will be correct.
+ For example, in \(a*\)*\1, we need the preceding group,
+ and in \(zz\(a*\)b*\)\2, we need the inner group. */
+
+ /* We can't use `p' to check ahead because we push
+ a failure point to `p + mcnt' after we do this. */
+ p1 = p;
+
+ /* We need to skip no_op's before we look for the
+ start_memory in case this on_failure_jump is happening as
+ the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
+ against aba. */
+ while (p1 < pend && (re_opcode_t) *p1 == no_op)
+ p1++;
+
+ if (p1 < pend && (re_opcode_t) *p1 == start_memory) {
+ /* We have a new highest active register now. This will
+ get reset at the start_memory we are about to get to,
+ but we will have saved all the registers relevant to
+ this repetition op, as described above. */
+ highest_active_reg = *(p1 + 1) + *(p1 + 2);
+ if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
+ lowest_active_reg = *(p1 + 1);
+ }
+
+ PUSH_FAILURE_POINT(p + mcnt, d, -2);
+ break;
+
+ /* A smart repeat ends with `maybe_pop_jump'.
+ We change it to either `pop_failure_jump' or `jump'. */
+ case maybe_pop_jump:
+ extract_number_and_incr(mcnt, p);
+ {
+ register sal_Unicode *p2 = p;
+
+ /* Compare the beginning of the repeat with what in the
+ pattern follows its end. If we can establish that there
+ is nothing that they would both match, i.e., that we
+ would have to backtrack because of (as in, e.g., `a*a')
+ then we can change to pop_failure_jump, because we'll
+ never have to backtrack.
+
+ This is not true in the case of alternatives: in
+ `(a|ab)*' we do need to backtrack to the `ab' alternative
+ (e.g., if the string was `ab'). But instead of trying to
+ detect that here, the alternative has put on a dummy
+ failure point which is what we will end up popping. */
+
+ /* Skip over open/close-group commands.
+ If what follows this loop is a ...+ construct,
+ look at what begins its body, since we will have to
+ match at least one of that. */
+ while (1) {
+ if (p2 + 2 < pend
+ && ((re_opcode_t) *p2 == stop_memory
+ || (re_opcode_t) *p2 == start_memory))
+ p2 += 3;
+ else if (p2 + 6 < pend
+ && (re_opcode_t) *p2 == dummy_failure_jump)
+ p2 += 6;
+ else
+ break;
+ }
+
+ p1 = p + mcnt;
+ /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
+ to the `maybe_finalize_jump' of this case. Examine what
+ follows. */
+
+ /* If we're at the end of the pattern, we can change. */
+ if (p2 == pend) {
+ /* Consider what happens when matching ":\(.*\)"
+ against ":/". I don't really understand this code
+ yet. */
+ p[-3] = (sal_Unicode) pop_failure_jump;
+ } else if ((re_opcode_t) *p2 == exactn
+ || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) {
+ register sal_Unicode c = *p2 == (sal_Unicode) endline ? (sal_Unicode)'\n' : p2[2];
+
+ if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
+ p[-3] = (sal_Unicode) pop_failure_jump;
+ } else if ((re_opcode_t) p1[3] == charset
+ || (re_opcode_t) p1[3] == charset_not) {
+ sal_Int32 knot = (re_opcode_t) p1[3] == charset_not;
+
+ if (c < (sal_Unicode) (p1[4] * BYTEWIDTH)
+ && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+ knot = !knot;
+
+ /* `not' is equal to 1 if c would match, which means
+ that we can't change to pop_failure_jump. */
+ if (!knot) {
+ p[-3] = (unsigned char) pop_failure_jump;
+ }
+ }
+ } else if ((re_opcode_t) *p2 == charset) {
+ /* We win if the first character of the loop is not part
+ of the charset. */
+ if ((re_opcode_t) p1[3] == exactn
+ && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
+ && (p2[2 + p1[5] / BYTEWIDTH]
+ & (1 << (p1[5] % BYTEWIDTH))))) {
+ p[-3] = (sal_Unicode) pop_failure_jump;
+ } else if ((re_opcode_t) p1[3] == charset_not) {
+ sal_Int32 idx;
+ /* We win if the charset_not inside the loop
+ lists every character listed in the charset after. */
+ for (idx = 0; idx < (int) p2[1]; idx++)
+ if (! (p2[2 + idx] == 0
+ || (idx < (int) p1[4]
+ && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
+ break;
+
+ if (idx == p2[1]) {
+ p[-3] = (sal_Unicode) pop_failure_jump;
+ }
+ } else if ((re_opcode_t) p1[3] == charset) {
+ sal_Int32 idx;
+ /* We win if the charset inside the loop
+ has no overlap with the one after the loop. */
+ for (idx = 0;
+ idx < (sal_Int32) p2[1] && idx < (sal_Int32) p1[4];
+ idx++)
+ if ((p2[2 + idx] & p1[5 + idx]) != 0)
+ break;
+
+ if (idx == p2[1] || idx == p1[4]) {
+ p[-3] = (sal_Unicode) pop_failure_jump;
+ }
+ }
+ }
+ }
+ p -= 2; /* Point at relative address again. */
+ if ((re_opcode_t) p[-1] != pop_failure_jump) {
+ p[-1] = (sal_Unicode) jump;
+ goto unconditional_jump;
+ }
+ /* Note fall through. */
+
+
+ /* The end of a simple repeat has a pop_failure_jump back to
+ its matching on_failure_jump, where the latter will push a
+ failure point. The pop_failure_jump takes off failure
+ points put on by this pop_failure_jump's matching
+ on_failure_jump; we got through the pattern to here from the
+ matching on_failure_jump, so didn't fail. */
+ case pop_failure_jump:
+ {
+ /* We need to pass separate storage for the lowest and
+ highest registers, even though we don't care about the
+ actual values. Otherwise, we will restore only one
+ register from the stack, since lowest will == highest in
+ `pop_failure_point'. */
+ sal_uInt32 dummy_low_reg, dummy_high_reg;
+ sal_Unicode *pdummy = NULL;
+ const sal_Unicode *sdummy = NULL;
+
+ POP_FAILURE_POINT(sdummy, pdummy,
+ dummy_low_reg, dummy_high_reg,
+ reg_dummy, reg_dummy, reg_info_dummy);
+ }
+ /* Note fall through. */
+
+ unconditional_jump:
+ /* Note fall through. */
+
+ /* Unconditionally jump (without popping any failure points). */
+ case jump:
+ extract_number_and_incr(mcnt, p); /* Get the amount to jump. */
+ p += mcnt; /* Do the jump. */
+ break;
+
+ /* We need this opcode so we can detect where alternatives end
+ in `group_match_null_string_p' et al. */
+ case jump_past_alt:
+ goto unconditional_jump;
+
+
+ /* Normally, the on_failure_jump pushes a failure point, which
+ then gets popped at pop_failure_jump. We will end up at
+ pop_failure_jump, also, and with a pattern of, say, `a+', we
+ are skipping over the on_failure_jump, so we have to push
+ something meaningless for pop_failure_jump to pop. */
+ case dummy_failure_jump:
+ /* It doesn't matter what we push for the string here. What
+ the code at `fail' tests is the value for the pattern. */
+ PUSH_FAILURE_POINT(NULL, NULL, -2);
+ goto unconditional_jump;
+
+
+ /* At the end of an alternative, we need to push a dummy failure
+ point in case we are followed by a `pop_failure_jump', because
+ we don't want the failure point for the alternative to be
+ popped. For example, matching `(a|ab)*' against `aab'
+ requires that we match the `ab' alternative. */
+ case push_dummy_failure:
+ /* See comments just above at `dummy_failure_jump' about the
+ two zeroes. */
+ PUSH_FAILURE_POINT(NULL, NULL, -2);
+ break;
+
+ /* Have to succeed matching what follows at least n times.
+ After that, handle like `on_failure_jump'. */
+ case succeed_n:
+ extract_number(mcnt, p + 2);
+
+ assert (mcnt >= 0);
+ /* Originally, this is how many times we HAVE to succeed. */
+ if (mcnt > 0) {
+ mcnt--;
+ p += 2;
+ store_number_and_incr (p, mcnt);
+ } else if (mcnt == 0) {
+ p[2] = (sal_Unicode) no_op;
+ p[3] = (sal_Unicode) no_op;
+ goto on_failure;
+ }
+ break;
+
+ case jump_n:
+ extract_number(mcnt, p + 2);
+
+ /* Originally, this is how many times we CAN jump. */
+ if (mcnt) {
+ mcnt--;
+ store_number (p + 2, mcnt);
+ goto unconditional_jump;
+ }
+ /* If don't have to jump any more, skip over the rest of command. */
+ else
+ p += 4;
+ break;
+
+ case set_number_at:
+ {
+
+ extract_number_and_incr(mcnt, p);
+ p1 = p + mcnt;
+ extract_number_and_incr(mcnt, p);
+ store_number (p1, mcnt);
+ break;
+ }
+
+ case wordbeg:
+ if (iswordbegin(d, string2, size2))
+ break;
+ goto fail;
+
+ case wordend:
+ if (iswordend(d, string2, size2))
+ break;
+ goto fail;
+
+
+ default:
+ abort();
+ }
+ continue; /* Successfully executed one pattern command; keep going. */
+
+ /* We goto here if a matching operation fails. */
+ fail:
+ if (!FAIL_STACK_EMPTY()) {
+ /* A restart point is known. Restore to that state. */
+ POP_FAILURE_POINT(d, p,
+ lowest_active_reg, highest_active_reg,
+ regstart, regend, reg_info);
+
+ /* If this failure point is a dummy, try the next one. */
+ if (!p)
+ goto fail;
+
+ /* If we failed to the end of the pattern, don't examine *p. */
+ assert(p <= pend);
+ if (p < pend) {
+ sal_Bool is_a_jump_n = false;
+
+ /* If failed to a backwards jump that's part of a repetition
+ loop, need to pop this failure point and use the next
+ one. */
+ switch ((re_opcode_t) *p) {
+ case jump_n:
+ is_a_jump_n = true;
+ case maybe_pop_jump:
+ case pop_failure_jump:
+ case jump:
+ p1 = p + 1;
+ extract_number_and_incr(mcnt, p1);
+ p1 += mcnt;
+
+ if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
+ || (!is_a_jump_n
+ && (re_opcode_t) *p1 == on_failure_jump)) {
+ goto fail;
+ }
+ break;
+ default:
+ /* do nothing */ ;
+ }
+ }
+
+ } else {
+ break; /* Matching at this starting point really fails. */
+ }
+ } /* for (;;) */
+
+ FREE_VARIABLES ();
+
+ return(-1); /* Failure to match. */
+} /* re_match2 */
+
+/* Set the bit for character C in a list. */
+void
+Regexpr::set_list_bit(sal_Unicode c, sal_Unicode *b)
+{
+ if ( translate ) {
+ try {
+ sal_Unicode tmp = translit->transliterateChar2Char(c);
+ b[tmp / BYTEWIDTH] |= 1 << (tmp % BYTEWIDTH);
+ } catch (::com::sun::star::i18n::MultipleCharsOutputException e) {
+ ::rtl::OUString o2( translit->transliterateChar2String( c));
+ sal_Int32 len2 = o2.getLength();
+ const sal_Unicode * k2 = o2.getStr();
+ for (sal_Int32 nmatch = 0; nmatch < len2; nmatch++) {
+ b[k2[nmatch] / BYTEWIDTH] |= 1 << (k2[nmatch] % BYTEWIDTH);
+ }
+ }
+ } else {
+ b[c / BYTEWIDTH] |= 1 << (c % BYTEWIDTH);
+ }
+}
+
+/* vim: set ts=8 sw=2 noexpandtab: */
diff --git a/regexp/source/reclass.hxx b/regexp/source/reclass.hxx
new file mode 100644
index 000000000000..ad1e3e3dffb9
--- /dev/null
+++ b/regexp/source/reclass.hxx
@@ -0,0 +1,395 @@
+/* Definitions for data structures and routines for the regular
+ expression library, version 0.12.
+ Copyright (C) 1985,89,90,91,92,93,95,96,97,98 Free Software Foundation, Inc.
+
+ This file is part of the GNU C Library. Its master source is NOT part of
+ the C library, however. The master source lives in /gd/gnu/lib.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public License as
+ published by the Free Software Foundation; either version 2 of the
+ License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Library General Public License for more details.
+
+ You should have received a copy of the GNU Library General Public
+ License along with the GNU C Library; see the file COPYING.LIB. If not,
+ write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+/*
+ Modified for OpenOffice.org to use sal_Unicode and Transliteration service.
+ */
+
+#ifndef INCLUDED_REGEXP_RECLASS_HXX
+#define INCLUDED_REGEXP_RECLASS_HXX
+
+#ifndef INCLUDED_I18NUTIL_UNICODE_HXX
+#include <i18nutil/unicode.hxx>
+#endif
+#ifndef _COM_SUN_STAR_UTIL_SEARCHFLAGS_HPP_
+#include <com/sun/star/util/SearchFlags.hpp>
+#endif
+#ifndef _COM_SUN_STAR_UTIL_SEARCHOPTIONS_HPP_
+#include <com/sun/star/util/SearchOptions.hpp>
+#endif
+#ifndef _SAL_TYPES_H_
+#include <sal/types.h>
+#endif
+#ifndef _COM_SUN_STAR_I18N_XEXTENDEDTRANSLITERATION_HPP_
+#include <com/sun/star/i18n/XExtendedTransliteration.hpp>
+#endif
+
+/* If any error codes are removed, changed, or added, update the
+ `re_error_msg' table in regex.c. */
+typedef enum
+{
+#ifdef _XOPEN_SOURCE
+ REG_ENOSYS = -1, /* This will never happen for this implementation. */
+#endif
+
+ REG_NOERROR = 0, /* Success. */
+ REG_NOMATCH, /* Didn't find a match (for regexec). */
+
+ /* POSIX regcomp return error codes. (In the order listed in the
+ standard.) */
+ REG_BADPAT, /* Invalid pattern. */
+ REG_ECOLLATE, /* Not implemented. */
+ REG_ECTYPE, /* Invalid character class name. */
+ REG_EESCAPE, /* Trailing backslash. */
+ REG_ESUBREG, /* Invalid back reference. */
+ REG_EBRACK, /* Unmatched left bracket. */
+ REG_EPAREN, /* Parenthesis imbalance. */
+ REG_EBRACE, /* Unmatched \{. */
+ REG_BADBR, /* Invalid contents of \{\}. */
+ REG_ERANGE, /* Invalid range end. */
+ REG_ESPACE, /* Ran out of memory. */
+ REG_BADRPT, /* No preceding re for repetition op. */
+
+ /* Error codes we've added. */
+ REG_EEND, /* Premature end. */
+ REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */
+ REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */
+} reg_errcode_t;
+
+
+/* This data structure represents a compiled pattern. Before calling
+ the pattern compiler, the fields `buffer', `allocated', `fastmap',
+ can be set. After the pattern has been
+ compiled, the `re_nsub' field is available. All other fields are
+ private to the regex routines. */
+
+struct re_pattern_buffer
+{
+/* [[[begin pattern_buffer]]] */
+ /* Space that holds the compiled pattern. It is declared as
+ `unsigned char *' because its elements are
+ sometimes used as array indexes. */
+ sal_Unicode *buffer;
+
+ /* Number of bytes to which `buffer' points. */
+ sal_uInt32 allocated;
+
+ /* Number of bytes actually used in `buffer'. */
+ sal_uInt32 used;
+
+ /* Pointer to a fastmap, if any, otherwise zero. re_search uses
+ the fastmap, if there is one, to skip over impossible
+ starting points for matches. */
+ sal_Unicode *fastmap;
+
+
+ /* Number of subexpressions found by the compiler. */
+ size_t re_nsub;
+
+ /* Zero if this pattern cannot match the empty string, one else.
+ Well, in truth it's used only in `re_search2', to see
+ whether or not we should use the fastmap, so we don't set
+ this absolutely perfectly; see `re_compile_fastmap' (the
+ `duplicate' case). */
+ unsigned can_be_null : 1;
+
+ /* Set to zero when `regex_compile' compiles a pattern; set to one
+ by `re_compile_fastmap' if it updates the fastmap. */
+ unsigned fastmap_accurate : 1;
+
+ /* If set, a beginning-of-line anchor doesn't match at the
+ beginning of the string. */
+ unsigned not_bol : 1;
+
+ /* Similarly for an end-of-line anchor. */
+ unsigned not_eol : 1;
+
+ /* If true, an anchor at a newline matches. */
+ unsigned newline_anchor : 1;
+
+/* [[[end pattern_buffer]]] */
+};
+
+/* These are the command codes that appear in compiled regular
+ expressions. Some opcodes are followed by argument bytes. A
+ command code can specify any interpretation whatsoever for its
+ arguments. Zero bytes may appear in the compiled regular expression. */
+
+typedef enum
+{
+ no_op = 0,
+
+ /* Succeed right away--no more backtracking. */
+ succeed,
+
+ /* Followed by one byte giving n, then by n literal bytes. */
+ exactn,
+
+ /* Matches any (more or less) character. */
+ anychar,
+
+ /* Matches any one char belonging to specified set. First
+ following byte is number of bitmap bytes. Then come bytes
+ for a bitmap saying which chars are in. Bits in each byte
+ are ordered low-bit-first. A character is in the set if its
+ bit is 1. A character too large to have a bit in the map is
+ automatically not in the set. */
+ charset,
+
+ /* Same parameters as charset, but match any character that is
+ not one of those specified. */
+ charset_not,
+
+ /* Start remembering the text that is matched, for storing in a
+ register. Followed by one byte with the register number, in
+ the range 0 to one less than the pattern buffer's re_nsub
+ field. Then followed by one byte with the number of groups
+ inner to this one. (This last has to be part of the
+ start_memory only because we need it in the on_failure_jump
+ of re_match2.) */
+ start_memory,
+ /* Stop remembering the text that is matched and store it in a
+ memory register. Followed by one byte with the register
+ number, in the range 0 to one less than `re_nsub' in the
+ pattern buffer, and one byte with the number of inner groups,
+ just like `start_memory'. (We need the number of inner
+ groups here because we don't have any easy way of finding the
+ corresponding start_memory when we're at a stop_memory.) */
+ stop_memory,
+
+ /* Match a duplicate of something remembered. Followed by one
+ byte containing the register number. */
+ duplicate,
+
+ /* Fail unless at beginning of line. */
+ begline,
+
+ /* Fail unless at end of line. */
+ endline,
+
+ /* Succeeds if at beginning of buffer (if emacs) or at beginning
+ of string to be matched (if not). */
+ begbuf,
+
+ /* Analogously, for end of buffer/string. */
+ endbuf,
+
+ /* Followed by two byte relative address to which to jump. */
+ jump,
+
+ /* Same as jump, but marks the end of an alternative. */
+ jump_past_alt,
+
+ /* Followed by two-byte relative address of place to resume at
+ in case of failure. */
+ on_failure_jump,
+
+ /* Like on_failure_jump, but pushes a placeholder instead of the
+ current string position when executed. */
+ on_failure_keep_string_jump,
+
+ /* Throw away latest failure point and then jump to following
+ two-byte relative address. */
+ pop_failure_jump,
+
+ /* Change to pop_failure_jump if know won't have to backtrack to
+ match; otherwise change to jump. This is used to jump
+ back to the beginning of a repeat. If what follows this jump
+ clearly won't match what the repeat does, such that we can be
+ sure that there is no use backtracking out of repetitions
+ already matched, then we change it to a pop_failure_jump.
+ Followed by two-byte address. */
+ maybe_pop_jump,
+
+ /* Jump to following two-byte address, and push a dummy failure
+ point. This failure point will be thrown away if an attempt
+ is made to use it for a failure. A `+' construct makes this
+ before the first repeat. Also used as an intermediary kind
+ of jump when compiling an alternative. */
+ dummy_failure_jump,
+
+ /* Push a dummy failure point and continue. Used at the end of
+ alternatives. */
+ push_dummy_failure,
+
+ /* Followed by two-byte relative address and two-byte number n.
+ After matching N times, jump to the address upon failure. */
+ succeed_n,
+
+ /* Followed by two-byte relative address, and two-byte number n.
+ Jump to the address N times, then fail. */
+ jump_n,
+
+ /* Set the following two-byte relative address to the
+ subsequent two-byte number. The address *includes* the two
+ bytes of number. */
+ set_number_at,
+
+ wordbeg, /* Succeeds if at word beginning. */
+ wordend /* Succeeds if at word end. */
+
+} re_opcode_t;
+
+typedef struct re_pattern_buffer regex_t;
+
+/* Type for byte offsets within the string. POSIX mandates this. */
+typedef sal_Int32 regoff_t;
+
+/* This is the structure we store register match data in. See
+ regex.texinfo for a full description of what registers match. */
+struct re_registers
+{
+ sal_uInt32 num_regs;
+ sal_Int32 *start;
+ sal_Int32 *end;
+ sal_Int32 num_of_match;
+};
+
+typedef struct {
+ sal_Int32 begalt_offset;
+ sal_Int32 fixup_alt_jump;
+ sal_Int32 inner_group_offset;
+ sal_Int32 laststart_offset;
+ sal_uInt32 regnum;
+} compile_stack_elt_t;
+
+typedef struct {
+ compile_stack_elt_t *stack;
+ sal_uInt32 size;
+ sal_uInt32 avail;
+} compile_stack_type;
+
+union fail_stack_elt
+{
+ sal_Unicode *pointer;
+ sal_Int32 integer;
+};
+
+typedef union fail_stack_elt fail_stack_elt_t;
+
+typedef struct
+{
+ fail_stack_elt_t *stack;
+ sal_uInt32 size;
+ sal_uInt32 avail; /* Offset of next open position. */
+} fail_stack_type;
+
+typedef union
+{
+ fail_stack_elt_t word;
+ struct
+ {
+ /* This field is one if this group can match the empty string,
+ zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
+#define MATCH_NULL_UNSET_VALUE 3
+ unsigned match_null_string_p : 2;
+ unsigned is_active : 1;
+ unsigned matched_something : 1;
+ unsigned ever_matched_something : 1;
+ } bits;
+} register_info_type;
+
+
+class Regexpr
+{
+ ::com::sun::star::uno::Reference<
+ ::com::sun::star::i18n::XExtendedTransliteration > translit;
+
+ const sal_Unicode *line; // line to search in
+ sal_Int32 linelen; // length of search string
+
+ sal_Unicode *pattern; // RE pattern to match
+ sal_Int32 patsize; // Length of pattern
+
+ struct re_pattern_buffer *bufp;
+
+ sal_Bool isIgnoreCase;
+
+ /* Either a translate table to apply to all characters before
+ comparing them, or zero for no translation. The translation
+ is applied to a pattern when it is compiled and to a string
+ when it is matched. */
+ int translate;
+
+ sal_uInt32 failure_id;
+ sal_uInt32 nfailure_points_pushed;
+ sal_uInt32 nfailure_points_popped;
+ /* Counts the total number of registers pushed. */
+ sal_uInt32 num_regs_pushed;
+
+ sal_uInt32 re_max_failures;
+
+ /* Registers are set to a sentinel when they haven't yet matched. */
+ sal_Unicode reg_unset_dummy;
+
+ // private instance functions
+ inline void store_number( sal_Unicode * destination, sal_Int32 number );
+ inline void store_number_and_incr( sal_Unicode *& destination, sal_Int32 number );
+ inline void extract_number(sal_Int32 & dest, sal_Unicode *source);
+ inline void extract_number_and_incr(sal_Int32 & destination, sal_Unicode *& source);
+
+ sal_Bool group_match_null_string_p(sal_Unicode **p, sal_Unicode *end,
+ register_info_type *reg_info);
+ sal_Bool alt_match_null_string_p(sal_Unicode *p, sal_Unicode *end,
+ register_info_type *reg_info);
+
+ sal_Bool common_op_match_null_string_p(sal_Unicode **p, sal_Unicode *end,
+ register_info_type *reg_info);
+ sal_Int32 bcmp_translate(const sal_Unicode *s1,
+ const sal_Unicode *s2, sal_Int32 len);
+
+ sal_Int32 regcomp(void);
+ sal_Int32 regex_compile(void);
+ inline void store_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg);
+ inline void store_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1, sal_Int32 arg2);
+ void insert_op1(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg,
+ sal_Unicode *end);
+ void insert_op2(re_opcode_t op, sal_Unicode *loc, sal_Int32 arg1,
+ sal_Int32 arg2, sal_Unicode *end);
+ sal_Bool at_begline_loc_p(const sal_Unicode *pattern,
+ const sal_Unicode *p);
+ sal_Bool at_endline_loc_p(const sal_Unicode *p, const sal_Unicode *pend);
+ reg_errcode_t compile_range(sal_Unicode range_begin, sal_Unicode range_end, sal_Unicode *b);
+ sal_Bool group_in_compile_stack(compile_stack_type compile_stack,
+ sal_Int32 regnum);
+ sal_Int32 re_match2(struct re_registers *regs, sal_Int32 pos, sal_Int32 range);
+
+ sal_Bool iswordbegin(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize);
+ sal_Bool iswordend(const sal_Unicode *d, sal_Unicode *string, sal_Int32 ssize);
+ void set_list_bit(sal_Unicode c, sal_Unicode *b);
+
+public:
+ // constructors
+ Regexpr( const ::com::sun::star::util::SearchOptions & rOptions,
+ ::com::sun::star::uno::Reference<
+ ::com::sun::star::i18n::XExtendedTransliteration > XTrans );
+
+ // destructor
+ ~Regexpr();
+
+ void set_line( const sal_Unicode *line, sal_Int32 len );
+
+ // function returning pointers to occurrences in regs
+ sal_Int32 re_search(struct re_registers *regs, sal_Int32 pOffset); // find pattern in line
+};
+
+#endif