summaryrefslogtreecommitdiff
path: root/basegfx/source/curve
diff options
context:
space:
mode:
authorVladimir Glazounov <vg@openoffice.org>2008-08-19 22:59:38 +0000
committerVladimir Glazounov <vg@openoffice.org>2008-08-19 22:59:38 +0000
commitd4692c565103deb0b4241fd87ec472dabac69c25 (patch)
treebf1ff699c3fca8b201b9926d0080603b40206fcd /basegfx/source/curve
parent46451f0a30baf49a85c1dc845eb5fe363a118844 (diff)
INTEGRATION: CWS aw033 (1.10.2); FILE MERGED
2008/05/14 14:41:53 aw 1.10.2.13: RESYNC: (1.14-1.15); FILE MERGED 2007/12/12 13:13:33 aw 1.10.2.12: #i39532# clipping changes 2007/11/22 14:56:58 aw 1.10.2.11: #i39532# polygon bezier changes 2007/11/19 10:17:02 aw 1.10.2.10: #i39532# Lot of changes to make polygon stuff bezier-able 2007/11/07 14:24:29 aw 1.10.2.9: #i39532# committing to have a base for HDU 2007/08/09 22:03:43 aw 1.10.2.8: RESYNC: (1.13-1.14); FILE MERGED 2007/04/13 06:57:07 hdu 1.10.2.7: #i75669# 101 2007/04/13 06:52:23 hdu 1.10.2.6: #i75669# fix brackets in the numerical stability improvement to make it work in all situations 2007/04/12 10:11:12 hdu 1.10.2.5: #i75669# improve numerical stability in B2DCubicBezier::getNextExtremumPos() (thanks THB) 2007/04/11 14:32:07 hdu 1.10.2.4: #i75669# cubic bezier curves can be loopy/spiky/complex: just splitting them up into simpler curves instead going all the way of splitting them up into line segments is preferable in many situations 2007/03/20 15:21:32 aw 1.10.2.3: RESYNC: (1.12-1.13); FILE MERGED 2006/09/26 14:47:22 aw 1.10.2.2: RESYNC: (1.11-1.12); FILE MERGED 2005/10/28 11:22:44 aw 1.10.2.1: #i39532#
Diffstat (limited to 'basegfx/source/curve')
-rw-r--r--basegfx/source/curve/b2dcubicbezier.cxx413
1 files changed, 366 insertions, 47 deletions
diff --git a/basegfx/source/curve/b2dcubicbezier.cxx b/basegfx/source/curve/b2dcubicbezier.cxx
index 6e4f5e0d5e7c..76d1b74ddbca 100644
--- a/basegfx/source/curve/b2dcubicbezier.cxx
+++ b/basegfx/source/curve/b2dcubicbezier.cxx
@@ -7,7 +7,7 @@
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: b2dcubicbezier.cxx,v $
- * $Revision: 1.15 $
+ * $Revision: 1.16 $
*
* This file is part of OpenOffice.org.
*
@@ -404,6 +404,16 @@ namespace basegfx
);
}
+ bool B2DCubicBezier::equal(const B2DCubicBezier& rBezier) const
+ {
+ return (
+ maStartPoint.equal(rBezier.maStartPoint)
+ && maEndPoint.equal(rBezier.maEndPoint)
+ && maControlPointA.equal(rBezier.maControlPointA)
+ && maControlPointB.equal(rBezier.maControlPointB)
+ );
+ }
+
// test if vectors are used
bool B2DCubicBezier::isBezier() const
{
@@ -421,66 +431,114 @@ namespace basegfx
{
const B2DVector aEdge(maEndPoint - maStartPoint);
- // controls parallel to edge can be trivial. No edge -> not parallel -> control can not be trivial
+ // controls parallel to edge can be trivial. No edge -> not parallel -> control can
+ // still not be trivial (e.g. ballon loop)
if(!aEdge.equalZero())
{
+ // get control vectors
const B2DVector aVecA(maControlPointA - maStartPoint);
const B2DVector aVecB(maControlPointB - maEndPoint);
- const bool bAIsZero(aVecA.equalZero());
- const bool bBIsZero(aVecB.equalZero());
- bool bACanBeZero(false);
- bool bBCanBeZero(false);
- if(!bAIsZero)
+ // check if trivial per se
+ bool bAIsTrivial(aVecA.equalZero());
+ bool bBIsTrivial(aVecB.equalZero());
+
+ // if A is not zero, check if it could be
+ if(!bAIsTrivial)
{
- // parallel to edge?
- if(areParallel(aVecA, aEdge))
+ // parallel to edge? Check aVecA, aEdge
+ // B2DVector::areParallel is too correct, uses differences in the e15 region,
+ // thus do own test here
+ const double fValA(aVecA.getX() * aEdge.getY());
+ const double fValB(aVecA.getY() * aEdge.getX());
+
+ if(fTools::equalZero(fabs(fValA) - fabs(fValB)))
{
- // get scale to edge
+ // get scale to edge. Use bigger distance for numeric quality
const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) ? aVecA.getX() / aEdge.getX() : aVecA.getY() / aEdge.getY());
// end point of vector in edge range?
- if(fTools::more(fScale, 0.0) && fTools::lessOrEqual(fScale, 1.0))
+ if(fTools::moreOrEqual(fScale, 0.0) && fTools::lessOrEqual(fScale, 1.0))
{
- bACanBeZero = true;
+ bAIsTrivial = true;
}
}
}
- if(!bBIsZero)
+ // if B is not zero, check if it could be, but only if A is already trivial;
+ // else solve to trivial will not be possible for whole edge
+ if(bAIsTrivial && !bBIsTrivial)
{
- // parallel to edge?
- if(areParallel(aVecB, aEdge))
+ // parallel to edge? Check aVecB, aEdge
+ const double fValA(aVecB.getX() * aEdge.getY());
+ const double fValB(aVecB.getY() * aEdge.getX());
+
+ if(fTools::equalZero(fabs(fValA) - fabs(fValB)))
{
- // get scale to edge
+ // get scale to edge. Use bigger distance for numeric quality
const double fScale(fabs(aEdge.getX()) > fabs(aEdge.getY()) ? aVecB.getX() / aEdge.getX() : aVecB.getY() / aEdge.getY());
// end point of vector in edge range? Caution: controlB is directed AGAINST edge
- if(fTools::less(fScale, 0.0) && fTools::moreOrEqual(fScale, -1.0))
+ if(fTools::lessOrEqual(fScale, 0.0) && fTools::moreOrEqual(fScale, -1.0))
{
- bBCanBeZero = true;
+ bBIsTrivial = true;
}
}
}
// if both are/can be reduced, do it.
// Not possible if only one is/can be reduced (!)
- if((bAIsZero || bACanBeZero) && (bBIsZero || bBCanBeZero))
+ if(bAIsTrivial && bBIsTrivial)
{
- if(!bAIsZero)
- {
- maControlPointA = maStartPoint;
- }
-
- if(!bBIsZero)
- {
- maControlPointB = maEndPoint;
- }
+ maControlPointA = maStartPoint;
+ maControlPointB = maEndPoint;
}
}
}
}
+ namespace {
+ double impGetLength(const B2DCubicBezier& rEdge, double fDeviation, sal_uInt32 nRecursionWatch)
+ {
+ const double fEdgeLength(rEdge.getEdgeLength());
+ const double fControlPolygonLength(rEdge.getControlPolygonLength());
+ const double fCurrentDeviation(fTools::equalZero(fControlPolygonLength) ? 0.0 : 1.0 - (fEdgeLength / fControlPolygonLength));
+
+ if(!nRecursionWatch || fTools:: lessOrEqual(fCurrentDeviation, fDeviation))
+ {
+ return (fEdgeLength + fControlPolygonLength) * 0.5;
+ }
+ else
+ {
+ B2DCubicBezier aLeft, aRight;
+ const double fNewDeviation(fDeviation * 0.5);
+ const sal_uInt32 nNewRecursionWatch(nRecursionWatch - 1);
+
+ rEdge.split(0.5, &aLeft, &aRight);
+
+ return impGetLength(aLeft, fNewDeviation, nNewRecursionWatch)
+ + impGetLength(aRight, fNewDeviation, nNewRecursionWatch);
+ }
+ }
+ }
+
+ double B2DCubicBezier::getLength(double fDeviation) const
+ {
+ if(isBezier())
+ {
+ if(fDeviation < 0.00000001)
+ {
+ fDeviation = 0.00000001;
+ }
+
+ return impGetLength(*this, fDeviation, 6);
+ }
+ else
+ {
+ return B2DVector(getEndPoint() - getStartPoint()).getLength();
+ }
+ }
+
double B2DCubicBezier::getEdgeLength() const
{
const B2DVector aEdge(maEndPoint - maStartPoint);
@@ -516,12 +574,70 @@ namespace basegfx
}
}
+ B2DVector B2DCubicBezier::getTangent(double t) const
+ {
+ if(fTools::lessOrEqual(t, 0.0))
+ {
+ // tangent in start point
+ B2DVector aTangent(getControlPointA() - getStartPoint());
+
+ if(!aTangent.equalZero())
+ {
+ return aTangent;
+ }
+
+ // start point and control vector are the same, fallback
+ // to implicit start vector to control point B
+ aTangent = (getControlPointB() - getStartPoint()) * 0.3;
+
+ if(!aTangent.equalZero())
+ {
+ return aTangent;
+ }
+
+ // not a bezier at all, return edge vector
+ return (getEndPoint() - getStartPoint()) * 0.3;
+ }
+ else if(fTools::moreOrEqual(t, 1.0))
+ {
+ // tangent in end point
+ B2DVector aTangent(getEndPoint() - getControlPointB());
+
+ if(!aTangent.equalZero())
+ {
+ return aTangent;
+ }
+
+ // end point and control vector are the same, fallback
+ // to implicit start vector from control point A
+ aTangent = (getEndPoint() - getControlPointA()) * 0.3;
+
+ if(!aTangent.equalZero())
+ {
+ return aTangent;
+ }
+
+ // not a bezier at all, return edge vector
+ return (getEndPoint() - getStartPoint()) * 0.3;
+ }
+ else
+ {
+ // t is in ]0.0 .. 1.0[. Split and extract
+ B2DCubicBezier aRight;
+ split(t, 0, &aRight);
+
+ return aRight.getControlPointA() - aRight.getStartPoint();
+ }
+ }
+
// #i37443# adaptive subdivide by nCount subdivisions
void B2DCubicBezier::adaptiveSubdivideByCount(B2DPolygon& rTarget, sal_uInt32 nCount) const
{
- for(sal_uInt32 a(0L); a < nCount; a++)
+ const double fLenFact(1.0 / static_cast< double >(nCount + 1));
+
+ for(sal_uInt32 a(1); a <= nCount; a++)
{
- const double fPos(double(a + 1L) / double(nCount + 1L));
+ const double fPos(static_cast< double >(a) * fLenFact);
rTarget.append(interpolatePoint(fPos));
}
@@ -666,10 +782,15 @@ namespace basegfx
return sqrt(fQuadDist);
}
- void B2DCubicBezier::split(double t, B2DCubicBezier& rBezierA, B2DCubicBezier& rBezierB) const
+ void B2DCubicBezier::split(double t, B2DCubicBezier* pBezierA, B2DCubicBezier* pBezierB) const
{
OSL_ENSURE(t >= 0.0 && t <= 1.0, "B2DCubicBezier::split: Access out of range (!)");
+ if(!pBezierA && !pBezierB)
+ {
+ return;
+ }
+
if(isBezier())
{
const B2DPoint aS1L(interpolate(maStartPoint, maControlPointA, t));
@@ -679,32 +800,116 @@ namespace basegfx
const B2DPoint aS2R(interpolate(aS1C, aS1R, t));
const B2DPoint aS3C(interpolate(aS2L, aS2R, t));
- rBezierA.setStartPoint(maStartPoint);
- rBezierA.setEndPoint(aS3C);
- rBezierA.setControlPointA(aS1L);
- rBezierA.setControlPointB(aS2L);
+ if(pBezierA)
+ {
+ pBezierA->setStartPoint(maStartPoint);
+ pBezierA->setEndPoint(aS3C);
+ pBezierA->setControlPointA(aS1L);
+ pBezierA->setControlPointB(aS2L);
+ }
- rBezierB.setStartPoint(aS3C);
- rBezierB.setEndPoint(maEndPoint);
- rBezierB.setControlPointA(aS2R);
- rBezierB.setControlPointB(aS1R);
+ if(pBezierB)
+ {
+ pBezierB->setStartPoint(aS3C);
+ pBezierB->setEndPoint(maEndPoint);
+ pBezierB->setControlPointA(aS2R);
+ pBezierB->setControlPointB(aS1R);
+ }
}
else
{
const B2DPoint aSplit(interpolate(maStartPoint, maEndPoint, t));
- rBezierA.setStartPoint(maStartPoint);
- rBezierA.setEndPoint(aSplit);
- rBezierA.setControlPointA(maStartPoint);
- rBezierA.setControlPointB(aSplit);
+ if(pBezierA)
+ {
+ pBezierA->setStartPoint(maStartPoint);
+ pBezierA->setEndPoint(aSplit);
+ pBezierA->setControlPointA(maStartPoint);
+ pBezierA->setControlPointB(aSplit);
+ }
- rBezierB.setStartPoint(aSplit);
- rBezierB.setEndPoint(maEndPoint);
- rBezierB.setControlPointA(aSplit);
- rBezierB.setControlPointB(maEndPoint);
+ if(pBezierB)
+ {
+ pBezierB->setStartPoint(aSplit);
+ pBezierB->setEndPoint(maEndPoint);
+ pBezierB->setControlPointA(aSplit);
+ pBezierB->setControlPointB(maEndPoint);
+ }
}
}
+ B2DCubicBezier B2DCubicBezier::snippet(double fStart, double fEnd) const
+ {
+ B2DCubicBezier aRetval;
+
+ if(fTools::more(fStart, 1.0))
+ {
+ fStart = 1.0;
+ }
+ else if(fTools::less(fStart, 0.0))
+ {
+ fStart = 0.0;
+ }
+
+ if(fTools::more(fEnd, 1.0))
+ {
+ fEnd = 1.0;
+ }
+ else if(fTools::less(fEnd, 0.0))
+ {
+ fEnd = 0.0;
+ }
+
+ if(fEnd <= fStart)
+ {
+ // empty or NULL, create single point at center
+ const double fSplit((fEnd + fStart) * 0.5);
+ const B2DPoint aPoint(interpolate(getStartPoint(), getEndPoint(), fSplit));
+ aRetval.setStartPoint(aPoint);
+ aRetval.setEndPoint(aPoint);
+ aRetval.setControlPointA(aPoint);
+ aRetval.setControlPointB(aPoint);
+ }
+ else
+ {
+ if(isBezier())
+ {
+ // copy bezier; cut off right, then cut off left. Do not forget to
+ // adapt cut value when both cuts happen
+ const bool bEndIsOne(fTools::equal(fEnd, 1.0));
+ const bool bStartIsZero(fTools::equalZero(fStart));
+ aRetval = *this;
+
+ if(!bEndIsOne)
+ {
+ aRetval.split(fEnd, &aRetval, 0);
+
+ if(!bStartIsZero)
+ {
+ fStart /= fEnd;
+ }
+ }
+
+ if(!bStartIsZero)
+ {
+ aRetval.split(fStart, 0, &aRetval);
+ }
+ }
+ else
+ {
+ // no bezier, create simple edge
+ const B2DPoint aPointA(interpolate(getStartPoint(), getEndPoint(), fStart));
+ const B2DPoint aPointB(interpolate(getStartPoint(), getEndPoint(), fEnd));
+ aRetval.setStartPoint(aPointA);
+ aRetval.setEndPoint(aPointB);
+ aRetval.setControlPointA(aPointA);
+ aRetval.setControlPointB(aPointB);
+ }
+ }
+
+ return aRetval;
+ }
+
B2DRange B2DCubicBezier::getRange() const
{
B2DRange aRetval(maStartPoint, maEndPoint);
@@ -714,6 +919,120 @@ namespace basegfx
return aRetval;
}
+
+ bool B2DCubicBezier::getMinimumExtremumPosition(double& rfResult) const
+ {
+ ::std::vector< double > aAllResults;
+
+ aAllResults.reserve(4);
+ getAllExtremumPositions(aAllResults);
+
+ const sal_uInt32 nCount(aAllResults.size());
+
+ if(!nCount)
+ {
+ return false;
+ }
+ else if(1 == nCount)
+ {
+ rfResult = aAllResults[0];
+ return true;
+ }
+ else
+ {
+ rfResult = *(::std::min_element(aAllResults.begin(), aAllResults.end()));
+ return true;
+ }
+ }
+
+ namespace
+ {
+ inline void impCheckExtremumResult(double fCandidate, ::std::vector< double >& rResult)
+ {
+ // check for range ]0.0 .. 1.0[ with excluding 1.0 and 0.0 clearly
+ // by using the equalZero test, NOT ::more or ::less which will use the
+ // ApproxEqual() which is too exact here
+ if(fCandidate > 0.0 && !fTools::equalZero(fCandidate))
+ {
+ if(fCandidate < 1.0 && !fTools::equalZero(fCandidate - 1.0))
+ {
+ rResult.push_back(fCandidate);
+ }
+ }
+ }
+ }
+
+ void B2DCubicBezier::getAllExtremumPositions(::std::vector< double >& rResults) const
+ {
+ rResults.clear();
+
+ // calculate the x-extrema parameters by zeroing first x-derivative
+ // of the cubic bezier's parametric formula, which results in a
+ // quadratic equation: dBezier/dt = t*t*fAX - 2*t*fBX + fCX
+ const B2DPoint aRelativeEndPoint(maEndPoint-maStartPoint);
+ const double fAX = 3 * (maControlPointA.getX() - maControlPointB.getX()) + aRelativeEndPoint.getX();
+ const double fBX = 2 * maControlPointA.getX() - maControlPointB.getX() - maStartPoint.getX();
+ double fCX(maControlPointA.getX() - maStartPoint.getX());
+
+ if(fTools::equalZero(fCX))
+ {
+ // detect fCX equal zero and truncate to real zero value in that case
+ fCX = 0.0;
+ }
+
+ if( !fTools::equalZero(fAX) )
+ {
+ // derivative is polynomial of order 2 => use binomial formula
+ const double fD = fBX*fBX - fAX*fCX;
+ if( fD >= 0.0 )
+ {
+ const double fS = sqrt(fD);
+ // same as above but for very small fAX and/or fCX
+ // this has much better numerical stability
+ // see NRC chapter 5-6 (thanks THB!)
+ const double fQ = fBX + ((fBX >= 0) ? +fS : -fS);
+ impCheckExtremumResult(fQ / fAX, rResults);
+ impCheckExtremumResult(fCX / fQ, rResults);
+ }
+ }
+ else if( !fTools::equalZero(fBX) )
+ {
+ // derivative is polynomial of order 1 => one extrema
+ impCheckExtremumResult(fCX / (2 * fBX), rResults);
+ }
+
+ // calculate the y-extrema parameters by zeroing first y-derivative
+ const double fAY = 3 * (maControlPointA.getY() - maControlPointB.getY()) + aRelativeEndPoint.getY();
+ const double fBY = 2 * maControlPointA.getY() - maControlPointB.getY() - maStartPoint.getY();
+ double fCY(maControlPointA.getY() - maStartPoint.getY());
+
+ if(fTools::equalZero(fCY))
+ {
+ // detect fCY equal zero and truncate to real zero value in that case
+ fCY = 0.0;
+ }
+
+ if( !fTools::equalZero(fAY) )
+ {
+ // derivative is polynomial of order 2 => use binomial formula
+ const double fD = fBY*fBY - fAY*fCY;
+ if( fD >= 0 )
+ {
+ const double fS = sqrt(fD);
+ // same as above but for very small fAX and/or fCX
+ // this has much better numerical stability
+ // see NRC chapter 5-6 (thanks THB!)
+ const double fQ = fBY + ((fBY >= 0) ? +fS : -fS);
+ impCheckExtremumResult(fQ / fAY, rResults);
+ impCheckExtremumResult(fCY / fQ, rResults);
+ }
+ }
+ else if( !fTools::equalZero(fBY) )
+ {
+ // derivative is polynomial of order 1 => one extrema
+ impCheckExtremumResult(fCY / (2 * fBY), rResults);
+ }
+ }
} // end of namespace basegfx
// eof