summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMichael Stahl <MichaelSt@cib.de>2020-12-03 17:42:18 +0100
committerMichael Stahl <Michael.Stahl@cib.de>2020-12-03 17:47:37 +0100
commit7ac3af8c89af7d481c027df75026f390258e6e5a (patch)
tree193e6225d38fd4463f10cbc0582f9a6d50950e35
parent5b7a7b6f41acfd2378e19b3e2f8d23053f2fd9d6 (diff)
pdfium: MSVC 2015 buildcib-6.1-20
-rw-r--r--external/pdfium/UnpackedTarball_pdfium.mk3
-rw-r--r--external/pdfium/msvc2015.patch.1202
-rw-r--r--external/pdfium/pdfium4137-numerics.patch.33364
3 files changed, 3569 insertions, 0 deletions
diff --git a/external/pdfium/UnpackedTarball_pdfium.mk b/external/pdfium/UnpackedTarball_pdfium.mk
index f4643376cee0..8b12e494f94b 100644
--- a/external/pdfium/UnpackedTarball_pdfium.mk
+++ b/external/pdfium/UnpackedTarball_pdfium.mk
@@ -14,6 +14,9 @@ pdfium_patches += build.patch.1
# Avoids Windows 8 build dependency.
pdfium_patches += windows7.patch.1
pdfium_patches += c++20-comparison.patch
+ifeq (MSC,$(COM))
+pdfium_patches += pdfium4137-numerics.patch.3 msvc2015.patch.1
+endif
$(eval $(call gb_UnpackedTarball_UnpackedTarball,pdfium))
diff --git a/external/pdfium/msvc2015.patch.1 b/external/pdfium/msvc2015.patch.1
new file mode 100644
index 000000000000..36cb5332c7b0
--- /dev/null
+++ b/external/pdfium/msvc2015.patch.1
@@ -0,0 +1,202 @@
+Fix MSVC 2015 build
+
+--- pdfium/third_party/base/optional.h.orig 2020-10-26 19:26:04.000000000 +0100
++++ pdfium/third_party/base/optional.h 2020-12-03 16:00:54.879883100 +0100
+@@ -36,7 +36,7 @@
+ struct OptionalStorageBase {
+ // Provide non-defaulted default ctor to make sure it's not deleted by
+ // non-trivial T::T() in the union.
+- constexpr OptionalStorageBase() : dummy_() {}
++ OptionalStorageBase() : dummy_() {}
+
+ template <class... Args>
+ constexpr explicit OptionalStorageBase(in_place_t, Args&&... args)
+@@ -88,7 +88,7 @@
+ struct OptionalStorageBase<T, true /* trivially destructible */> {
+ // Provide non-defaulted default ctor to make sure it's not deleted by
+ // non-trivial T::T() in the union.
+- constexpr OptionalStorageBase() : dummy_() {}
++ OptionalStorageBase() : dummy_() {}
+
+ template <class... Args>
+ constexpr explicit OptionalStorageBase(in_place_t, Args&&... args)
+@@ -607,32 +607,32 @@
+ return *this;
+ }
+
+- constexpr const T* operator->() const {
++ const T* operator->() const {
+ CHECK(storage_.is_populated_);
+ return &storage_.value_;
+ }
+
+- constexpr T* operator->() {
++ T* operator->() {
+ CHECK(storage_.is_populated_);
+ return &storage_.value_;
+ }
+
+- constexpr const T& operator*() const & {
++ const T& operator*() const & {
+ CHECK(storage_.is_populated_);
+ return storage_.value_;
+ }
+
+- constexpr T& operator*() & {
++ T& operator*() & {
+ CHECK(storage_.is_populated_);
+ return storage_.value_;
+ }
+
+- constexpr const T&& operator*() const && {
++ const T&& operator*() const && {
+ CHECK(storage_.is_populated_);
+ return std::move(storage_.value_);
+ }
+
+- constexpr T&& operator*() && {
++ T&& operator*() && {
+ CHECK(storage_.is_populated_);
+ return std::move(storage_.value_);
+ }
+@@ -641,22 +641,22 @@
+
+ constexpr bool has_value() const { return storage_.is_populated_; }
+
+- constexpr T& value() & {
++ T& value() & {
+ CHECK(storage_.is_populated_);
+ return storage_.value_;
+ }
+
+- constexpr const T& value() const & {
++ const T& value() const & {
+ CHECK(storage_.is_populated_);
+ return storage_.value_;
+ }
+
+- constexpr T&& value() && {
++ T&& value() && {
+ CHECK(storage_.is_populated_);
+ return std::move(storage_.value_);
+ }
+
+- constexpr const T&& value() const && {
++ const T&& value() const && {
+ CHECK(storage_.is_populated_);
+ return std::move(storage_.value_);
+ }
+--- pdfium/third_party/base/span.h.orig 2020-10-26 19:26:04.000000000 +0100
++++ pdfium/third_party/base/span.h 2020-12-03 16:28:15.642138100 +0100
+@@ -193,7 +193,7 @@
+
+ // TODO(dcheng): Implement construction from a |begin| and |end| pointer.
+ template <size_t N>
+- constexpr span(T (&array)[N]) noexcept : span(array, N) {}
++ span(T (&array)[N]) noexcept : span(array, N) {}
+ // TODO(dcheng): Implement construction from std::array.
+ // Conversion from a container that provides |T* data()| and |integral_type
+ // size()|.
+--- pdfium/core/fpdfapi/page/cpdf_colorspace.cpp.orig 2020-12-03 16:54:15.514659400 +0100
++++ pdfium/core/fpdfapi/page/cpdf_colorspace.cpp 2020-12-03 16:38:52.167650200 +0100
+@@ -905,7 +905,7 @@
+ float R;
+ float G;
+ float B;
+- GetRGB(lab, &R, &G, &B);
++ GetRGB(pdfium::span<float>(lab), &R, &G, &B);
+ pDestBuf[0] = static_cast<int32_t>(B * 255);
+ pDestBuf[1] = static_cast<int32_t>(G * 255);
+ pDestBuf[2] = static_cast<int32_t>(R * 255);
+--- pdfium/core/fpdfapi/page/cpdf_meshstream.cpp.orig 2020-12-03 16:54:09.233498800 +0100
++++ pdfium/core/fpdfapi/page/cpdf_meshstream.cpp 2020-12-03 16:41:29.173766500 +0100
+@@ -209,7 +209,7 @@
+ func->Call(color_value, 1, result, &nResults);
+ }
+
+- m_pCS->GetRGB(result, &r, &g, &b);
++ m_pCS->GetRGB(pdfium::span<float>(result), &r, &g, &b);
+ return std::tuple<float, float, float>(r, g, b);
+ }
+
+--- pdfium/core/fpdfapi/parser/cpdf_security_handler.cpp.orig 2020-12-03 16:53:56.077095400 +0100
++++ pdfium/core/fpdfapi/parser/cpdf_security_handler.cpp 2020-12-03 16:44:23.951334200 +0100
+@@ -481,7 +481,7 @@
+ uint8_t passcode[32];
+ GetPassCode(owner_password, passcode);
+ uint8_t digest[16];
+- CRYPT_MD5Generate(passcode, digest);
++ CRYPT_MD5Generate(pdfium::span<uint8_t>(passcode), digest);
+ if (m_Revision >= 3) {
+ for (uint32_t i = 0; i < 50; i++)
+ CRYPT_MD5Generate(digest, digest);
+@@ -570,10 +570,10 @@
+ uint8_t passcode[32];
+ GetPassCode(owner_password_copy, passcode);
+ uint8_t digest[16];
+- CRYPT_MD5Generate(passcode, digest);
++ CRYPT_MD5Generate(pdfium::span<uint8_t>(passcode), digest);
+ if (m_Revision >= 3) {
+ for (uint32_t i = 0; i < 50; i++)
+- CRYPT_MD5Generate(digest, digest);
++ CRYPT_MD5Generate(pdfium::span<uint8_t>(digest), digest);
+ }
+ uint8_t enckey[32];
+ memcpy(enckey, digest, key_len);
+--- pdfium/core/fpdfapi/page/cpdf_dib.cpp.orig 2020-12-03 16:53:44.548444600 +0100
++++ pdfium/core/fpdfapi/page/cpdf_dib.cpp 2020-12-03 16:49:11.937584700 +0100
+@@ -874,7 +874,7 @@
+ color_values[0] += m_CompData[0].m_DecodeStep;
+ color_values[1] += m_CompData[0].m_DecodeStep;
+ color_values[2] += m_CompData[0].m_DecodeStep;
+- m_pColorSpace->GetRGB(color_values, &R, &G, &B);
++ m_pColorSpace->GetRGB(pdfium::span<float>(color_values), &R, &G, &B);
+ FX_ARGB argb1 = ArgbEncode(255, FXSYS_roundf(R * 255),
+ FXSYS_roundf(G * 255), FXSYS_roundf(B * 255));
+ if (argb0 != 0xFF000000 || argb1 != 0xFFFFFFFF) {
+--- pdfium/third_party/base/allocator/partition_allocator/partition_alloc.cc.orig 2020-12-03 17:09:02.887283800 +0100
++++ pdfium/third_party/base/allocator/partition_allocator/partition_alloc.cc 2020-12-03 17:07:22.198993800 +0100
+@@ -67,12 +67,12 @@
+ // Chained hooks are not supported. Registering a non-null hook when a
+ // non-null hook is already registered indicates somebody is trying to
+ // overwrite a hook.
+- CHECK((!allocation_observer_hook_ && !free_observer_hook_) ||
++ CHECK((!allocation_observer_hook_.load() && !free_observer_hook_.load()) ||
+ (!alloc_hook && !free_hook));
+ allocation_observer_hook_ = alloc_hook;
+ free_observer_hook_ = free_hook;
+
+- hooks_enabled_ = allocation_observer_hook_ || allocation_override_hook_;
++ hooks_enabled_ = allocation_observer_hook_.load() || allocation_override_hook_.load();
+ }
+
+ void PartitionAllocHooks::SetOverrideHooks(AllocationOverrideHook* alloc_hook,
+@@ -80,14 +80,14 @@
+ ReallocOverrideHook realloc_hook) {
+ subtle::SpinLock::Guard guard(set_hooks_lock_);
+
+- CHECK((!allocation_override_hook_ && !free_override_hook_ &&
+- !realloc_override_hook_) ||
++ CHECK((!allocation_override_hook_.load() && !free_override_hook_.load() &&
++ !realloc_override_hook_.load()) ||
+ (!alloc_hook && !free_hook && !realloc_hook));
+ allocation_override_hook_ = alloc_hook;
+ free_override_hook_ = free_hook;
+ realloc_override_hook_ = realloc_hook;
+
+- hooks_enabled_ = allocation_observer_hook_ || allocation_override_hook_;
++ hooks_enabled_ = allocation_observer_hook_.load() || allocation_override_hook_.load();
+ }
+
+ void PartitionAllocHooks::AllocationObserverHookIfEnabled(
+--- pdfium/third_party/base/allocator/partition_allocator/partition_page.h.orig 2020-12-03 17:13:56.944624000 +0100
++++ pdfium/third_party/base/allocator/partition_allocator/partition_page.h 2020-12-03 17:13:34.385932300 +0100
+@@ -25,6 +25,8 @@
+ struct DeferredUnmap {
+ void* ptr = nullptr;
+ size_t size = 0;
++ DeferredUnmap(void* const p, size_t const s) : ptr(p), size(s) {}
++ DeferredUnmap() = default;
+ // In most cases there is no page to unmap and ptr == nullptr. This function
+ // is inlined to avoid the overhead of a function call in the common case.
+ ALWAYS_INLINE void Run();
diff --git a/external/pdfium/pdfium4137-numerics.patch.3 b/external/pdfium/pdfium4137-numerics.patch.3
new file mode 100644
index 000000000000..7d27ccd7f3cb
--- /dev/null
+++ b/external/pdfium/pdfium4137-numerics.patch.3
@@ -0,0 +1,3364 @@
+Restore numerics headers from release 4137
+
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math.h 1970-01-01 01:00:00.000000000 +0100
+@@ -1,395 +0,0 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
+-// Use of this source code is governed by a BSD-style license that can be
+-// found in the LICENSE file.
+-
+-#ifndef THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_H_
+-#define THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_H_
+-
+-#include <stddef.h>
+-
+-#include <limits>
+-#include <type_traits>
+-
+-#include "third_party/base/numerics/checked_math_impl.h"
+-
+-namespace pdfium {
+-namespace base {
+-namespace internal {
+-
+-template <typename T>
+-class CheckedNumeric {
+- static_assert(std::is_arithmetic<T>::value,
+- "CheckedNumeric<T>: T must be a numeric type.");
+-
+- public:
+- using type = T;
+-
+- constexpr CheckedNumeric() = default;
+-
+- // Copy constructor.
+- template <typename Src>
+- constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs)
+- : state_(rhs.state_.value(), rhs.IsValid()) {}
+-
+- template <typename Src>
+- friend class CheckedNumeric;
+-
+- // This is not an explicit constructor because we implicitly upgrade regular
+- // numerics to CheckedNumerics to make them easier to use.
+- template <typename Src>
+- constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit)
+- : state_(value) {
+- static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+- }
+-
+- // This is not an explicit constructor because we want a seamless conversion
+- // from StrictNumeric types.
+- template <typename Src>
+- constexpr CheckedNumeric(
+- StrictNumeric<Src> value) // NOLINT(runtime/explicit)
+- : state_(static_cast<Src>(value)) {}
+-
+- // IsValid() - The public API to test if a CheckedNumeric is currently valid.
+- // A range checked destination type can be supplied using the Dst template
+- // parameter.
+- template <typename Dst = T>
+- constexpr bool IsValid() const {
+- return state_.is_valid() &&
+- IsValueInRangeForNumericType<Dst>(state_.value());
+- }
+-
+- // AssignIfValid(Dst) - Assigns the underlying value if it is currently valid
+- // and is within the range supported by the destination type. Returns true if
+- // successful and false otherwise.
+- template <typename Dst>
+-#if defined(__clang__) || defined(__GNUC__)
+- __attribute__((warn_unused_result))
+-#elif defined(_MSC_VER)
+- _Check_return_
+-#endif
+- constexpr bool
+- AssignIfValid(Dst* result) const {
+- return BASE_NUMERICS_LIKELY(IsValid<Dst>())
+- ? ((*result = static_cast<Dst>(state_.value())), true)
+- : false;
+- }
+-
+- // ValueOrDie() - The primary accessor for the underlying value. If the
+- // current state is not valid it will CHECK and crash.
+- // A range checked destination type can be supplied using the Dst template
+- // parameter, which will trigger a CHECK if the value is not in bounds for
+- // the destination.
+- // The CHECK behavior can be overridden by supplying a handler as a
+- // template parameter, for test code, etc. However, the handler cannot access
+- // the underlying value, and it is not available through other means.
+- template <typename Dst = T, class CheckHandler = CheckOnFailure>
+- constexpr StrictNumeric<Dst> ValueOrDie() const {
+- return BASE_NUMERICS_LIKELY(IsValid<Dst>())
+- ? static_cast<Dst>(state_.value())
+- : CheckHandler::template HandleFailure<Dst>();
+- }
+-
+- // ValueOrDefault(T default_value) - A convenience method that returns the
+- // current value if the state is valid, and the supplied default_value for
+- // any other state.
+- // A range checked destination type can be supplied using the Dst template
+- // parameter. WARNING: This function may fail to compile or CHECK at runtime
+- // if the supplied default_value is not within range of the destination type.
+- template <typename Dst = T, typename Src>
+- constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const {
+- return BASE_NUMERICS_LIKELY(IsValid<Dst>())
+- ? static_cast<Dst>(state_.value())
+- : checked_cast<Dst>(default_value);
+- }
+-
+- // Returns a checked numeric of the specified type, cast from the current
+- // CheckedNumeric. If the current state is invalid or the destination cannot
+- // represent the result then the returned CheckedNumeric will be invalid.
+- template <typename Dst>
+- constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
+- return *this;
+- }
+-
+- // This friend method is available solely for providing more detailed logging
+- // in the the tests. Do not implement it in production code, because the
+- // underlying values may change at any time.
+- template <typename U>
+- friend U GetNumericValueForTest(const CheckedNumeric<U>& src);
+-
+- // Prototypes for the supported arithmetic operator overloads.
+- template <typename Src>
+- constexpr CheckedNumeric& operator+=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator-=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator*=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator/=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator%=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator<<=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator>>=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator&=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator|=(const Src rhs);
+- template <typename Src>
+- constexpr CheckedNumeric& operator^=(const Src rhs);
+-
+- constexpr CheckedNumeric operator-() const {
+- // The negation of two's complement int min is int min, so we simply
+- // check for that in the constexpr case.
+- // We use an optimized code path for a known run-time variable.
+- return MustTreatAsConstexpr(state_.value()) || !std::is_signed<T>::value ||
+- std::is_floating_point<T>::value
+- ? CheckedNumeric<T>(
+- NegateWrapper(state_.value()),
+- IsValid() && (!std::is_signed<T>::value ||
+- std::is_floating_point<T>::value ||
+- NegateWrapper(state_.value()) !=
+- std::numeric_limits<T>::lowest()))
+- : FastRuntimeNegate();
+- }
+-
+- constexpr CheckedNumeric operator~() const {
+- return CheckedNumeric<decltype(InvertWrapper(T()))>(
+- InvertWrapper(state_.value()), IsValid());
+- }
+-
+- constexpr CheckedNumeric Abs() const {
+- return !IsValueNegative(state_.value()) ? *this : -*this;
+- }
+-
+- template <typename U>
+- constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max(
+- const U rhs) const {
+- using R = typename UnderlyingType<U>::type;
+- using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type;
+- // TODO(jschuh): This can be converted to the MathOp version and remain
+- // constexpr once we have C++14 support.
+- return CheckedNumeric<result_type>(
+- static_cast<result_type>(
+- IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
+- ? state_.value()
+- : Wrapper<U>::value(rhs)),
+- state_.is_valid() && Wrapper<U>::is_valid(rhs));
+- }
+-
+- template <typename U>
+- constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min(
+- const U rhs) const {
+- using R = typename UnderlyingType<U>::type;
+- using result_type = typename MathWrapper<CheckedMinOp, T, U>::type;
+- // TODO(jschuh): This can be converted to the MathOp version and remain
+- // constexpr once we have C++14 support.
+- return CheckedNumeric<result_type>(
+- static_cast<result_type>(
+- IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
+- ? state_.value()
+- : Wrapper<U>::value(rhs)),
+- state_.is_valid() && Wrapper<U>::is_valid(rhs));
+- }
+-
+- // This function is available only for integral types. It returns an unsigned
+- // integer of the same width as the source type, containing the absolute value
+- // of the source, and properly handling signed min.
+- constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>
+- UnsignedAbs() const {
+- return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>(
+- SafeUnsignedAbs(state_.value()), state_.is_valid());
+- }
+-
+- constexpr CheckedNumeric& operator++() {
+- *this += 1;
+- return *this;
+- }
+-
+- constexpr CheckedNumeric operator++(int) {
+- CheckedNumeric value = *this;
+- *this += 1;
+- return value;
+- }
+-
+- constexpr CheckedNumeric& operator--() {
+- *this -= 1;
+- return *this;
+- }
+-
+- constexpr CheckedNumeric operator--(int) {
+- CheckedNumeric value = *this;
+- *this -= 1;
+- return value;
+- }
+-
+- // These perform the actual math operations on the CheckedNumerics.
+- // Binary arithmetic operations.
+- template <template <typename, typename, typename> class M,
+- typename L,
+- typename R>
+- static constexpr CheckedNumeric MathOp(const L lhs, const R rhs) {
+- using Math = typename MathWrapper<M, L, R>::math;
+- T result = 0;
+- bool is_valid =
+- Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) &&
+- Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result);
+- return CheckedNumeric<T>(result, is_valid);
+- }
+-
+- // Assignment arithmetic operations.
+- template <template <typename, typename, typename> class M, typename R>
+- constexpr CheckedNumeric& MathOp(const R rhs) {
+- using Math = typename MathWrapper<M, T, R>::math;
+- T result = 0; // Using T as the destination saves a range check.
+- bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) &&
+- Math::Do(state_.value(), Wrapper<R>::value(rhs), &result);
+- *this = CheckedNumeric<T>(result, is_valid);
+- return *this;
+- }
+-
+- private:
+- CheckedNumericState<T> state_;
+-
+- CheckedNumeric FastRuntimeNegate() const {
+- T result;
+- bool success = CheckedSubOp<T, T>::Do(T(0), state_.value(), &result);
+- return CheckedNumeric<T>(result, IsValid() && success);
+- }
+-
+- template <typename Src>
+- constexpr CheckedNumeric(Src value, bool is_valid)
+- : state_(value, is_valid) {}
+-
+- // These wrappers allow us to handle state the same way for both
+- // CheckedNumeric and POD arithmetic types.
+- template <typename Src>
+- struct Wrapper {
+- static constexpr bool is_valid(Src) { return true; }
+- static constexpr Src value(Src value) { return value; }
+- };
+-
+- template <typename Src>
+- struct Wrapper<CheckedNumeric<Src>> {
+- static constexpr bool is_valid(const CheckedNumeric<Src> v) {
+- return v.IsValid();
+- }
+- static constexpr Src value(const CheckedNumeric<Src> v) {
+- return v.state_.value();
+- }
+- };
+-
+- template <typename Src>
+- struct Wrapper<StrictNumeric<Src>> {
+- static constexpr bool is_valid(const StrictNumeric<Src>) { return true; }
+- static constexpr Src value(const StrictNumeric<Src> v) {
+- return static_cast<Src>(v);
+- }
+- };
+-};
+-
+-// Convenience functions to avoid the ugly template disambiguator syntax.
+-template <typename Dst, typename Src>
+-constexpr bool IsValidForType(const CheckedNumeric<Src> value) {
+- return value.template IsValid<Dst>();
+-}
+-
+-template <typename Dst, typename Src>
+-constexpr StrictNumeric<Dst> ValueOrDieForType(
+- const CheckedNumeric<Src> value) {
+- return value.template ValueOrDie<Dst>();
+-}
+-
+-template <typename Dst, typename Src, typename Default>
+-constexpr StrictNumeric<Dst> ValueOrDefaultForType(
+- const CheckedNumeric<Src> value,
+- const Default default_value) {
+- return value.template ValueOrDefault<Dst>(default_value);
+-}
+-
+-// Convience wrapper to return a new CheckedNumeric from the provided arithmetic
+-// or CheckedNumericType.
+-template <typename T>
+-constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum(
+- const T value) {
+- return value;
+-}
+-
+-// These implement the variadic wrapper for the math operations.
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R>
+-constexpr CheckedNumeric<typename MathWrapper<M, L, R>::type> CheckMathOp(
+- const L lhs,
+- const R rhs) {
+- using Math = typename MathWrapper<M, L, R>::math;
+- return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
+- rhs);
+-}
+-
+-// General purpose wrapper template for arithmetic operations.
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R,
+- typename... Args>
+-constexpr CheckedNumeric<typename ResultType<M, L, R, Args...>::type>
+-CheckMathOp(const L lhs, const R rhs, const Args... args) {
+- return CheckMathOp<M>(CheckMathOp<M>(lhs, rhs), args...);
+-}
+-
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Add, +, +=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Sub, -, -=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mul, *, *=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Div, /, /=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Mod, %, %=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Lsh, <<, <<=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Rsh, >>, >>=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, And, &, &=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Or, |, |=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Checked, Check, Xor, ^, ^=)
+-BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Max)
+-BASE_NUMERIC_ARITHMETIC_VARIADIC(Checked, Check, Min)
+-
+-// These are some extra StrictNumeric operators to support simple pointer
+-// arithmetic with our result types. Since wrapping on a pointer is always
+-// bad, we trigger the CHECK condition here.
+-template <typename L, typename R>
+-L* operator+(L* lhs, const StrictNumeric<R> rhs) {
+- uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs),
+- CheckMul(sizeof(L), static_cast<R>(rhs)))
+- .template ValueOrDie<uintptr_t>();
+- return reinterpret_cast<L*>(result);
+-}
+-
+-template <typename L, typename R>
+-L* operator-(L* lhs, const StrictNumeric<R> rhs) {
+- uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs),
+- CheckMul(sizeof(L), static_cast<R>(rhs)))
+- .template ValueOrDie<uintptr_t>();
+- return reinterpret_cast<L*>(result);
+-}
+-
+-} // namespace internal
+-
+-using internal::CheckedNumeric;
+-using internal::IsValidForType;
+-using internal::ValueOrDieForType;
+-using internal::ValueOrDefaultForType;
+-using internal::MakeCheckedNum;
+-using internal::CheckMax;
+-using internal::CheckMin;
+-using internal::CheckAdd;
+-using internal::CheckSub;
+-using internal::CheckMul;
+-using internal::CheckDiv;
+-using internal::CheckMod;
+-using internal::CheckLsh;
+-using internal::CheckRsh;
+-using internal::CheckAnd;
+-using internal::CheckOr;
+-using internal::CheckXor;
+-
+-} // namespace base
+-} // namespace pdfium
+-
+-#endif // THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math_impl.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/checked_math_impl.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/checked_math_impl.h 1970-01-01 01:00:00.000000000 +0100
+@@ -1,579 +0,0 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
+-// Use of this source code is governed by a BSD-style license that can be
+-// found in the LICENSE file.
+-
+-#ifndef THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_IMPL_H_
+-#define THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_IMPL_H_
+-
+-#include <stddef.h>
+-#include <stdint.h>
+-
+-#include <climits>
+-#include <cmath>
+-#include <cstdlib>
+-#include <limits>
+-#include <type_traits>
+-
+-#include "third_party/base/numerics/safe_conversions.h"
+-#include "third_party/base/numerics/safe_math_shared_impl.h"
+-
+-namespace pdfium {
+-namespace base {
+-namespace internal {
+-
+-template <typename T>
+-constexpr bool CheckedAddImpl(T x, T y, T* result) {
+- static_assert(std::is_integral<T>::value, "Type must be integral");
+- // Since the value of x+y is undefined if we have a signed type, we compute
+- // it using the unsigned type of the same size.
+- using UnsignedDst = typename std::make_unsigned<T>::type;
+- using SignedDst = typename std::make_signed<T>::type;
+- UnsignedDst ux = static_cast<UnsignedDst>(x);
+- UnsignedDst uy = static_cast<UnsignedDst>(y);
+- UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
+- *result = static_cast<T>(uresult);
+- // Addition is valid if the sign of (x + y) is equal to either that of x or
+- // that of y.
+- return (std::is_signed<T>::value)
+- ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
+- : uresult >= uy; // Unsigned is either valid or underflow.
+-}
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedAddOp {};
+-
+-template <typename T, typename U>
+-struct CheckedAddOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- // TODO(jschuh) Make this "constexpr if" once we're C++17.
+- if (CheckedAddFastOp<T, U>::is_supported)
+- return CheckedAddFastOp<T, U>::Do(x, y, result);
+-
+- // Double the underlying type up to a full machine word.
+- using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+- using Promotion =
+- typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
+- IntegerBitsPlusSign<intptr_t>::value),
+- typename BigEnoughPromotion<T, U>::type,
+- FastPromotion>::type;
+- // Fail if either operand is out of range for the promoted type.
+- // TODO(jschuh): This could be made to work for a broader range of values.
+- if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
+- !IsValueInRangeForNumericType<Promotion>(y))) {
+- return false;
+- }
+-
+- Promotion presult = {};
+- bool is_valid = true;
+- if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+- presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
+- } else {
+- is_valid = CheckedAddImpl(static_cast<Promotion>(x),
+- static_cast<Promotion>(y), &presult);
+- }
+- *result = static_cast<V>(presult);
+- return is_valid && IsValueInRangeForNumericType<V>(presult);
+- }
+-};
+-
+-template <typename T>
+-constexpr bool CheckedSubImpl(T x, T y, T* result) {
+- static_assert(std::is_integral<T>::value, "Type must be integral");
+- // Since the value of x+y is undefined if we have a signed type, we compute
+- // it using the unsigned type of the same size.
+- using UnsignedDst = typename std::make_unsigned<T>::type;
+- using SignedDst = typename std::make_signed<T>::type;
+- UnsignedDst ux = static_cast<UnsignedDst>(x);
+- UnsignedDst uy = static_cast<UnsignedDst>(y);
+- UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
+- *result = static_cast<T>(uresult);
+- // Subtraction is valid if either x and y have same sign, or (x-y) and x have
+- // the same sign.
+- return (std::is_signed<T>::value)
+- ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
+- : x >= y;
+-}
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedSubOp {};
+-
+-template <typename T, typename U>
+-struct CheckedSubOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- // TODO(jschuh) Make this "constexpr if" once we're C++17.
+- if (CheckedSubFastOp<T, U>::is_supported)
+- return CheckedSubFastOp<T, U>::Do(x, y, result);
+-
+- // Double the underlying type up to a full machine word.
+- using FastPromotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+- using Promotion =
+- typename std::conditional<(IntegerBitsPlusSign<FastPromotion>::value >
+- IntegerBitsPlusSign<intptr_t>::value),
+- typename BigEnoughPromotion<T, U>::type,
+- FastPromotion>::type;
+- // Fail if either operand is out of range for the promoted type.
+- // TODO(jschuh): This could be made to work for a broader range of values.
+- if (BASE_NUMERICS_UNLIKELY(!IsValueInRangeForNumericType<Promotion>(x) ||
+- !IsValueInRangeForNumericType<Promotion>(y))) {
+- return false;
+- }
+-
+- Promotion presult = {};
+- bool is_valid = true;
+- if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+- presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
+- } else {
+- is_valid = CheckedSubImpl(static_cast<Promotion>(x),
+- static_cast<Promotion>(y), &presult);
+- }
+- *result = static_cast<V>(presult);
+- return is_valid && IsValueInRangeForNumericType<V>(presult);
+- }
+-};
+-
+-template <typename T>
+-constexpr bool CheckedMulImpl(T x, T y, T* result) {
+- static_assert(std::is_integral<T>::value, "Type must be integral");
+- // Since the value of x*y is potentially undefined if we have a signed type,
+- // we compute it using the unsigned type of the same size.
+- using UnsignedDst = typename std::make_unsigned<T>::type;
+- using SignedDst = typename std::make_signed<T>::type;
+- const UnsignedDst ux = SafeUnsignedAbs(x);
+- const UnsignedDst uy = SafeUnsignedAbs(y);
+- UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
+- const bool is_negative =
+- std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
+- *result = is_negative ? 0 - uresult : uresult;
+- // We have a fast out for unsigned identity or zero on the second operand.
+- // After that it's an unsigned overflow check on the absolute value, with
+- // a +1 bound for a negative result.
+- return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
+- ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
+-}
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedMulOp {};
+-
+-template <typename T, typename U>
+-struct CheckedMulOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- // TODO(jschuh) Make this "constexpr if" once we're C++17.
+- if (CheckedMulFastOp<T, U>::is_supported)
+- return CheckedMulFastOp<T, U>::Do(x, y, result);
+-
+- using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+- // Verify the destination type can hold the result (always true for 0).
+- if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
+- !IsValueInRangeForNumericType<Promotion>(y)) &&
+- x && y)) {
+- return false;
+- }
+-
+- Promotion presult = {};
+- bool is_valid = true;
+- if (CheckedMulFastOp<Promotion, Promotion>::is_supported) {
+- // The fast op may be available with the promoted type.
+- is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(x, y, &presult);
+- } else if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
+- presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
+- } else {
+- is_valid = CheckedMulImpl(static_cast<Promotion>(x),
+- static_cast<Promotion>(y), &presult);
+- }
+- *result = static_cast<V>(presult);
+- return is_valid && IsValueInRangeForNumericType<V>(presult);
+- }
+-};
+-
+-// Division just requires a check for a zero denominator or an invalid negation
+-// on signed min/-1.
+-template <typename T, typename U, class Enable = void>
+-struct CheckedDivOp {};
+-
+-template <typename T, typename U>
+-struct CheckedDivOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- if (BASE_NUMERICS_UNLIKELY(!y))
+- return false;
+-
+- // The overflow check can be compiled away if we don't have the exact
+- // combination of types needed to trigger this case.
+- using Promotion = typename BigEnoughPromotion<T, U>::type;
+- if (BASE_NUMERICS_UNLIKELY(
+- (std::is_signed<T>::value && std::is_signed<U>::value &&
+- IsTypeInRangeForNumericType<T, Promotion>::value &&
+- static_cast<Promotion>(x) ==
+- std::numeric_limits<Promotion>::lowest() &&
+- y == static_cast<U>(-1)))) {
+- return false;
+- }
+-
+- // This branch always compiles away if the above branch wasn't removed.
+- if (BASE_NUMERICS_UNLIKELY((!IsValueInRangeForNumericType<Promotion>(x) ||
+- !IsValueInRangeForNumericType<Promotion>(y)) &&
+- x)) {
+- return false;
+- }
+-
+- Promotion presult = Promotion(x) / Promotion(y);
+- *result = static_cast<V>(presult);
+- return IsValueInRangeForNumericType<V>(presult);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedModOp {};
+-
+-template <typename T, typename U>
+-struct CheckedModOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- if (BASE_NUMERICS_UNLIKELY(!y))
+- return false;
+-
+- using Promotion = typename BigEnoughPromotion<T, U>::type;
+- if (BASE_NUMERICS_UNLIKELY(
+- (std::is_signed<T>::value && std::is_signed<U>::value &&
+- IsTypeInRangeForNumericType<T, Promotion>::value &&
+- static_cast<Promotion>(x) ==
+- std::numeric_limits<Promotion>::lowest() &&
+- y == static_cast<U>(-1)))) {
+- *result = 0;
+- return true;
+- }
+-
+- Promotion presult = static_cast<Promotion>(x) % static_cast<Promotion>(y);
+- *result = static_cast<Promotion>(presult);
+- return IsValueInRangeForNumericType<V>(presult);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedLshOp {};
+-
+-// Left shift. Shifts less than 0 or greater than or equal to the number
+-// of bits in the promoted type are undefined. Shifts of negative values
+-// are undefined. Otherwise it is defined when the result fits.
+-template <typename T, typename U>
+-struct CheckedLshOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = T;
+- template <typename V>
+- static constexpr bool Do(T x, U shift, V* result) {
+- // Disallow negative numbers and verify the shift is in bounds.
+- if (BASE_NUMERICS_LIKELY(!IsValueNegative(x) &&
+- as_unsigned(shift) <
+- as_unsigned(std::numeric_limits<T>::digits))) {
+- // Shift as unsigned to avoid undefined behavior.
+- *result = static_cast<V>(as_unsigned(x) << shift);
+- // If the shift can be reversed, we know it was valid.
+- return *result >> shift == x;
+- }
+-
+- // Handle the legal corner-case of a full-width signed shift of zero.
+- return std::is_signed<T>::value && !x &&
+- as_unsigned(shift) == as_unsigned(std::numeric_limits<T>::digits);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedRshOp {};
+-
+-// Right shift. Shifts less than 0 or greater than or equal to the number
+-// of bits in the promoted type are undefined. Otherwise, it is always defined,
+-// but a right shift of a negative value is implementation-dependent.
+-template <typename T, typename U>
+-struct CheckedRshOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = T;
+- template <typename V>
+- static bool Do(T x, U shift, V* result) {
+- // Use the type conversion push negative values out of range.
+- if (BASE_NUMERICS_LIKELY(as_unsigned(shift) <
+- IntegerBitsPlusSign<T>::value)) {
+- T tmp = x >> shift;
+- *result = static_cast<V>(tmp);
+- return IsValueInRangeForNumericType<V>(tmp);
+- }
+- return false;
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedAndOp {};
+-
+-// For simplicity we support only unsigned integer results.
+-template <typename T, typename U>
+-struct CheckedAndOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename std::make_unsigned<
+- typename MaxExponentPromotion<T, U>::type>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
+- *result = static_cast<V>(tmp);
+- return IsValueInRangeForNumericType<V>(tmp);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedOrOp {};
+-
+-// For simplicity we support only unsigned integers.
+-template <typename T, typename U>
+-struct CheckedOrOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename std::make_unsigned<
+- typename MaxExponentPromotion<T, U>::type>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
+- *result = static_cast<V>(tmp);
+- return IsValueInRangeForNumericType<V>(tmp);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct CheckedXorOp {};
+-
+-// For simplicity we support only unsigned integers.
+-template <typename T, typename U>
+-struct CheckedXorOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename std::make_unsigned<
+- typename MaxExponentPromotion<T, U>::type>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
+- *result = static_cast<V>(tmp);
+- return IsValueInRangeForNumericType<V>(tmp);
+- }
+-};
+-
+-// Max doesn't really need to be implemented this way because it can't fail,
+-// but it makes the code much cleaner to use the MathOp wrappers.
+-template <typename T, typename U, class Enable = void>
+-struct CheckedMaxOp {};
+-
+-template <typename T, typename U>
+-struct CheckedMaxOp<
+- T,
+- U,
+- typename std::enable_if<std::is_arithmetic<T>::value &&
+- std::is_arithmetic<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- result_type tmp = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
+- : static_cast<result_type>(y);
+- *result = static_cast<V>(tmp);
+- return IsValueInRangeForNumericType<V>(tmp);
+- }
+-};
+-
+-// Min doesn't really need to be implemented this way because it can't fail,
+-// but it makes the code much cleaner to use the MathOp wrappers.
+-template <typename T, typename U, class Enable = void>
+-struct CheckedMinOp {};
+-
+-template <typename T, typename U>
+-struct CheckedMinOp<
+- T,
+- U,
+- typename std::enable_if<std::is_arithmetic<T>::value &&
+- std::is_arithmetic<U>::value>::type> {
+- using result_type = typename LowestValuePromotion<T, U>::type;
+- template <typename V>
+- static constexpr bool Do(T x, U y, V* result) {
+- result_type tmp = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
+- : static_cast<result_type>(y);
+- *result = static_cast<V>(tmp);
+- return IsValueInRangeForNumericType<V>(tmp);
+- }
+-};
+-
+-// This is just boilerplate that wraps the standard floating point arithmetic.
+-// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
+-#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
+- template <typename T, typename U> \
+- struct Checked##NAME##Op< \
+- T, U, \
+- typename std::enable_if<std::is_floating_point<T>::value || \
+- std::is_floating_point<U>::value>::type> { \
+- using result_type = typename MaxExponentPromotion<T, U>::type; \
+- template <typename V> \
+- static constexpr bool Do(T x, U y, V* result) { \
+- using Promotion = typename MaxExponentPromotion<T, U>::type; \
+- Promotion presult = x OP y; \
+- *result = static_cast<V>(presult); \
+- return IsValueInRangeForNumericType<V>(presult); \
+- } \
+- };
+-
+-BASE_FLOAT_ARITHMETIC_OPS(Add, +)
+-BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
+-BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
+-BASE_FLOAT_ARITHMETIC_OPS(Div, /)
+-
+-#undef BASE_FLOAT_ARITHMETIC_OPS
+-
+-// Floats carry around their validity state with them, but integers do not. So,
+-// we wrap the underlying value in a specialization in order to hide that detail
+-// and expose an interface via accessors.
+-enum NumericRepresentation {
+- NUMERIC_INTEGER,
+- NUMERIC_FLOATING,
+- NUMERIC_UNKNOWN
+-};
+-
+-template <typename NumericType>
+-struct GetNumericRepresentation {
+- static const NumericRepresentation value =
+- std::is_integral<NumericType>::value
+- ? NUMERIC_INTEGER
+- : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
+- : NUMERIC_UNKNOWN);
+-};
+-
+-template <typename T,
+- NumericRepresentation type = GetNumericRepresentation<T>::value>
+-class CheckedNumericState {};
+-
+-// Integrals require quite a bit of additional housekeeping to manage state.
+-template <typename T>
+-class CheckedNumericState<T, NUMERIC_INTEGER> {
+- private:
+- // is_valid_ precedes value_ because member intializers in the constructors
+- // are evaluated in field order, and is_valid_ must be read when initializing
+- // value_.
+- bool is_valid_;
+- T value_;
+-
+- // Ensures that a type conversion does not trigger undefined behavior.
+- template <typename Src>
+- static constexpr T WellDefinedConversionOrZero(const Src value,
+- const bool is_valid) {
+- using SrcType = typename internal::UnderlyingType<Src>::type;
+- return (std::is_integral<SrcType>::value || is_valid)
+- ? static_cast<T>(value)
+- : static_cast<T>(0);
+- }
+-
+- public:
+- template <typename Src, NumericRepresentation type>
+- friend class CheckedNumericState;
+-
+- constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
+-
+- template <typename Src>
+- constexpr CheckedNumericState(Src value, bool is_valid)
+- : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
+- value_(WellDefinedConversionOrZero(value, is_valid_)) {
+- static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+- }
+-
+- // Copy constructor.
+- template <typename Src>
+- constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
+- : is_valid_(rhs.IsValid()),
+- value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
+-
+- template <typename Src>
+- constexpr explicit CheckedNumericState(Src value)
+- : is_valid_(IsValueInRangeForNumericType<T>(value)),
+- value_(WellDefinedConversionOrZero(value, is_valid_)) {}
+-
+- constexpr bool is_valid() const { return is_valid_; }
+- constexpr T value() const { return value_; }
+-};
+-
+-// Floating points maintain their own validity, but need translation wrappers.
+-template <typename T>
+-class CheckedNumericState<T, NUMERIC_FLOATING> {
+- private:
+- T value_;
+-
+- // Ensures that a type conversion does not trigger undefined behavior.
+- template <typename Src>
+- static constexpr T WellDefinedConversionOrNaN(const Src value,
+- const bool is_valid) {
+- using SrcType = typename internal::UnderlyingType<Src>::type;
+- return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
+- NUMERIC_RANGE_CONTAINED ||
+- is_valid)
+- ? static_cast<T>(value)
+- : std::numeric_limits<T>::quiet_NaN();
+- }
+-
+- public:
+- template <typename Src, NumericRepresentation type>
+- friend class CheckedNumericState;
+-
+- constexpr CheckedNumericState() : value_(0.0) {}
+-
+- template <typename Src>
+- constexpr CheckedNumericState(Src value, bool is_valid)
+- : value_(WellDefinedConversionOrNaN(value, is_valid)) {}
+-
+- template <typename Src>
+- constexpr explicit CheckedNumericState(Src value)
+- : value_(WellDefinedConversionOrNaN(
+- value,
+- IsValueInRangeForNumericType<T>(value))) {}
+-
+- // Copy constructor.
+- template <typename Src>
+- constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
+- : value_(WellDefinedConversionOrNaN(
+- rhs.value(),
+- rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
+-
+- constexpr bool is_valid() const {
+- // Written this way because std::isfinite is not reliably constexpr.
+- return MustTreatAsConstexpr(value_)
+- ? value_ <= std::numeric_limits<T>::max() &&
+- value_ >= std::numeric_limits<T>::lowest()
+- : std::isfinite(value_);
+- }
+- constexpr T value() const { return value_; }
+-};
+-
+-} // namespace internal
+-} // namespace base
+-} // namespace pdfium
+-
+-#endif // THIRD_PARTY_BASE_NUMERICS_CHECKED_MATH_IMPL_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math.h 1970-01-01 01:00:00.000000000 +0100
+@@ -1,266 +0,0 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
+-// Use of this source code is governed by a BSD-style license that can be
+-// found in the LICENSE file.
+-
+-#ifndef THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_H_
+-#define THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_H_
+-
+-#include <stddef.h>
+-
+-#include <limits>
+-#include <type_traits>
+-
+-#include "third_party/base/numerics/clamped_math_impl.h"
+-
+-namespace pdfium {
+-namespace base {
+-namespace internal {
+-
+-template <typename T>
+-class ClampedNumeric {
+- static_assert(std::is_arithmetic<T>::value,
+- "ClampedNumeric<T>: T must be a numeric type.");
+-
+- public:
+- using type = T;
+-
+- constexpr ClampedNumeric() : value_(0) {}
+-
+- // Copy constructor.
+- template <typename Src>
+- constexpr ClampedNumeric(const ClampedNumeric<Src>& rhs)
+- : value_(saturated_cast<T>(rhs.value_)) {}
+-
+- template <typename Src>
+- friend class ClampedNumeric;
+-
+- // This is not an explicit constructor because we implicitly upgrade regular
+- // numerics to ClampedNumerics to make them easier to use.
+- template <typename Src>
+- constexpr ClampedNumeric(Src value) // NOLINT(runtime/explicit)
+- : value_(saturated_cast<T>(value)) {
+- static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
+- }
+-
+- // This is not an explicit constructor because we want a seamless conversion
+- // from StrictNumeric types.
+- template <typename Src>
+- constexpr ClampedNumeric(
+- StrictNumeric<Src> value) // NOLINT(runtime/explicit)
+- : value_(saturated_cast<T>(static_cast<Src>(value))) {}
+-
+- // Returns a ClampedNumeric of the specified type, cast from the current
+- // ClampedNumeric, and saturated to the destination type.
+- template <typename Dst>
+- constexpr ClampedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
+- return *this;
+- }
+-
+- // Prototypes for the supported arithmetic operator overloads.
+- template <typename Src>
+- constexpr ClampedNumeric& operator+=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator-=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator*=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator/=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator%=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator<<=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator>>=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator&=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator|=(const Src rhs);
+- template <typename Src>
+- constexpr ClampedNumeric& operator^=(const Src rhs);
+-
+- constexpr ClampedNumeric operator-() const {
+- // The negation of two's complement int min is int min, so that's the
+- // only overflow case where we will saturate.
+- return ClampedNumeric<T>(SaturatedNegWrapper(value_));
+- }
+-
+- constexpr ClampedNumeric operator~() const {
+- return ClampedNumeric<decltype(InvertWrapper(T()))>(InvertWrapper(value_));
+- }
+-
+- constexpr ClampedNumeric Abs() const {
+- // The negation of two's complement int min is int min, so that's the
+- // only overflow case where we will saturate.
+- return ClampedNumeric<T>(SaturatedAbsWrapper(value_));
+- }
+-
+- template <typename U>
+- constexpr ClampedNumeric<typename MathWrapper<ClampedMaxOp, T, U>::type> Max(
+- const U rhs) const {
+- using result_type = typename MathWrapper<ClampedMaxOp, T, U>::type;
+- return ClampedNumeric<result_type>(
+- ClampedMaxOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
+- }
+-
+- template <typename U>
+- constexpr ClampedNumeric<typename MathWrapper<ClampedMinOp, T, U>::type> Min(
+- const U rhs) const {
+- using result_type = typename MathWrapper<ClampedMinOp, T, U>::type;
+- return ClampedNumeric<result_type>(
+- ClampedMinOp<T, U>::Do(value_, Wrapper<U>::value(rhs)));
+- }
+-
+- // This function is available only for integral types. It returns an unsigned
+- // integer of the same width as the source type, containing the absolute value
+- // of the source, and properly handling signed min.
+- constexpr ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>
+- UnsignedAbs() const {
+- return ClampedNumeric<typename UnsignedOrFloatForSize<T>::type>(
+- SafeUnsignedAbs(value_));
+- }
+-
+- constexpr ClampedNumeric& operator++() {
+- *this += 1;
+- return *this;
+- }
+-
+- constexpr ClampedNumeric operator++(int) {
+- ClampedNumeric value = *this;
+- *this += 1;
+- return value;
+- }
+-
+- constexpr ClampedNumeric& operator--() {
+- *this -= 1;
+- return *this;
+- }
+-
+- constexpr ClampedNumeric operator--(int) {
+- ClampedNumeric value = *this;
+- *this -= 1;
+- return value;
+- }
+-
+- // These perform the actual math operations on the ClampedNumerics.
+- // Binary arithmetic operations.
+- template <template <typename, typename, typename> class M,
+- typename L,
+- typename R>
+- static constexpr ClampedNumeric MathOp(const L lhs, const R rhs) {
+- using Math = typename MathWrapper<M, L, R>::math;
+- return ClampedNumeric<T>(
+- Math::template Do<T>(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs)));
+- }
+-
+- // Assignment arithmetic operations.
+- template <template <typename, typename, typename> class M, typename R>
+- constexpr ClampedNumeric& MathOp(const R rhs) {
+- using Math = typename MathWrapper<M, T, R>::math;
+- *this =
+- ClampedNumeric<T>(Math::template Do<T>(value_, Wrapper<R>::value(rhs)));
+- return *this;
+- }
+-
+- template <typename Dst>
+- constexpr operator Dst() const {
+- return saturated_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(
+- value_);
+- }
+-
+- // This method extracts the raw integer value without saturating it to the
+- // destination type as the conversion operator does. This is useful when
+- // e.g. assigning to an auto type or passing as a deduced template parameter.
+- constexpr T RawValue() const { return value_; }
+-
+- private:
+- T value_;
+-
+- // These wrappers allow us to handle state the same way for both
+- // ClampedNumeric and POD arithmetic types.
+- template <typename Src>
+- struct Wrapper {
+- static constexpr Src value(Src value) {
+- return static_cast<typename UnderlyingType<Src>::type>(value);
+- }
+- };
+-};
+-
+-// Convience wrapper to return a new ClampedNumeric from the provided arithmetic
+-// or ClampedNumericType.
+-template <typename T>
+-constexpr ClampedNumeric<typename UnderlyingType<T>::type> MakeClampedNum(
+- const T value) {
+- return value;
+-}
+-
+-#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
+-// Overload the ostream output operator to make logging work nicely.
+-template <typename T>
+-std::ostream& operator<<(std::ostream& os, const ClampedNumeric<T>& value) {
+- os << static_cast<T>(value);
+- return os;
+-}
+-#endif
+-
+-// These implement the variadic wrapper for the math operations.
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R>
+-constexpr ClampedNumeric<typename MathWrapper<M, L, R>::type> ClampMathOp(
+- const L lhs,
+- const R rhs) {
+- using Math = typename MathWrapper<M, L, R>::math;
+- return ClampedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
+- rhs);
+-}
+-
+-// General purpose wrapper template for arithmetic operations.
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R,
+- typename... Args>
+-constexpr ClampedNumeric<typename ResultType<M, L, R, Args...>::type>
+-ClampMathOp(const L lhs, const R rhs, const Args... args) {
+- return ClampMathOp<M>(ClampMathOp<M>(lhs, rhs), args...);
+-}
+-
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Add, +, +=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Sub, -, -=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mul, *, *=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Div, /, /=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Mod, %, %=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Lsh, <<, <<=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Rsh, >>, >>=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, And, &, &=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Or, |, |=)
+-BASE_NUMERIC_ARITHMETIC_OPERATORS(Clamped, Clamp, Xor, ^, ^=)
+-BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Max)
+-BASE_NUMERIC_ARITHMETIC_VARIADIC(Clamped, Clamp, Min)
+-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLess, <)
+-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsLessOrEqual, <=)
+-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreater, >)
+-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsGreaterOrEqual, >=)
+-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsEqual, ==)
+-BASE_NUMERIC_COMPARISON_OPERATORS(Clamped, IsNotEqual, !=)
+-
+-} // namespace internal
+-
+-using internal::ClampedNumeric;
+-using internal::MakeClampedNum;
+-using internal::ClampMax;
+-using internal::ClampMin;
+-using internal::ClampAdd;
+-using internal::ClampSub;
+-using internal::ClampMul;
+-using internal::ClampDiv;
+-using internal::ClampMod;
+-using internal::ClampLsh;
+-using internal::ClampRsh;
+-using internal::ClampAnd;
+-using internal::ClampOr;
+-using internal::ClampXor;
+-
+-} // namespace base
+-} // namespace pdfium
+-
+-#endif // THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math_impl.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/clamped_math_impl.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/clamped_math_impl.h 1970-01-01 01:00:00.000000000 +0100
+@@ -1,343 +0,0 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
+-// Use of this source code is governed by a BSD-style license that can be
+-// found in the LICENSE file.
+-
+-#ifndef THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
+-#define THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
+-
+-#include <stddef.h>
+-#include <stdint.h>
+-
+-#include <climits>
+-#include <cmath>
+-#include <cstdlib>
+-#include <limits>
+-#include <type_traits>
+-
+-#include "third_party/base/numerics/checked_math.h"
+-#include "third_party/base/numerics/safe_conversions.h"
+-#include "third_party/base/numerics/safe_math_shared_impl.h"
+-
+-namespace pdfium {
+-namespace base {
+-namespace internal {
+-
+-template <typename T,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_signed<T>::value>::type* = nullptr>
+-constexpr T SaturatedNegWrapper(T value) {
+- return MustTreatAsConstexpr(value) || !ClampedNegFastOp<T>::is_supported
+- ? (NegateWrapper(value) != std::numeric_limits<T>::lowest()
+- ? NegateWrapper(value)
+- : std::numeric_limits<T>::max())
+- : ClampedNegFastOp<T>::Do(value);
+-}
+-
+-template <typename T,
+- typename std::enable_if<std::is_integral<T>::value &&
+- !std::is_signed<T>::value>::type* = nullptr>
+-constexpr T SaturatedNegWrapper(T value) {
+- return T(0);
+-}
+-
+-template <
+- typename T,
+- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+-constexpr T SaturatedNegWrapper(T value) {
+- return -value;
+-}
+-
+-template <typename T,
+- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+-constexpr T SaturatedAbsWrapper(T value) {
+- // The calculation below is a static identity for unsigned types, but for
+- // signed integer types it provides a non-branching, saturated absolute value.
+- // This works because SafeUnsignedAbs() returns an unsigned type, which can
+- // represent the absolute value of all negative numbers of an equal-width
+- // integer type. The call to IsValueNegative() then detects overflow in the
+- // special case of numeric_limits<T>::min(), by evaluating the bit pattern as
+- // a signed integer value. If it is the overflow case, we end up subtracting
+- // one from the unsigned result, thus saturating to numeric_limits<T>::max().
+- return static_cast<T>(SafeUnsignedAbs(value) -
+- IsValueNegative<T>(SafeUnsignedAbs(value)));
+-}
+-
+-template <
+- typename T,
+- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+-constexpr T SaturatedAbsWrapper(T value) {
+- return value < 0 ? -value : value;
+-}
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedAddOp {};
+-
+-template <typename T, typename U>
+-struct ClampedAddOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U y) {
+- if (ClampedAddFastOp<T, U>::is_supported)
+- return ClampedAddFastOp<T, U>::template Do<V>(x, y);
+-
+- static_assert(std::is_same<V, result_type>::value ||
+- IsTypeInRangeForNumericType<U, V>::value,
+- "The saturation result cannot be determined from the "
+- "provided types.");
+- const V saturated = CommonMaxOrMin<V>(IsValueNegative(y));
+- V result = {};
+- return BASE_NUMERICS_LIKELY((CheckedAddOp<T, U>::Do(x, y, &result)))
+- ? result
+- : saturated;
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedSubOp {};
+-
+-template <typename T, typename U>
+-struct ClampedSubOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U y) {
+- // TODO(jschuh) Make this "constexpr if" once we're C++17.
+- if (ClampedSubFastOp<T, U>::is_supported)
+- return ClampedSubFastOp<T, U>::template Do<V>(x, y);
+-
+- static_assert(std::is_same<V, result_type>::value ||
+- IsTypeInRangeForNumericType<U, V>::value,
+- "The saturation result cannot be determined from the "
+- "provided types.");
+- const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y));
+- V result = {};
+- return BASE_NUMERICS_LIKELY((CheckedSubOp<T, U>::Do(x, y, &result)))
+- ? result
+- : saturated;
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedMulOp {};
+-
+-template <typename T, typename U>
+-struct ClampedMulOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U y) {
+- // TODO(jschuh) Make this "constexpr if" once we're C++17.
+- if (ClampedMulFastOp<T, U>::is_supported)
+- return ClampedMulFastOp<T, U>::template Do<V>(x, y);
+-
+- V result = {};
+- const V saturated =
+- CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
+- return BASE_NUMERICS_LIKELY((CheckedMulOp<T, U>::Do(x, y, &result)))
+- ? result
+- : saturated;
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedDivOp {};
+-
+-template <typename T, typename U>
+-struct ClampedDivOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U y) {
+- V result = {};
+- if (BASE_NUMERICS_LIKELY((CheckedDivOp<T, U>::Do(x, y, &result))))
+- return result;
+- // Saturation goes to max, min, or NaN (if x is zero).
+- return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y))
+- : SaturationDefaultLimits<V>::NaN();
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedModOp {};
+-
+-template <typename T, typename U>
+-struct ClampedModOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U y) {
+- V result = {};
+- return BASE_NUMERICS_LIKELY((CheckedModOp<T, U>::Do(x, y, &result)))
+- ? result
+- : x;
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedLshOp {};
+-
+-// Left shift. Non-zero values saturate in the direction of the sign. A zero
+-// shifted by any value always results in zero.
+-template <typename T, typename U>
+-struct ClampedLshOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = T;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U shift) {
+- static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
+- if (BASE_NUMERICS_LIKELY(shift < std::numeric_limits<T>::digits)) {
+- // Shift as unsigned to avoid undefined behavior.
+- V result = static_cast<V>(as_unsigned(x) << shift);
+- // If the shift can be reversed, we know it was valid.
+- if (BASE_NUMERICS_LIKELY(result >> shift == x))
+- return result;
+- }
+- return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0;
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedRshOp {};
+-
+-// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0.
+-template <typename T, typename U>
+-struct ClampedRshOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = T;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U shift) {
+- static_assert(!std::is_signed<U>::value, "Shift value must be unsigned.");
+- // Signed right shift is odd, because it saturates to -1 or 0.
+- const V saturated = as_unsigned(V(0)) - IsValueNegative(x);
+- return BASE_NUMERICS_LIKELY(shift < IntegerBitsPlusSign<T>::value)
+- ? saturated_cast<V>(x >> shift)
+- : saturated;
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedAndOp {};
+-
+-template <typename T, typename U>
+-struct ClampedAndOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename std::make_unsigned<
+- typename MaxExponentPromotion<T, U>::type>::type;
+- template <typename V>
+- static constexpr V Do(T x, U y) {
+- return static_cast<result_type>(x) & static_cast<result_type>(y);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedOrOp {};
+-
+-// For simplicity we promote to unsigned integers.
+-template <typename T, typename U>
+-struct ClampedOrOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename std::make_unsigned<
+- typename MaxExponentPromotion<T, U>::type>::type;
+- template <typename V>
+- static constexpr V Do(T x, U y) {
+- return static_cast<result_type>(x) | static_cast<result_type>(y);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedXorOp {};
+-
+-// For simplicity we support only unsigned integers.
+-template <typename T, typename U>
+-struct ClampedXorOp<T,
+- U,
+- typename std::enable_if<std::is_integral<T>::value &&
+- std::is_integral<U>::value>::type> {
+- using result_type = typename std::make_unsigned<
+- typename MaxExponentPromotion<T, U>::type>::type;
+- template <typename V>
+- static constexpr V Do(T x, U y) {
+- return static_cast<result_type>(x) ^ static_cast<result_type>(y);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedMaxOp {};
+-
+-template <typename T, typename U>
+-struct ClampedMaxOp<
+- T,
+- U,
+- typename std::enable_if<std::is_arithmetic<T>::value &&
+- std::is_arithmetic<U>::value>::type> {
+- using result_type = typename MaxExponentPromotion<T, U>::type;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U y) {
+- return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x)
+- : saturated_cast<V>(y);
+- }
+-};
+-
+-template <typename T, typename U, class Enable = void>
+-struct ClampedMinOp {};
+-
+-template <typename T, typename U>
+-struct ClampedMinOp<
+- T,
+- U,
+- typename std::enable_if<std::is_arithmetic<T>::value &&
+- std::is_arithmetic<U>::value>::type> {
+- using result_type = typename LowestValuePromotion<T, U>::type;
+- template <typename V = result_type>
+- static constexpr V Do(T x, U y) {
+- return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x)
+- : saturated_cast<V>(y);
+- }
+-};
+-
+-// This is just boilerplate that wraps the standard floating point arithmetic.
+-// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
+-#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
+- template <typename T, typename U> \
+- struct Clamped##NAME##Op< \
+- T, U, \
+- typename std::enable_if<std::is_floating_point<T>::value || \
+- std::is_floating_point<U>::value>::type> { \
+- using result_type = typename MaxExponentPromotion<T, U>::type; \
+- template <typename V = result_type> \
+- static constexpr V Do(T x, U y) { \
+- return saturated_cast<V>(x OP y); \
+- } \
+- };
+-
+-BASE_FLOAT_ARITHMETIC_OPS(Add, +)
+-BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
+-BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
+-BASE_FLOAT_ARITHMETIC_OPS(Div, /)
+-
+-#undef BASE_FLOAT_ARITHMETIC_OPS
+-
+-} // namespace internal
+-} // namespace base
+-} // namespace pdfium
+-
+-#endif // THIRD_PARTY_BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions.h 2020-05-02 03:06:13.000000000 +0200
+@@ -8,21 +8,18 @@
+ #include <stddef.h>
+
+ #include <limits>
++#include <ostream>
+ #include <type_traits>
+
+ #include "third_party/base/numerics/safe_conversions_impl.h"
+
+-#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
++#if defined(__ARMEL__) || defined(__arch64__)
+ #include "third_party/base/numerics/safe_conversions_arm_impl.h"
+ #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1)
+ #else
+ #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0)
+ #endif
+
+-#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
+-#include <ostream>
+-#endif
+-
+ namespace pdfium {
+ namespace base {
+ namespace internal {
+@@ -312,14 +309,12 @@
+ return value;
+ }
+
+-#if !BASE_NUMERICS_DISABLE_OSTREAM_OPERATORS
+ // Overload the ostream output operator to make logging work nicely.
+ template <typename T>
+ std::ostream& operator<<(std::ostream& os, const StrictNumeric<T>& value) {
+ os << static_cast<T>(value);
+ return os;
+ }
+-#endif
+
+ #define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \
+ template <typename L, typename R, \
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions_impl.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_conversions_impl.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_conversions_impl.h 2020-05-02 03:06:13.000000000 +0200
+@@ -81,9 +81,8 @@
+ constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
+ static_assert(std::is_integral<T>::value, "Type must be integral");
+ using UnsignedT = typename std::make_unsigned<T>::type;
+- return IsValueNegative(value)
+- ? static_cast<UnsignedT>(0u - static_cast<UnsignedT>(value))
+- : static_cast<UnsignedT>(value);
++ return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value)
++ : static_cast<UnsignedT>(value);
+ }
+
+ // This allows us to switch paths on known compile-time constants.
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math.h 2020-05-02 03:06:13.000000000 +0200
+@@ -1,12 +1,510 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
++// Copyright 2014 The Chromium Authors. All rights reserved.
+ // Use of this source code is governed by a BSD-style license that can be
+ // found in the LICENSE file.
+
+ #ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_
+ #define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_
+
+-#include "third_party/base/numerics/checked_math.h"
+-#include "third_party/base/numerics/clamped_math.h"
+-#include "third_party/base/numerics/safe_conversions.h"
++#include <stddef.h>
++
++#include <limits>
++#include <type_traits>
++
++#include "third_party/base/numerics/safe_math_impl.h"
++
++namespace pdfium {
++namespace base {
++namespace internal {
++
++// CheckedNumeric<> implements all the logic and operators for detecting integer
++// boundary conditions such as overflow, underflow, and invalid conversions.
++// The CheckedNumeric type implicitly converts from floating point and integer
++// data types, and contains overloads for basic arithmetic operations (i.e.: +,
++// -, *, / for all types and %, <<, >>, &, |, ^ for integers). Type promotions
++// are a slightly modified version of the standard C arithmetic rules with the
++// two differences being that there is no default promotion to int and bitwise
++// logical operations always return an unsigned of the wider type.
++//
++// You may also use one of the variadic convenience functions, which accept
++// standard arithmetic or CheckedNumeric types, perform arithmetic operations,
++// and return a CheckedNumeric result. The supported functions are:
++// CheckAdd() - Addition.
++// CheckSub() - Subtraction.
++// CheckMul() - Multiplication.
++// CheckDiv() - Division.
++// CheckMod() - Modulous (integer only).
++// CheckLsh() - Left integer shift (integer only).
++// CheckRsh() - Right integer shift (integer only).
++// CheckAnd() - Bitwise AND (integer only with unsigned result).
++// CheckOr() - Bitwise OR (integer only with unsigned result).
++// CheckXor() - Bitwise XOR (integer only with unsigned result).
++// CheckMax() - Maximum of supplied arguments.
++// CheckMin() - Minimum of supplied arguments.
++//
++// The unary negation, increment, and decrement operators are supported, along
++// with the following unary arithmetic methods, which return a new
++// CheckedNumeric as a result of the operation:
++// Abs() - Absolute value.
++// UnsignedAbs() - Absolute value as an equal-width unsigned underlying type
++// (valid for only integral types).
++// Max() - Returns whichever is greater of the current instance or argument.
++// The underlying return type is whichever has the greatest magnitude.
++// Min() - Returns whichever is lowest of the current instance or argument.
++// The underlying return type is whichever has can represent the lowest
++// number in the smallest width (e.g. int8_t over unsigned, int over
++// int8_t, and float over int).
++//
++// The following methods convert from CheckedNumeric to standard numeric values:
++// AssignIfValid() - Assigns the underlying value to the supplied destination
++// pointer if the value is currently valid and within the range
++// supported by the destination type. Returns true on success.
++// ****************************************************************************
++// * WARNING: All of the following functions return a StrictNumeric, which *
++// * is valid for comparison and assignment operations, but will trigger a *
++// * compile failure on attempts to assign to a type of insufficient range. *
++// ****************************************************************************
++// IsValid() - Returns true if the underlying numeric value is valid (i.e. has
++// has not wrapped and is not the result of an invalid conversion).
++// ValueOrDie() - Returns the underlying value. If the state is not valid this
++// call will crash on a CHECK.
++// ValueOrDefault() - Returns the current value, or the supplied default if the
++// state is not valid (will not trigger a CHECK).
++//
++// The following wrapper functions can be used to avoid the template
++// disambiguator syntax when converting a destination type.
++// IsValidForType<>() in place of: a.template IsValid<Dst>()
++// ValueOrDieForType<>() in place of: a.template ValueOrDie()
++// ValueOrDefaultForType<>() in place of: a.template ValueOrDefault(default)
++//
++// The following are general utility methods that are useful for converting
++// between arithmetic types and CheckedNumeric types:
++// CheckedNumeric::Cast<Dst>() - Instance method returning a CheckedNumeric
++// derived from casting the current instance to a CheckedNumeric of
++// the supplied destination type.
++// MakeCheckedNum() - Creates a new CheckedNumeric from the underlying type of
++// the supplied arithmetic, CheckedNumeric, or StrictNumeric type.
++//
++// Comparison operations are explicitly not supported because they could result
++// in a crash on an unexpected CHECK condition. You should use patterns like the
++// following for comparisons:
++// CheckedNumeric<size_t> checked_size = untrusted_input_value;
++// checked_size += HEADER LENGTH;
++// if (checked_size.IsValid() && checked_size.ValueOrDie() < buffer_size)
++// Do stuff...
++
++template <typename T>
++class CheckedNumeric {
++ static_assert(std::is_arithmetic<T>::value,
++ "CheckedNumeric<T>: T must be a numeric type.");
++
++ public:
++ using type = T;
++
++ constexpr CheckedNumeric() = default;
++
++ // Copy constructor.
++ template <typename Src>
++ constexpr CheckedNumeric(const CheckedNumeric<Src>& rhs)
++ : state_(rhs.state_.value(), rhs.IsValid()) {}
++
++ template <typename Src>
++ friend class CheckedNumeric;
++
++ // This is not an explicit constructor because we implicitly upgrade regular
++ // numerics to CheckedNumerics to make them easier to use.
++ template <typename Src>
++ constexpr CheckedNumeric(Src value) // NOLINT(runtime/explicit)
++ : state_(value) {
++ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
++ }
++
++ // This is not an explicit constructor because we want a seamless conversion
++ // from StrictNumeric types.
++ template <typename Src>
++ constexpr CheckedNumeric(
++ StrictNumeric<Src> value) // NOLINT(runtime/explicit)
++ : state_(static_cast<Src>(value)) {}
++
++ // IsValid() - The public API to test if a CheckedNumeric is currently valid.
++ // A range checked destination type can be supplied using the Dst template
++ // parameter.
++ template <typename Dst = T>
++ constexpr bool IsValid() const {
++ return state_.is_valid() &&
++ IsValueInRangeForNumericType<Dst>(state_.value());
++ }
++
++ // AssignIfValid(Dst) - Assigns the underlying value if it is currently valid
++ // and is within the range supported by the destination type. Returns true if
++ // successful and false otherwise.
++ template <typename Dst>
++ constexpr bool AssignIfValid(Dst* result) const {
++ return IsValid<Dst>() ? ((*result = static_cast<Dst>(state_.value())), true)
++ : false;
++ }
++
++ // ValueOrDie() - The primary accessor for the underlying value. If the
++ // current state is not valid it will CHECK and crash.
++ // A range checked destination type can be supplied using the Dst template
++ // parameter, which will trigger a CHECK if the value is not in bounds for
++ // the destination.
++ // The CHECK behavior can be overridden by supplying a handler as a
++ // template parameter, for test code, etc. However, the handler cannot access
++ // the underlying value, and it is not available through other means.
++ template <typename Dst = T, class CheckHandler = CheckOnFailure>
++ constexpr StrictNumeric<Dst> ValueOrDie() const {
++ return IsValid<Dst>() ? static_cast<Dst>(state_.value())
++ : CheckHandler::template HandleFailure<Dst>();
++ }
++
++ // ValueOrDefault(T default_value) - A convenience method that returns the
++ // current value if the state is valid, and the supplied default_value for
++ // any other state.
++ // A range checked destination type can be supplied using the Dst template
++ // parameter. WARNING: This function may fail to compile or CHECK at runtime
++ // if the supplied default_value is not within range of the destination type.
++ template <typename Dst = T, typename Src>
++ constexpr StrictNumeric<Dst> ValueOrDefault(const Src default_value) const {
++ return IsValid<Dst>() ? static_cast<Dst>(state_.value())
++ : checked_cast<Dst>(default_value);
++ }
++
++ // Returns a checked numeric of the specified type, cast from the current
++ // CheckedNumeric. If the current state is invalid or the destination cannot
++ // represent the result then the returned CheckedNumeric will be invalid.
++ template <typename Dst>
++ constexpr CheckedNumeric<typename UnderlyingType<Dst>::type> Cast() const {
++ return *this;
++ }
++
++ // This friend method is available solely for providing more detailed logging
++ // in the tests. Do not implement it in production code, because the
++ // underlying values may change at any time.
++ template <typename U>
++ friend U GetNumericValueForTest(const CheckedNumeric<U>& src);
++
++ // Prototypes for the supported arithmetic operator overloads.
++ template <typename Src>
++ CheckedNumeric& operator+=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator-=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator*=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator/=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator%=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator<<=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator>>=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator&=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator|=(const Src rhs);
++ template <typename Src>
++ CheckedNumeric& operator^=(const Src rhs);
++
++ constexpr CheckedNumeric operator-() const {
++ return CheckedNumeric<T>(
++ NegateWrapper(state_.value()),
++ IsValid() &&
++ (!std::is_signed<T>::value || std::is_floating_point<T>::value ||
++ NegateWrapper(state_.value()) !=
++ std::numeric_limits<T>::lowest()));
++ }
++
++ constexpr CheckedNumeric operator~() const {
++ return CheckedNumeric<decltype(InvertWrapper(T()))>(
++ InvertWrapper(state_.value()), IsValid());
++ }
++
++ constexpr CheckedNumeric Abs() const {
++ return CheckedNumeric<T>(
++ AbsWrapper(state_.value()),
++ IsValid() &&
++ (!std::is_signed<T>::value || std::is_floating_point<T>::value ||
++ AbsWrapper(state_.value()) != std::numeric_limits<T>::lowest()));
++ }
++
++ template <typename U>
++ constexpr CheckedNumeric<typename MathWrapper<CheckedMaxOp, T, U>::type> Max(
++ const U rhs) const {
++ using R = typename UnderlyingType<U>::type;
++ using result_type = typename MathWrapper<CheckedMaxOp, T, U>::type;
++ // TODO(jschuh): This can be converted to the MathOp version and remain
++ // constexpr once we have C++14 support.
++ return CheckedNumeric<result_type>(
++ static_cast<result_type>(
++ IsGreater<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
++ ? state_.value()
++ : Wrapper<U>::value(rhs)),
++ state_.is_valid() && Wrapper<U>::is_valid(rhs));
++ }
++
++ template <typename U>
++ constexpr CheckedNumeric<typename MathWrapper<CheckedMinOp, T, U>::type> Min(
++ const U rhs) const {
++ using R = typename UnderlyingType<U>::type;
++ using result_type = typename MathWrapper<CheckedMinOp, T, U>::type;
++ // TODO(jschuh): This can be converted to the MathOp version and remain
++ // constexpr once we have C++14 support.
++ return CheckedNumeric<result_type>(
++ static_cast<result_type>(
++ IsLess<T, R>::Test(state_.value(), Wrapper<U>::value(rhs))
++ ? state_.value()
++ : Wrapper<U>::value(rhs)),
++ state_.is_valid() && Wrapper<U>::is_valid(rhs));
++ }
++
++ // This function is available only for integral types. It returns an unsigned
++ // integer of the same width as the source type, containing the absolute value
++ // of the source, and properly handling signed min.
++ constexpr CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>
++ UnsignedAbs() const {
++ return CheckedNumeric<typename UnsignedOrFloatForSize<T>::type>(
++ SafeUnsignedAbs(state_.value()), state_.is_valid());
++ }
++
++ CheckedNumeric& operator++() {
++ *this += 1;
++ return *this;
++ }
++
++ CheckedNumeric operator++(int) {
++ CheckedNumeric value = *this;
++ *this += 1;
++ return value;
++ }
++
++ CheckedNumeric& operator--() {
++ *this -= 1;
++ return *this;
++ }
++
++ CheckedNumeric operator--(int) {
++ CheckedNumeric value = *this;
++ *this -= 1;
++ return value;
++ }
++
++ // These perform the actual math operations on the CheckedNumerics.
++ // Binary arithmetic operations.
++ template <template <typename, typename, typename> class M,
++ typename L,
++ typename R>
++ static CheckedNumeric MathOp(const L lhs, const R rhs) {
++ using Math = typename MathWrapper<M, L, R>::math;
++ T result = 0;
++ bool is_valid =
++ Wrapper<L>::is_valid(lhs) && Wrapper<R>::is_valid(rhs) &&
++ Math::Do(Wrapper<L>::value(lhs), Wrapper<R>::value(rhs), &result);
++ return CheckedNumeric<T>(result, is_valid);
++ }
++
++ // Assignment arithmetic operations.
++ template <template <typename, typename, typename> class M, typename R>
++ CheckedNumeric& MathOp(const R rhs) {
++ using Math = typename MathWrapper<M, T, R>::math;
++ T result = 0; // Using T as the destination saves a range check.
++ bool is_valid = state_.is_valid() && Wrapper<R>::is_valid(rhs) &&
++ Math::Do(state_.value(), Wrapper<R>::value(rhs), &result);
++ *this = CheckedNumeric<T>(result, is_valid);
++ return *this;
++ }
++
++ private:
++ CheckedNumericState<T> state_;
++
++ template <typename Src>
++ constexpr CheckedNumeric(Src value, bool is_valid)
++ : state_(value, is_valid) {}
++
++ // These wrappers allow us to handle state the same way for both
++ // CheckedNumeric and POD arithmetic types.
++ template <typename Src>
++ struct Wrapper {
++ static constexpr bool is_valid(Src) { return true; }
++ static constexpr Src value(Src value) { return value; }
++ };
++
++ template <typename Src>
++ struct Wrapper<CheckedNumeric<Src>> {
++ static constexpr bool is_valid(const CheckedNumeric<Src> v) {
++ return v.IsValid();
++ }
++ static constexpr Src value(const CheckedNumeric<Src> v) {
++ return v.state_.value();
++ }
++ };
++
++ template <typename Src>
++ struct Wrapper<StrictNumeric<Src>> {
++ static constexpr bool is_valid(const StrictNumeric<Src>) { return true; }
++ static constexpr Src value(const StrictNumeric<Src> v) {
++ return static_cast<Src>(v);
++ }
++ };
++};
++
++// Convenience functions to avoid the ugly template disambiguator syntax.
++template <typename Dst, typename Src>
++constexpr bool IsValidForType(const CheckedNumeric<Src> value) {
++ return value.template IsValid<Dst>();
++}
++
++template <typename Dst, typename Src>
++constexpr StrictNumeric<Dst> ValueOrDieForType(
++ const CheckedNumeric<Src> value) {
++ return value.template ValueOrDie<Dst>();
++}
++
++template <typename Dst, typename Src, typename Default>
++constexpr StrictNumeric<Dst> ValueOrDefaultForType(
++ const CheckedNumeric<Src> value,
++ const Default default_value) {
++ return value.template ValueOrDefault<Dst>(default_value);
++}
++
++// These variadic templates work out the return types.
++// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support.
++template <template <typename, typename, typename> class M,
++ typename L,
++ typename R,
++ typename... Args>
++struct ResultType;
++
++template <template <typename, typename, typename> class M,
++ typename L,
++ typename R>
++struct ResultType<M, L, R> {
++ using type = typename MathWrapper<M, L, R>::type;
++};
++
++template <template <typename, typename, typename> class M,
++ typename L,
++ typename R,
++ typename... Args>
++struct ResultType {
++ using type =
++ typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type;
++};
++
++// Convience wrapper to return a new CheckedNumeric from the provided arithmetic
++// or CheckedNumericType.
++template <typename T>
++constexpr CheckedNumeric<typename UnderlyingType<T>::type> MakeCheckedNum(
++ const T value) {
++ return value;
++}
++
++// These implement the variadic wrapper for the math operations.
++template <template <typename, typename, typename> class M,
++ typename L,
++ typename R>
++CheckedNumeric<typename MathWrapper<M, L, R>::type> ChkMathOp(const L lhs,
++ const R rhs) {
++ using Math = typename MathWrapper<M, L, R>::math;
++ return CheckedNumeric<typename Math::result_type>::template MathOp<M>(lhs,
++ rhs);
++}
++
++// General purpose wrapper template for arithmetic operations.
++template <template <typename, typename, typename> class M,
++ typename L,
++ typename R,
++ typename... Args>
++CheckedNumeric<typename ResultType<M, L, R, Args...>::type>
++ChkMathOp(const L lhs, const R rhs, const Args... args) {
++ auto tmp = ChkMathOp<M>(lhs, rhs);
++ return tmp.IsValid() ? ChkMathOp<M>(tmp, args...)
++ : decltype(ChkMathOp<M>(tmp, args...))(tmp);
++}
++
++// The following macros are just boilerplate for the standard arithmetic
++// operator overloads and variadic function templates. A macro isn't the nicest
++// solution, but it beats rewriting these over and over again.
++#define BASE_NUMERIC_ARITHMETIC_VARIADIC(NAME) \
++ template <typename L, typename R, typename... Args> \
++ CheckedNumeric<typename ResultType<Checked##NAME##Op, L, R, Args...>::type> \
++ Check##NAME(const L lhs, const R rhs, const Args... args) { \
++ return ChkMathOp<Checked##NAME##Op, L, R, Args...>(lhs, rhs, args...); \
++ }
++
++#define BASE_NUMERIC_ARITHMETIC_OPERATORS(NAME, OP, COMPOUND_OP) \
++ /* Binary arithmetic operator for all CheckedNumeric operations. */ \
++ template <typename L, typename R, \
++ typename std::enable_if<IsCheckedOp<L, R>::value>::type* = \
++ nullptr> \
++ CheckedNumeric<typename MathWrapper<Checked##NAME##Op, L, R>::type> \
++ operator OP(const L lhs, const R rhs) { \
++ return decltype(lhs OP rhs)::template MathOp<Checked##NAME##Op>(lhs, rhs); \
++ } \
++ /* Assignment arithmetic operator implementation from CheckedNumeric. */ \
++ template <typename L> \
++ template <typename R> \
++ CheckedNumeric<L>& CheckedNumeric<L>::operator COMPOUND_OP(const R rhs) { \
++ return MathOp<Checked##NAME##Op>(rhs); \
++ } \
++ /* Variadic arithmetic functions that return CheckedNumeric. */ \
++ BASE_NUMERIC_ARITHMETIC_VARIADIC(NAME)
++
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Add, +, +=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Sub, -, -=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Mul, *, *=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Div, /, /=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Mod, %, %=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Lsh, <<, <<=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Rsh, >>, >>=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(And, &, &=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Or, |, |=)
++BASE_NUMERIC_ARITHMETIC_OPERATORS(Xor, ^, ^=)
++BASE_NUMERIC_ARITHMETIC_VARIADIC(Max)
++BASE_NUMERIC_ARITHMETIC_VARIADIC(Min)
++
++#undef BASE_NUMERIC_ARITHMETIC_VARIADIC
++#undef BASE_NUMERIC_ARITHMETIC_OPERATORS
++
++// These are some extra StrictNumeric operators to support simple pointer
++// arithmetic with our result types. Since wrapping on a pointer is always
++// bad, we trigger the CHECK condition here.
++template <typename L, typename R>
++L* operator+(L* lhs, const StrictNumeric<R> rhs) {
++ uintptr_t result = CheckAdd(reinterpret_cast<uintptr_t>(lhs),
++ CheckMul(sizeof(L), static_cast<R>(rhs)))
++ .template ValueOrDie<uintptr_t>();
++ return reinterpret_cast<L*>(result);
++}
++
++template <typename L, typename R>
++L* operator-(L* lhs, const StrictNumeric<R> rhs) {
++ uintptr_t result = CheckSub(reinterpret_cast<uintptr_t>(lhs),
++ CheckMul(sizeof(L), static_cast<R>(rhs)))
++ .template ValueOrDie<uintptr_t>();
++ return reinterpret_cast<L*>(result);
++}
++
++} // namespace internal
++
++using internal::CheckedNumeric;
++using internal::IsValidForType;
++using internal::ValueOrDieForType;
++using internal::ValueOrDefaultForType;
++using internal::MakeCheckedNum;
++using internal::CheckMax;
++using internal::CheckMin;
++using internal::CheckAdd;
++using internal::CheckSub;
++using internal::CheckMul;
++using internal::CheckDiv;
++using internal::CheckMod;
++using internal::CheckLsh;
++using internal::CheckRsh;
++using internal::CheckAnd;
++using internal::CheckOr;
++using internal::CheckXor;
++
++} // namespace base
++} // namespace pdfium
+
+ #endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_arm_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_arm_impl.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_arm_impl.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_arm_impl.h 1970-01-01 01:00:00.000000000 +0100
+@@ -1,124 +0,0 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
+-// Use of this source code is governed by a BSD-style license that can be
+-// found in the LICENSE file.
+-
+-#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
+-#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
+-
+-#include <cassert>
+-#include <limits>
+-#include <type_traits>
+-
+-#include "third_party/base/numerics/safe_conversions.h"
+-
+-namespace pdfium {
+-namespace base {
+-namespace internal {
+-
+-template <typename T, typename U>
+-struct CheckedMulFastAsmOp {
+- static const bool is_supported =
+- FastIntegerArithmeticPromotion<T, U>::is_contained;
+-
+- // The following is much more efficient than the Clang and GCC builtins for
+- // performing overflow-checked multiplication when a twice wider type is
+- // available. The below compiles down to 2-3 instructions, depending on the
+- // width of the types in use.
+- // As an example, an int32_t multiply compiles to:
+- // smull r0, r1, r0, r1
+- // cmp r1, r1, asr #31
+- // And an int16_t multiply compiles to:
+- // smulbb r1, r1, r0
+- // asr r2, r1, #16
+- // cmp r2, r1, asr #15
+- template <typename V>
+- __attribute__((always_inline)) static bool Do(T x, U y, V* result) {
+- using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+- Promotion presult;
+-
+- presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
+- *result = static_cast<V>(presult);
+- return IsValueInRangeForNumericType<V>(presult);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedAddFastAsmOp {
+- static const bool is_supported =
+- BigEnoughPromotion<T, U>::is_contained &&
+- IsTypeInRangeForNumericType<
+- int32_t,
+- typename BigEnoughPromotion<T, U>::type>::value;
+-
+- template <typename V>
+- __attribute__((always_inline)) static V Do(T x, U y) {
+- // This will get promoted to an int, so let the compiler do whatever is
+- // clever and rely on the saturated cast to bounds check.
+- if (IsIntegerArithmeticSafe<int, T, U>::value)
+- return saturated_cast<V>(x + y);
+-
+- int32_t result;
+- int32_t x_i32 = checked_cast<int32_t>(x);
+- int32_t y_i32 = checked_cast<int32_t>(y);
+-
+- asm("qadd %[result], %[first], %[second]"
+- : [result] "=r"(result)
+- : [first] "r"(x_i32), [second] "r"(y_i32));
+- return saturated_cast<V>(result);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedSubFastAsmOp {
+- static const bool is_supported =
+- BigEnoughPromotion<T, U>::is_contained &&
+- IsTypeInRangeForNumericType<
+- int32_t,
+- typename BigEnoughPromotion<T, U>::type>::value;
+-
+- template <typename V>
+- __attribute__((always_inline)) static V Do(T x, U y) {
+- // This will get promoted to an int, so let the compiler do whatever is
+- // clever and rely on the saturated cast to bounds check.
+- if (IsIntegerArithmeticSafe<int, T, U>::value)
+- return saturated_cast<V>(x - y);
+-
+- int32_t result;
+- int32_t x_i32 = checked_cast<int32_t>(x);
+- int32_t y_i32 = checked_cast<int32_t>(y);
+-
+- asm("qsub %[result], %[first], %[second]"
+- : [result] "=r"(result)
+- : [first] "r"(x_i32), [second] "r"(y_i32));
+- return saturated_cast<V>(result);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedMulFastAsmOp {
+- static const bool is_supported = CheckedMulFastAsmOp<T, U>::is_supported;
+-
+- template <typename V>
+- __attribute__((always_inline)) static V Do(T x, U y) {
+- // Use the CheckedMulFastAsmOp for full-width 32-bit values, because
+- // it's fewer instructions than promoting and then saturating.
+- if (!IsIntegerArithmeticSafe<int32_t, T, U>::value &&
+- !IsIntegerArithmeticSafe<uint32_t, T, U>::value) {
+- V result;
+- if (CheckedMulFastAsmOp<T, U>::Do(x, y, &result))
+- return result;
+- return CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
+- }
+-
+- assert((FastIntegerArithmeticPromotion<T, U>::is_contained));
+- using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
+- return saturated_cast<V>(static_cast<Promotion>(x) *
+- static_cast<Promotion>(y));
+- }
+-};
+-
+-} // namespace internal
+-} // namespace base
+-} // namespace pdfium
+-
+-#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_ARM_IMPL_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_clang_gcc_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_clang_gcc_impl.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_clang_gcc_impl.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_clang_gcc_impl.h 1970-01-01 01:00:00.000000000 +0100
+@@ -1,159 +0,0 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
+-// Use of this source code is governed by a BSD-style license that can be
+-// found in the LICENSE file.
+-
+-#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
+-#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
+-
+-#include <cassert>
+-#include <limits>
+-#include <type_traits>
+-
+-#include "third_party/base/numerics/safe_conversions.h"
+-
+-#if !defined(__native_client__) && (defined(__ARMEL__) || defined(__arch64__))
+-#include "third_party/base/numerics/safe_math_arm_impl.h"
+-#define BASE_HAS_ASSEMBLER_SAFE_MATH (1)
+-#else
+-#define BASE_HAS_ASSEMBLER_SAFE_MATH (0)
+-#endif
+-
+-namespace pdfium {
+-namespace base {
+-namespace internal {
+-
+-// These are the non-functioning boilerplate implementations of the optimized
+-// safe math routines.
+-#if !BASE_HAS_ASSEMBLER_SAFE_MATH
+-template <typename T, typename U>
+-struct CheckedMulFastAsmOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr bool Do(T, U, V*) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<bool>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedAddFastAsmOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr V Do(T, U) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<V>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedSubFastAsmOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr V Do(T, U) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<V>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedMulFastAsmOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr V Do(T, U) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<V>();
+- }
+-};
+-#endif // BASE_HAS_ASSEMBLER_SAFE_MATH
+-#undef BASE_HAS_ASSEMBLER_SAFE_MATH
+-
+-template <typename T, typename U>
+-struct CheckedAddFastOp {
+- static const bool is_supported = true;
+- template <typename V>
+- __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
+- return !__builtin_add_overflow(x, y, result);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct CheckedSubFastOp {
+- static const bool is_supported = true;
+- template <typename V>
+- __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
+- return !__builtin_sub_overflow(x, y, result);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct CheckedMulFastOp {
+-#if defined(__clang__)
+- // TODO(jschuh): Get the Clang runtime library issues sorted out so we can
+- // support full-width, mixed-sign multiply builtins.
+- // https://crbug.com/613003
+- // We can support intptr_t, uintptr_t, or a smaller common type.
+- static const bool is_supported =
+- (IsTypeInRangeForNumericType<intptr_t, T>::value &&
+- IsTypeInRangeForNumericType<intptr_t, U>::value) ||
+- (IsTypeInRangeForNumericType<uintptr_t, T>::value &&
+- IsTypeInRangeForNumericType<uintptr_t, U>::value);
+-#else
+- static const bool is_supported = true;
+-#endif
+- template <typename V>
+- __attribute__((always_inline)) static constexpr bool Do(T x, U y, V* result) {
+- return CheckedMulFastAsmOp<T, U>::is_supported
+- ? CheckedMulFastAsmOp<T, U>::Do(x, y, result)
+- : !__builtin_mul_overflow(x, y, result);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedAddFastOp {
+- static const bool is_supported = ClampedAddFastAsmOp<T, U>::is_supported;
+- template <typename V>
+- __attribute__((always_inline)) static V Do(T x, U y) {
+- return ClampedAddFastAsmOp<T, U>::template Do<V>(x, y);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedSubFastOp {
+- static const bool is_supported = ClampedSubFastAsmOp<T, U>::is_supported;
+- template <typename V>
+- __attribute__((always_inline)) static V Do(T x, U y) {
+- return ClampedSubFastAsmOp<T, U>::template Do<V>(x, y);
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedMulFastOp {
+- static const bool is_supported = ClampedMulFastAsmOp<T, U>::is_supported;
+- template <typename V>
+- __attribute__((always_inline)) static V Do(T x, U y) {
+- return ClampedMulFastAsmOp<T, U>::template Do<V>(x, y);
+- }
+-};
+-
+-template <typename T>
+-struct ClampedNegFastOp {
+- static const bool is_supported = std::is_signed<T>::value;
+- __attribute__((always_inline)) static T Do(T value) {
+- // Use this when there is no assembler path available.
+- if (!ClampedSubFastAsmOp<T, T>::is_supported) {
+- T result;
+- return !__builtin_sub_overflow(T(0), value, &result)
+- ? result
+- : std::numeric_limits<T>::max();
+- }
+-
+- // Fallback to the normal subtraction path.
+- return ClampedSubFastOp<T, T>::template Do<T>(T(0), value);
+- }
+-};
+-
+-} // namespace internal
+-} // namespace base
+-} // namespace pdfium
+-
+-#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_CLANG_GCC_IMPL_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_impl.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_impl.h 1970-01-01 01:00:00.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_impl.h 2020-05-02 03:06:13.000000000 +0200
+@@ -0,0 +1,647 @@
++// Copyright 2014 The Chromium Authors. All rights reserved.
++// Use of this source code is governed by a BSD-style license that can be
++// found in the LICENSE file.
++
++#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
++#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
++
++#include <stddef.h>
++#include <stdint.h>
++
++#include <climits>
++#include <cmath>
++#include <cstdlib>
++#include <limits>
++#include <type_traits>
++
++#include "third_party/base/numerics/safe_conversions.h"
++
++namespace pdfium {
++namespace base {
++namespace internal {
++
++// Everything from here up to the floating point operations is portable C++,
++// but it may not be fast. This code could be split based on
++// platform/architecture and replaced with potentially faster implementations.
++
++// This is used for UnsignedAbs, where we need to support floating-point
++// template instantiations even though we don't actually support the operations.
++// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
++// so the float versions will not compile.
++template <typename Numeric,
++ bool IsInteger = std::is_integral<Numeric>::value,
++ bool IsFloat = std::is_floating_point<Numeric>::value>
++struct UnsignedOrFloatForSize;
++
++template <typename Numeric>
++struct UnsignedOrFloatForSize<Numeric, true, false> {
++ using type = typename std::make_unsigned<Numeric>::type;
++};
++
++template <typename Numeric>
++struct UnsignedOrFloatForSize<Numeric, false, true> {
++ using type = Numeric;
++};
++
++// Probe for builtin math overflow support on Clang and version check on GCC.
++#if defined(EMSCRIPTEN)
++// Emscripten Clang reports that it has the builtins, it may be lowered to an
++// instruction that is unsupported in asm.js
++#define USE_OVERFLOW_BUILTINS (0)
++#elif defined(__has_builtin)
++#define USE_OVERFLOW_BUILTINS (__has_builtin(__builtin_add_overflow))
++#elif defined(__GNUC__)
++#define USE_OVERFLOW_BUILTINS (__GNUC__ >= 5)
++#else
++#define USE_OVERFLOW_BUILTINS (0)
++#endif
++
++template <typename T>
++bool CheckedAddImpl(T x, T y, T* result) {
++ static_assert(std::is_integral<T>::value, "Type must be integral");
++ // Since the value of x+y is undefined if we have a signed type, we compute
++ // it using the unsigned type of the same size.
++ using UnsignedDst = typename std::make_unsigned<T>::type;
++ using SignedDst = typename std::make_signed<T>::type;
++ auto ux = static_cast<UnsignedDst>(x);
++ auto uy = static_cast<UnsignedDst>(y);
++ auto uresult = static_cast<UnsignedDst>(ux + uy);
++ *result = static_cast<T>(uresult);
++ // Addition is valid if the sign of (x + y) is equal to either that of x or
++ // that of y.
++ return (std::is_signed<T>::value)
++ ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
++ : uresult >= uy; // Unsigned is either valid or underflow.
++}
++
++template <typename T, typename U, class Enable = void>
++struct CheckedAddOp {};
++
++template <typename T, typename U>
++struct CheckedAddOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename MaxExponentPromotion<T, U>::type;
++ template <typename V>
++ static bool Do(T x, U y, V* result) {
++#if USE_OVERFLOW_BUILTINS
++ return !__builtin_add_overflow(x, y, result);
++#else
++ using Promotion = typename BigEnoughPromotion<T, U>::type;
++ Promotion presult;
++ // Fail if either operand is out of range for the promoted type.
++ // TODO(jschuh): This could be made to work for a broader range of values.
++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
++ IsValueInRangeForNumericType<Promotion>(y);
++
++ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
++ presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
++ } else {
++ is_valid &= CheckedAddImpl(static_cast<Promotion>(x),
++ static_cast<Promotion>(y), &presult);
++ }
++ *result = static_cast<V>(presult);
++ return is_valid && IsValueInRangeForNumericType<V>(presult);
++#endif
++ }
++};
++
++template <typename T>
++bool CheckedSubImpl(T x, T y, T* result) {
++ static_assert(std::is_integral<T>::value, "Type must be integral");
++ // Since the value of x+y is undefined if we have a signed type, we compute
++ // it using the unsigned type of the same size.
++ using UnsignedDst = typename std::make_unsigned<T>::type;
++ using SignedDst = typename std::make_signed<T>::type;
++ auto ux = static_cast<UnsignedDst>(x);
++ auto uy = static_cast<UnsignedDst>(y);
++ auto uresult = static_cast<UnsignedDst>(ux - uy);
++ *result = static_cast<T>(uresult);
++ // Subtraction is valid if either x and y have same sign, or (x-y) and x have
++ // the same sign.
++ return (std::is_signed<T>::value)
++ ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
++ : x >= y;
++}
++
++template <typename T, typename U, class Enable = void>
++struct CheckedSubOp {};
++
++template <typename T, typename U>
++struct CheckedSubOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename MaxExponentPromotion<T, U>::type;
++ template <typename V>
++ static bool Do(T x, U y, V* result) {
++#if USE_OVERFLOW_BUILTINS
++ return !__builtin_sub_overflow(x, y, result);
++#else
++ using Promotion = typename BigEnoughPromotion<T, U>::type;
++ Promotion presult;
++ // Fail if either operand is out of range for the promoted type.
++ // TODO(jschuh): This could be made to work for a broader range of values.
++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
++ IsValueInRangeForNumericType<Promotion>(y);
++
++ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
++ presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
++ } else {
++ is_valid &= CheckedSubImpl(static_cast<Promotion>(x),
++ static_cast<Promotion>(y), &presult);
++ }
++ *result = static_cast<V>(presult);
++ return is_valid && IsValueInRangeForNumericType<V>(presult);
++#endif
++ }
++};
++
++template <typename T>
++bool CheckedMulImpl(T x, T y, T* result) {
++ static_assert(std::is_integral<T>::value, "Type must be integral");
++ // Since the value of x*y is potentially undefined if we have a signed type,
++ // we compute it using the unsigned type of the same size.
++ using UnsignedDst = typename std::make_unsigned<T>::type;
++ using SignedDst = typename std::make_signed<T>::type;
++ const UnsignedDst ux = SafeUnsignedAbs(x);
++ const UnsignedDst uy = SafeUnsignedAbs(y);
++ auto uresult = static_cast<UnsignedDst>(ux * uy);
++ const bool is_negative =
++ std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
++ *result = is_negative ? 0 - uresult : uresult;
++ // We have a fast out for unsigned identity or zero on the second operand.
++ // After that it's an unsigned overflow check on the absolute value, with
++ // a +1 bound for a negative result.
++ return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
++ ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
++}
++
++template <typename T, typename U, class Enable = void>
++struct CheckedMulOp {};
++
++template <typename T, typename U>
++struct CheckedMulOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename MaxExponentPromotion<T, U>::type;
++ template <typename V>
++ static bool Do(T x, U y, V* result) {
++#if USE_OVERFLOW_BUILTINS
++#if defined(__clang__)
++ // TODO(jschuh): Get the Clang runtime library issues sorted out so we can
++ // support full-width, mixed-sign multiply builtins.
++ // https://crbug.com/613003
++ static const bool kUseMaxInt =
++ // Narrower type than uintptr_t is always safe.
++ std::numeric_limits<__typeof__(x * y)>::digits <
++ std::numeric_limits<intptr_t>::digits ||
++ // Safe for intptr_t and uintptr_t if the sign matches.
++ (IntegerBitsPlusSign<__typeof__(x * y)>::value ==
++ IntegerBitsPlusSign<intptr_t>::value &&
++ std::is_signed<T>::value == std::is_signed<U>::value);
++#else
++ static const bool kUseMaxInt = true;
++#endif
++ if (kUseMaxInt)
++ return !__builtin_mul_overflow(x, y, result);
++#endif
++ using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
++ Promotion presult;
++ // Fail if either operand is out of range for the promoted type.
++ // TODO(jschuh): This could be made to work for a broader range of values.
++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
++ IsValueInRangeForNumericType<Promotion>(y);
++
++ if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
++ presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
++ } else {
++ is_valid &= CheckedMulImpl(static_cast<Promotion>(x),
++ static_cast<Promotion>(y), &presult);
++ }
++ *result = static_cast<V>(presult);
++ return is_valid && IsValueInRangeForNumericType<V>(presult);
++ }
++};
++
++// Avoid poluting the namespace once we're done with the macro.
++#undef USE_OVERFLOW_BUILTINS
++
++// Division just requires a check for a zero denominator or an invalid negation
++// on signed min/-1.
++template <typename T>
++bool CheckedDivImpl(T x, T y, T* result) {
++ static_assert(std::is_integral<T>::value, "Type must be integral");
++ if (y && (!std::is_signed<T>::value ||
++ x != std::numeric_limits<T>::lowest() || y != static_cast<T>(-1))) {
++ *result = x / y;
++ return true;
++ }
++ return false;
++}
++
++template <typename T, typename U, class Enable = void>
++struct CheckedDivOp {};
++
++template <typename T, typename U>
++struct CheckedDivOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename MaxExponentPromotion<T, U>::type;
++ template <typename V>
++ static bool Do(T x, U y, V* result) {
++ using Promotion = typename BigEnoughPromotion<T, U>::type;
++ Promotion presult;
++ // Fail if either operand is out of range for the promoted type.
++ // TODO(jschuh): This could be made to work for a broader range of values.
++ bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
++ IsValueInRangeForNumericType<Promotion>(y);
++ is_valid &= CheckedDivImpl(static_cast<Promotion>(x),
++ static_cast<Promotion>(y), &presult);
++ *result = static_cast<V>(presult);
++ return is_valid && IsValueInRangeForNumericType<V>(presult);
++ }
++};
++
++template <typename T>
++bool CheckedModImpl(T x, T y, T* result) {
++ static_assert(std::is_integral<T>::value, "Type must be integral");
++ if (y > 0) {
++ *result = static_cast<T>(x % y);
++ return true;
++ }
++ return false;
++}
++
++template <typename T, typename U, class Enable = void>
++struct CheckedModOp {};
++
++template <typename T, typename U>
++struct CheckedModOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename MaxExponentPromotion<T, U>::type;
++ template <typename V>
++ static bool Do(T x, U y, V* result) {
++ using Promotion = typename BigEnoughPromotion<T, U>::type;
++ Promotion presult;
++ bool is_valid = CheckedModImpl(static_cast<Promotion>(x),
++ static_cast<Promotion>(y), &presult);
++ *result = static_cast<V>(presult);
++ return is_valid && IsValueInRangeForNumericType<V>(presult);
++ }
++};
++
++template <typename T, typename U, class Enable = void>
++struct CheckedLshOp {};
++
++// Left shift. Shifts less than 0 or greater than or equal to the number
++// of bits in the promoted type are undefined. Shifts of negative values
++// are undefined. Otherwise it is defined when the result fits.
++template <typename T, typename U>
++struct CheckedLshOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = T;
++ template <typename V>
++ static bool Do(T x, U shift, V* result) {
++ using ShiftType = typename std::make_unsigned<T>::type;
++ static const ShiftType kBitWidth = IntegerBitsPlusSign<T>::value;
++ const auto real_shift = static_cast<ShiftType>(shift);
++ // Signed shift is not legal on negative values.
++ if (!IsValueNegative(x) && real_shift < kBitWidth) {
++ // Just use a multiplication because it's easy.
++ // TODO(jschuh): This could probably be made more efficient.
++ if (!std::is_signed<T>::value || real_shift != kBitWidth - 1)
++ return CheckedMulOp<T, T>::Do(x, static_cast<T>(1) << shift, result);
++ return !x; // Special case zero for a full width signed shift.
++ }
++ return false;
++ }
++};
++
++template <typename T, typename U, class Enable = void>
++struct CheckedRshOp {};
++
++// Right shift. Shifts less than 0 or greater than or equal to the number
++// of bits in the promoted type are undefined. Otherwise, it is always defined,
++// but a right shift of a negative value is implementation-dependent.
++template <typename T, typename U>
++struct CheckedRshOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = T;
++ template <typename V = result_type>
++ static bool Do(T x, U shift, V* result) {
++ // Use the type conversion push negative values out of range.
++ using ShiftType = typename std::make_unsigned<T>::type;
++ if (static_cast<ShiftType>(shift) < IntegerBitsPlusSign<T>::value) {
++ T tmp = x >> shift;
++ *result = static_cast<V>(tmp);
++ return IsValueInRangeForNumericType<V>(tmp);
++ }
++ return false;
++ }
++};
++
++template <typename T, typename U, class Enable = void>
++struct CheckedAndOp {};
++
++// For simplicity we support only unsigned integer results.
++template <typename T, typename U>
++struct CheckedAndOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename std::make_unsigned<
++ typename MaxExponentPromotion<T, U>::type>::type;
++ template <typename V = result_type>
++ static bool Do(T x, U y, V* result) {
++ result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
++ *result = static_cast<V>(tmp);
++ return IsValueInRangeForNumericType<V>(tmp);
++ }
++};
++
++template <typename T, typename U, class Enable = void>
++struct CheckedOrOp {};
++
++// For simplicity we support only unsigned integers.
++template <typename T, typename U>
++struct CheckedOrOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename std::make_unsigned<
++ typename MaxExponentPromotion<T, U>::type>::type;
++ template <typename V = result_type>
++ static bool Do(T x, U y, V* result) {
++ result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
++ *result = static_cast<V>(tmp);
++ return IsValueInRangeForNumericType<V>(tmp);
++ }
++};
++
++template <typename T, typename U, class Enable = void>
++struct CheckedXorOp {};
++
++// For simplicity we support only unsigned integers.
++template <typename T, typename U>
++struct CheckedXorOp<T,
++ U,
++ typename std::enable_if<std::is_integral<T>::value &&
++ std::is_integral<U>::value>::type> {
++ using result_type = typename std::make_unsigned<
++ typename MaxExponentPromotion<T, U>::type>::type;
++ template <typename V = result_type>
++ static bool Do(T x, U y, V* result) {
++ result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
++ *result = static_cast<V>(tmp);
++ return IsValueInRangeForNumericType<V>(tmp);
++ }
++};
++
++// Max doesn't really need to be implemented this way because it can't fail,
++// but it makes the code much cleaner to use the MathOp wrappers.
++template <typename T, typename U, class Enable = void>
++struct CheckedMaxOp {};
++
++template <typename T, typename U>
++struct CheckedMaxOp<
++ T,
++ U,
++ typename std::enable_if<std::is_arithmetic<T>::value &&
++ std::is_arithmetic<U>::value>::type> {
++ using result_type = typename MaxExponentPromotion<T, U>::type;
++ template <typename V = result_type>
++ static bool Do(T x, U y, V* result) {
++ *result = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
++ : static_cast<result_type>(y);
++ return true;
++ }
++};
++
++// Min doesn't really need to be implemented this way because it can't fail,
++// but it makes the code much cleaner to use the MathOp wrappers.
++template <typename T, typename U, class Enable = void>
++struct CheckedMinOp {};
++
++template <typename T, typename U>
++struct CheckedMinOp<
++ T,
++ U,
++ typename std::enable_if<std::is_arithmetic<T>::value &&
++ std::is_arithmetic<U>::value>::type> {
++ using result_type = typename LowestValuePromotion<T, U>::type;
++ template <typename V = result_type>
++ static bool Do(T x, U y, V* result) {
++ *result = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
++ : static_cast<result_type>(y);
++ return true;
++ }
++};
++
++// This is just boilerplate that wraps the standard floating point arithmetic.
++// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
++#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
++ template <typename T, typename U> \
++ struct Checked##NAME##Op< \
++ T, U, typename std::enable_if<std::is_floating_point<T>::value || \
++ std::is_floating_point<U>::value>::type> { \
++ using result_type = typename MaxExponentPromotion<T, U>::type; \
++ template <typename V> \
++ static bool Do(T x, U y, V* result) { \
++ using Promotion = typename MaxExponentPromotion<T, U>::type; \
++ Promotion presult = x OP y; \
++ *result = static_cast<V>(presult); \
++ return IsValueInRangeForNumericType<V>(presult); \
++ } \
++ };
++
++BASE_FLOAT_ARITHMETIC_OPS(Add, +)
++BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
++BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
++BASE_FLOAT_ARITHMETIC_OPS(Div, /)
++
++#undef BASE_FLOAT_ARITHMETIC_OPS
++
++// Wrap the unary operations to allow SFINAE when instantiating integrals versus
++// floating points. These don't perform any overflow checking. Rather, they
++// exhibit well-defined overflow semantics and rely on the caller to detect
++// if an overflow occured.
++
++template <typename T,
++ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
++constexpr T NegateWrapper(T value) {
++ using UnsignedT = typename std::make_unsigned<T>::type;
++ // This will compile to a NEG on Intel, and is normal negation on ARM.
++ return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
++}
++
++template <
++ typename T,
++ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
++constexpr T NegateWrapper(T value) {
++ return -value;
++}
++
++template <typename T,
++ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
++constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
++ return ~value;
++}
++
++template <typename T,
++ typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
++constexpr T AbsWrapper(T value) {
++ return static_cast<T>(SafeUnsignedAbs(value));
++}
++
++template <
++ typename T,
++ typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
++constexpr T AbsWrapper(T value) {
++ return value < 0 ? -value : value;
++}
++
++// Floats carry around their validity state with them, but integers do not. So,
++// we wrap the underlying value in a specialization in order to hide that detail
++// and expose an interface via accessors.
++enum NumericRepresentation {
++ NUMERIC_INTEGER,
++ NUMERIC_FLOATING,
++ NUMERIC_UNKNOWN
++};
++
++template <typename NumericType>
++struct GetNumericRepresentation {
++ static const NumericRepresentation value =
++ std::is_integral<NumericType>::value
++ ? NUMERIC_INTEGER
++ : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
++ : NUMERIC_UNKNOWN);
++};
++
++template <typename T, NumericRepresentation type =
++ GetNumericRepresentation<T>::value>
++class CheckedNumericState {};
++
++// Integrals require quite a bit of additional housekeeping to manage state.
++template <typename T>
++class CheckedNumericState<T, NUMERIC_INTEGER> {
++ private:
++ // is_valid_ precedes value_ because member intializers in the constructors
++ // are evaluated in field order, and is_valid_ must be read when initializing
++ // value_.
++ bool is_valid_;
++ T value_;
++
++ // Ensures that a type conversion does not trigger undefined behavior.
++ template <typename Src>
++ static constexpr T WellDefinedConversionOrZero(const Src value,
++ const bool is_valid) {
++ using SrcType = typename internal::UnderlyingType<Src>::type;
++ return (std::is_integral<SrcType>::value || is_valid)
++ ? static_cast<T>(value)
++ : static_cast<T>(0);
++ }
++
++ public:
++ template <typename Src, NumericRepresentation type>
++ friend class CheckedNumericState;
++
++ constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
++
++ template <typename Src>
++ constexpr CheckedNumericState(Src value, bool is_valid)
++ : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
++ value_(WellDefinedConversionOrZero(value, is_valid_)) {
++ static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
++ }
++
++ // Copy constructor.
++ template <typename Src>
++ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
++ : is_valid_(rhs.IsValid()),
++ value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
++
++ template <typename Src>
++ constexpr explicit CheckedNumericState(Src value)
++ : is_valid_(IsValueInRangeForNumericType<T>(value)),
++ value_(WellDefinedConversionOrZero(value, is_valid_)) {}
++
++ constexpr bool is_valid() const { return is_valid_; }
++ constexpr T value() const { return value_; }
++};
++
++// Floating points maintain their own validity, but need translation wrappers.
++template <typename T>
++class CheckedNumericState<T, NUMERIC_FLOATING> {
++ private:
++ T value_;
++
++ // Ensures that a type conversion does not trigger undefined behavior.
++ template <typename Src>
++ static constexpr T WellDefinedConversionOrNaN(const Src value,
++ const bool is_valid) {
++ using SrcType = typename internal::UnderlyingType<Src>::type;
++ return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
++ NUMERIC_RANGE_CONTAINED ||
++ is_valid)
++ ? static_cast<T>(value)
++ : std::numeric_limits<T>::quiet_NaN();
++ }
++
++ public:
++ template <typename Src, NumericRepresentation type>
++ friend class CheckedNumericState;
++
++ constexpr CheckedNumericState() : value_(0.0) {}
++
++ template <typename Src>
++ constexpr CheckedNumericState(Src value, bool is_valid)
++ : value_(WellDefinedConversionOrNaN(value, is_valid)) {}
++
++ template <typename Src>
++ constexpr explicit CheckedNumericState(Src value)
++ : value_(WellDefinedConversionOrNaN(
++ value,
++ IsValueInRangeForNumericType<T>(value))) {}
++
++ // Copy constructor.
++ template <typename Src>
++ constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
++ : value_(WellDefinedConversionOrNaN(
++ rhs.value(),
++ rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
++
++ constexpr bool is_valid() const {
++ // Written this way because std::isfinite is not reliably constexpr.
++ // TODO(jschuh): Fix this if the libraries ever get fixed.
++ return value_ <= std::numeric_limits<T>::max() &&
++ value_ >= std::numeric_limits<T>::lowest();
++ }
++ constexpr T value() const { return value_; }
++};
++
++template <template <typename, typename, typename> class M,
++ typename L,
++ typename R>
++struct MathWrapper {
++ using math = M<typename UnderlyingType<L>::type,
++ typename UnderlyingType<R>::type,
++ void>;
++ using type = typename math::result_type;
++};
++
++} // namespace internal
++} // namespace base
++} // namespace pdfium
++
++#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
+diff -Naur workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_shared_impl.h workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_shared_impl.h
+--- workdir/UnpackedTarball/pdfium/third_party/base/numerics/safe_math_shared_impl.h 2020-10-26 19:26:04.000000000 +0100
++++ workdir/UnpackedTarball/pdfium.4137/third_party/base/numerics/safe_math_shared_impl.h 1970-01-01 01:00:00.000000000 +0100
+@@ -1,242 +0,0 @@
+-// Copyright 2017 The Chromium Authors. All rights reserved.
+-// Use of this source code is governed by a BSD-style license that can be
+-// found in the LICENSE file.
+-
+-#ifndef THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
+-#define THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_
+-
+-#include <stddef.h>
+-#include <stdint.h>
+-
+-#include <cassert>
+-#include <climits>
+-#include <cmath>
+-#include <cstdlib>
+-#include <limits>
+-#include <type_traits>
+-
+-#include "third_party/base/numerics/safe_conversions.h"
+-
+-#ifdef __asmjs__
+-// Optimized safe math instructions are incompatible with asmjs.
+-#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
+-// Where available use builtin math overflow support on Clang and GCC.
+-#elif !defined(__native_client__) && \
+- ((defined(__clang__) && \
+- ((__clang_major__ > 3) || \
+- (__clang_major__ == 3 && __clang_minor__ >= 4))) || \
+- (defined(__GNUC__) && __GNUC__ >= 5))
+-#include "third_party/base/numerics/safe_math_clang_gcc_impl.h"
+-#define BASE_HAS_OPTIMIZED_SAFE_MATH (1)
+-#else
+-#define BASE_HAS_OPTIMIZED_SAFE_MATH (0)
+-#endif
+-
+-namespace pdfium {
+-namespace base {
+-namespace internal {
+-
+-// These are the non-functioning boilerplate implementations of the optimized
+-// safe math routines.
+-#if !BASE_HAS_OPTIMIZED_SAFE_MATH
+-template <typename T, typename U>
+-struct CheckedAddFastOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr bool Do(T, U, V*) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<bool>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct CheckedSubFastOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr bool Do(T, U, V*) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<bool>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct CheckedMulFastOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr bool Do(T, U, V*) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<bool>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedAddFastOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr V Do(T, U) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<V>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedSubFastOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr V Do(T, U) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<V>();
+- }
+-};
+-
+-template <typename T, typename U>
+-struct ClampedMulFastOp {
+- static const bool is_supported = false;
+- template <typename V>
+- static constexpr V Do(T, U) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<V>();
+- }
+-};
+-
+-template <typename T>
+-struct ClampedNegFastOp {
+- static const bool is_supported = false;
+- static constexpr T Do(T) {
+- // Force a compile failure if instantiated.
+- return CheckOnFailure::template HandleFailure<T>();
+- }
+-};
+-#endif // BASE_HAS_OPTIMIZED_SAFE_MATH
+-#undef BASE_HAS_OPTIMIZED_SAFE_MATH
+-
+-// This is used for UnsignedAbs, where we need to support floating-point
+-// template instantiations even though we don't actually support the operations.
+-// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
+-// so the float versions will not compile.
+-template <typename Numeric,
+- bool IsInteger = std::is_integral<Numeric>::value,
+- bool IsFloat = std::is_floating_point<Numeric>::value>
+-struct UnsignedOrFloatForSize;
+-
+-template <typename Numeric>
+-struct UnsignedOrFloatForSize<Numeric, true, false> {
+- using type = typename std::make_unsigned<Numeric>::type;
+-};
+-
+-template <typename Numeric>
+-struct UnsignedOrFloatForSize<Numeric, false, true> {
+- using type = Numeric;
+-};
+-
+-// Wrap the unary operations to allow SFINAE when instantiating integrals versus
+-// floating points. These don't perform any overflow checking. Rather, they
+-// exhibit well-defined overflow semantics and rely on the caller to detect
+-// if an overflow occured.
+-
+-template <typename T,
+- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+-constexpr T NegateWrapper(T value) {
+- using UnsignedT = typename std::make_unsigned<T>::type;
+- // This will compile to a NEG on Intel, and is normal negation on ARM.
+- return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
+-}
+-
+-template <
+- typename T,
+- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+-constexpr T NegateWrapper(T value) {
+- return -value;
+-}
+-
+-template <typename T,
+- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+-constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
+- return ~value;
+-}
+-
+-template <typename T,
+- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
+-constexpr T AbsWrapper(T value) {
+- return static_cast<T>(SafeUnsignedAbs(value));
+-}
+-
+-template <
+- typename T,
+- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
+-constexpr T AbsWrapper(T value) {
+- return value < 0 ? -value : value;
+-}
+-
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R>
+-struct MathWrapper {
+- using math = M<typename UnderlyingType<L>::type,
+- typename UnderlyingType<R>::type,
+- void>;
+- using type = typename math::result_type;
+-};
+-
+-// These variadic templates work out the return types.
+-// TODO(jschuh): Rip all this out once we have C++14 non-trailing auto support.
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R,
+- typename... Args>
+-struct ResultType;
+-
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R>
+-struct ResultType<M, L, R> {
+- using type = typename MathWrapper<M, L, R>::type;
+-};
+-
+-template <template <typename, typename, typename> class M,
+- typename L,
+- typename R,
+- typename... Args>
+-struct ResultType {
+- using type =
+- typename ResultType<M, typename ResultType<M, L, R>::type, Args...>::type;
+-};
+-
+-// The following macros are just boilerplate for the standard arithmetic
+-// operator overloads and variadic function templates. A macro isn't the nicest
+-// solution, but it beats rewriting these over and over again.
+-#define BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME) \
+- template <typename L, typename R, typename... Args> \
+- constexpr CLASS##Numeric< \
+- typename ResultType<CLASS##OP_NAME##Op, L, R, Args...>::type> \
+- CL_ABBR##OP_NAME(const L lhs, const R rhs, const Args... args) { \
+- return CL_ABBR##MathOp<CLASS##OP_NAME##Op, L, R, Args...>(lhs, rhs, \
+- args...); \
+- }
+-
+-#define BASE_NUMERIC_ARITHMETIC_OPERATORS(CLASS, CL_ABBR, OP_NAME, OP, CMP_OP) \
+- /* Binary arithmetic operator for all CLASS##Numeric operations. */ \
+- template <typename L, typename R, \
+- typename std::enable_if<Is##CLASS##Op<L, R>::value>::type* = \
+- nullptr> \
+- constexpr CLASS##Numeric< \
+- typename MathWrapper<CLASS##OP_NAME##Op, L, R>::type> \
+- operator OP(const L lhs, const R rhs) { \
+- return decltype(lhs OP rhs)::template MathOp<CLASS##OP_NAME##Op>(lhs, \
+- rhs); \
+- } \
+- /* Assignment arithmetic operator implementation from CLASS##Numeric. */ \
+- template <typename L> \
+- template <typename R> \
+- constexpr CLASS##Numeric<L>& CLASS##Numeric<L>::operator CMP_OP( \
+- const R rhs) { \
+- return MathOp<CLASS##OP_NAME##Op>(rhs); \
+- } \
+- /* Variadic arithmetic functions that return CLASS##Numeric. */ \
+- BASE_NUMERIC_ARITHMETIC_VARIADIC(CLASS, CL_ABBR, OP_NAME)
+-
+-} // namespace internal
+-} // namespace base
+-} // namespace pdfium
+-
+-#endif // THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_SHARED_IMPL_H_