diff options
Diffstat (limited to 'chart2/source/view/charttypes/Splines.cxx')
-rw-r--r-- | chart2/source/view/charttypes/Splines.cxx | 981 |
1 files changed, 0 insertions, 981 deletions
diff --git a/chart2/source/view/charttypes/Splines.cxx b/chart2/source/view/charttypes/Splines.cxx deleted file mode 100644 index e676da37a..000000000 --- a/chart2/source/view/charttypes/Splines.cxx +++ /dev/null @@ -1,981 +0,0 @@ -/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ -/************************************************************************* - * - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * Copyright 2000, 2010 Oracle and/or its affiliates. - * - * OpenOffice.org - a multi-platform office productivity suite - * - * This file is part of OpenOffice.org. - * - * OpenOffice.org is free software: you can redistribute it and/or modify - * it under the terms of the GNU Lesser General Public License version 3 - * only, as published by the Free Software Foundation. - * - * OpenOffice.org is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU Lesser General Public License version 3 for more details - * (a copy is included in the LICENSE file that accompanied this code). - * - * You should have received a copy of the GNU Lesser General Public License - * version 3 along with OpenOffice.org. If not, see - * <http://www.openoffice.org/license.html> - * for a copy of the LGPLv3 License. - * - ************************************************************************/ - - -// MARKER(update_precomp.py): autogen include statement, do not remove -#include "precompiled_chart2.hxx" - -#include "Splines.hxx" -#include <rtl/math.hxx> - -#include <vector> -#include <algorithm> -#include <functional> - -//............................................................................. -namespace chart -{ -//............................................................................. -using namespace ::com::sun::star; - -namespace -{ - -typedef ::std::pair< double, double > tPointType; -typedef ::std::vector< tPointType > tPointVecType; -typedef tPointVecType::size_type lcl_tSizeType; - -class lcl_SplineCalculation -{ -public: - /** @descr creates an object that calculates cublic splines on construction - - @param rSortedPoints the points for which splines shall be calculated, they need to be sorted in x values - @param fY1FirstDerivation the resulting spline should have the first - derivation equal to this value at the x-value of the first point - of rSortedPoints. If fY1FirstDerivation is set to infinity, a natural - spline is calculated. - @param fYnFirstDerivation the resulting spline should have the first - derivation equal to this value at the x-value of the last point - of rSortedPoints - */ - lcl_SplineCalculation( const tPointVecType & rSortedPoints, - double fY1FirstDerivation, - double fYnFirstDerivation ); - - - /** @descr creates an object that calculates cublic splines on construction - for the special case of periodic cubic spline - - @param rSortedPoints the points for which splines shall be calculated, - they need to be sorted in x values. First and last y value must be equal - */ - lcl_SplineCalculation( const tPointVecType & rSortedPoints); - - - /** @descr this function corresponds to the function splint in [1]. - - [1] Numerical Recipies in C, 2nd edition - William H. Press, et al., - Section 3.3, page 116 - */ - double GetInterpolatedValue( double x ); - -private: - /// a copy of the points given in the CTOR - tPointVecType m_aPoints; - - /// the result of the Calculate() method - ::std::vector< double > m_aSecDerivY; - - double m_fYp1; - double m_fYpN; - - // these values are cached for performance reasons - lcl_tSizeType m_nKLow; - lcl_tSizeType m_nKHigh; - double m_fLastInterpolatedValue; - - /** @descr this function corresponds to the function spline in [1]. - - [1] Numerical Recipies in C, 2nd edition - William H. Press, et al., - Section 3.3, page 115 - */ - void Calculate(); - - /** @descr this function corresponds to the algoritm 4.76 in [2] and - theorem 5.3.7 in [3] - - [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen - Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004) - Section 4.10.2, page 175 - - [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur - Veranstaltung im WS 2007/2008 - Fachhochschule Aachen, 2009-09-19 - Numerik_01.pdf, downloaded 2011-04-19 via - http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191 - Section 5.3, page 129 - */ - void CalculatePeriodic(); -}; - -//----------------------------------------------------------------------------- - -lcl_SplineCalculation::lcl_SplineCalculation( - const tPointVecType & rSortedPoints, - double fY1FirstDerivation, - double fYnFirstDerivation ) - : m_aPoints( rSortedPoints ), - m_fYp1( fY1FirstDerivation ), - m_fYpN( fYnFirstDerivation ), - m_nKLow( 0 ), - m_nKHigh( rSortedPoints.size() - 1 ) -{ - ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False ); - Calculate(); -} - -//----------------------------------------------------------------------------- - -lcl_SplineCalculation::lcl_SplineCalculation( - const tPointVecType & rSortedPoints) - : m_aPoints( rSortedPoints ), - m_fYp1( 0.0 ), /*dummy*/ - m_fYpN( 0.0 ), /*dummy*/ - m_nKLow( 0 ), - m_nKHigh( rSortedPoints.size() - 1 ) -{ - ::rtl::math::setInf( &m_fLastInterpolatedValue, sal_False ); - CalculatePeriodic(); -} -//----------------------------------------------------------------------------- - - -void lcl_SplineCalculation::Calculate() -{ - if( m_aPoints.size() <= 1 ) - return; - - // n is the last valid index to m_aPoints - const lcl_tSizeType n = m_aPoints.size() - 1; - ::std::vector< double > u( n ); - m_aSecDerivY.resize( n + 1, 0.0 ); - - if( ::rtl::math::isInf( m_fYp1 ) ) - { - // natural spline - m_aSecDerivY[ 0 ] = 0.0; - u[ 0 ] = 0.0; - } - else - { - m_aSecDerivY[ 0 ] = -0.5; - double xDiff = ( m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ); - u[ 0 ] = ( 3.0 / xDiff ) * - ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 ); - } - - for( lcl_tSizeType i = 1; i < n; ++i ) - { - tPointType - p_i = m_aPoints[ i ], - p_im1 = m_aPoints[ i - 1 ], - p_ip1 = m_aPoints[ i + 1 ]; - - double sig = ( p_i.first - p_im1.first ) / - ( p_ip1.first - p_im1.first ); - double p = sig * m_aSecDerivY[ i - 1 ] + 2.0; - - m_aSecDerivY[ i ] = ( sig - 1.0 ) / p; - u[ i ] = - ( ( p_ip1.second - p_i.second ) / - ( p_ip1.first - p_i.first ) ) - - ( ( p_i.second - p_im1.second ) / - ( p_i.first - p_im1.first ) ); - u[ i ] = - ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first ) - - sig * u[ i - 1 ] ) / p; - } - - // initialize to values for natural splines (used for m_fYpN equal to - // infinity) - double qn = 0.0; - double un = 0.0; - - if( ! ::rtl::math::isInf( m_fYpN ) ) - { - qn = 0.5; - double xDiff = ( m_aPoints[ n ].first - m_aPoints[ n - 1 ].first ); - un = ( 3.0 / xDiff ) * - ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff ); - } - - m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) * ( qn * m_aSecDerivY[ n - 1 ] + 1.0 ); - - // note: the algorithm in [1] iterates from n-1 to 0, but as size_type - // may be (usuall is) an unsigned type, we can not write k >= 0, as this - // is always true. - for( lcl_tSizeType k = n; k > 0; --k ) - { - ( m_aSecDerivY[ k - 1 ] *= m_aSecDerivY[ k ] ) += u[ k - 1 ]; - } -} - -void lcl_SplineCalculation::CalculatePeriodic() -{ - if( m_aPoints.size() <= 1 ) - return; - - // n is the last valid index to m_aPoints - const lcl_tSizeType n = m_aPoints.size() - 1; - - // u is used for vector f in A*c=f in [3], vector a in Ax=a in [2], - // vector z in Rtranspose z = a and Dr=z in [2] - ::std::vector< double > u( n + 1, 0.0 ); - - // used for vector c in A*c=f and vector x in Ax=a in [2] - m_aSecDerivY.resize( n + 1, 0.0 ); - - // diagonal of matrix A, used index 1 to n - ::std::vector< double > Adiag( n + 1, 0.0 ); - - // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n] - ::std::vector< double > Aupper( n + 1, 0.0 ); - - // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n - ::std::vector< double > Ddiag( n+1, 0.0 ); - - // right column of matrix R, used index 1 to n-2 - ::std::vector< double > Rright( n-1, 0.0 ); - - // secondary diagonal of matrix R, used index 1 to n-1 - ::std::vector< double > Rupper( n, 0.0 ); - - if (n<4) - { - if (n==3) - { // special handling of three polynomials, that are four points - double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ; - double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ; - double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ; - double xDiff2p1 = xDiff2 + xDiff1; - double xDiff0p2 = xDiff0 + xDiff2; - double xDiff1p0 = xDiff1 + xDiff0; - double fFaktor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0); - double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0; - double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1; - double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2; - m_aSecDerivY[ 1 ] = fFaktor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2); - m_aSecDerivY[ 2 ] = fFaktor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0); - m_aSecDerivY[ 3 ] = fFaktor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1); - m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ]; - } - else if (n==2) - { - // special handling of two polynomials, that are three points - double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first; - double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first; - double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1); - m_aSecDerivY[ 1 ] = fHelp ; - m_aSecDerivY[ 2 ] = -fHelp ; - m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ; - } - else - { - // should be handled with natural spline, periodic not possible. - } - } - else - { - double xDiff_i =1.0; // values are dummy; - double xDiff_im1 =1.0; - double yDiff_i = 1.0; - double yDiff_im1 = 1.0; - // fill matrix A and fill right side vector u - for( lcl_tSizeType i=1; i<n; ++i ) - { - xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first; - xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first; - yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1; - yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i; - Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i); - Aupper[ i ] = xDiff_i; - u [ i ] = 3 * (yDiff_i - yDiff_im1); - } - xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first; - xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first; - yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1; - yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i; - Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i); - Aupper[ n ] = xDiff_i; - u [ n ] = 3 * (yDiff_i - yDiff_im1); - - // decomposite A=(R transpose)*D*R - Ddiag[1] = Adiag[1]; - Rupper[1] = Aupper[1] / Ddiag[1]; - Rright[1] = Aupper[n] / Ddiag[1]; - for( lcl_tSizeType i=2; i<=n-2; ++i ) - { - Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ]; - Rupper[ i ] = Aupper[ i ] / Ddiag[ i ]; - Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ]; - } - Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ]; - Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ]; - double fSum = 0.0; - for ( lcl_tSizeType i=1; i<=n-2; ++i ) - { - fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ]; - } - Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]! - - // solve forward (R transpose)*z=u, overwrite u with z - for ( lcl_tSizeType i=2; i<=n-1; ++i ) - { - u[ i ] -= u[ i-1 ]* Rupper[ i-1 ]; - } - fSum = 0.0; - for ( lcl_tSizeType i=1; i<=n-2; ++i ) - { - fSum += Rright[ i ] * u[ i ]; - } - u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ]; - - // solve forward D*r=z, z is in u, overwrite u with r - for ( lcl_tSizeType i=1; i<=n; ++i ) - { - u[ i ] = u[i] / Ddiag[ i ]; - } - - // solve backward R*x= r, r is in u - m_aSecDerivY[ n ] = u[ n ]; - m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ]; - for ( lcl_tSizeType i=n-2; i>=1; --i) - { - m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ]; - } - // periodic - m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ]; - } - - // adapt m_aSecDerivY for usage in GetInterpolatedValue() - for( lcl_tSizeType i = 0; i <= n ; ++i ) - { - m_aSecDerivY[ i ] *= 2.0; - } - -} - -double lcl_SplineCalculation::GetInterpolatedValue( double x ) -{ - OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) && - ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ), - "Trying to extrapolate" ); - - const lcl_tSizeType n = m_aPoints.size() - 1; - if( x < m_fLastInterpolatedValue ) - { - m_nKLow = 0; - m_nKHigh = n; - - // calculate m_nKLow and m_nKHigh - // first initialization is done in CTOR - while( m_nKHigh - m_nKLow > 1 ) - { - lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2; - if( m_aPoints[ k ].first > x ) - m_nKHigh = k; - else - m_nKLow = k; - } - } - else - { - while( ( m_aPoints[ m_nKHigh ].first < x ) && - ( m_nKHigh <= n ) ) - { - ++m_nKHigh; - ++m_nKLow; - } - OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" ); - } - m_fLastInterpolatedValue = x; - - double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first; - OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" ); - - double a = ( m_aPoints[ m_nKHigh ].first - x ) / h; - double b = ( x - m_aPoints[ m_nKLow ].first ) / h; - - return ( a * m_aPoints[ m_nKLow ].second + - b * m_aPoints[ m_nKHigh ].second + - (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] + - ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) * - ( h*h ) / 6.0 ); -} - -//----------------------------------------------------------------------------- - -// helper methods for B-spline - -// Create parameter t_0 to t_n using the centripetal method with a power of 0.5 -bool createParameterT(const tPointVecType aUniquePoints, double* t) -{ // precondition: no adjacent identical points - // postcondition: 0 = t_0 < t_1 < ... < t_n = 1 - bool bIsSuccessful = true; - const lcl_tSizeType n = aUniquePoints.size() - 1; - t[0]=0.0; - double dx = 0.0; - double dy = 0.0; - double fDiffMax = 1.0; //dummy values - double fDenominator = 0.0; // initialized for summing up - for (lcl_tSizeType i=1; i<=n ; ++i) - { // 4th root(dx^2+dy^2) - dx = aUniquePoints[i].first - aUniquePoints[i-1].first; - dy = aUniquePoints[i].second - aUniquePoints[i-1].second; - // scaling to avoid underflow or overflow - fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy); - if (fDiffMax == 0.0) - { - bIsSuccessful = false; - break; - } - else - { - dx /= fDiffMax; - dy /= fDiffMax; - fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax); - } - } - if (fDenominator == 0.0) - { - bIsSuccessful = false; - } - if (bIsSuccessful) - { - for (lcl_tSizeType j=1; j<=n ; ++j) - { - double fNumerator = 0.0; - for (lcl_tSizeType i=1; i<=j ; ++i) - { - dx = aUniquePoints[i].first - aUniquePoints[i-1].first; - dy = aUniquePoints[i].second - aUniquePoints[i-1].second; - fDiffMax = (abs(dx)>abs(dy)) ? abs(dx) : abs(dy); - // same as above, so should not be zero - dx /= fDiffMax; - dy /= fDiffMax; - fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax); - } - t[j] = fNumerator / fDenominator; - - } - // postcondition check - t[n] = 1.0; - double fPrevious = 0.0; - for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i) - { - if (fPrevious >= t[i]) - { - bIsSuccessful = false; - } - else - { - fPrevious = t[i]; - } - } - } - return bIsSuccessful; -} - -void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, double* t, double* u) -{ // precondition: 0 = t_0 < t_1 < ... < t_n = 1 - for (lcl_tSizeType j = 0; j <= p; ++j) - { - u[j] = 0.0; - } - double fSum = 0.0; - for (lcl_tSizeType j = 1; j <= n-p; ++j ) - { - fSum = 0.0; - for (lcl_tSizeType i = j; i <= j+p-1; ++i) - { - fSum += t[i]; - } - u[j+p] = fSum / p ; - } - for (lcl_tSizeType j = n+1; j <= n+1+p; ++j) - { - u[j] = 1.0; - } -} - -void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN) -{ - // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero - double fRightFactor = 0.0; - double fLeftFactor = 0.0; - - // initialize with indicator function degree 0 - rowN[p] = 1.0; // all others are zero - - // calculate up to degree p - for (sal_uInt32 s = 1; s <= p; ++s) - { - // first element - fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] ); - // i-s "true index" - (i-p)"shift" = p-s - rowN[p-s] = fRightFactor * rowN[p-s+1]; - - // middle elements - for (sal_uInt32 j = s-1; j>=1 ; --j) - { - fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ; - fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] ); - // i-j "true index" - (i-p)"shift" = p-j - rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor * rowN[p-j+1]; - } - - // last element - fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] ); - // i "true index" - (i-p)"shift" = p - rowN[p] = fLeftFactor * rowN[p]; - } -} - -} // anonymous namespace - -//----------------------------------------------------------------------------- - -// Calculates uniform parametric splines with subinterval length 1, -// according ODF1.2 part 1, chapter 'chart interpolation'. -void SplineCalculater::CalculateCubicSplines( - const drawing::PolyPolygonShape3D& rInput - , drawing::PolyPolygonShape3D& rResult - , sal_uInt32 nGranularity ) -{ - OSL_PRECOND( nGranularity > 0, "Granularity is invalid" ); - - rResult.SequenceX.realloc(0); - rResult.SequenceY.realloc(0); - rResult.SequenceZ.realloc(0); - - sal_uInt32 nOuterCount = rInput.SequenceX.getLength(); - if( !nOuterCount ) - return; - - rResult.SequenceX.realloc(nOuterCount); - rResult.SequenceY.realloc(nOuterCount); - rResult.SequenceZ.realloc(nOuterCount); - - for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) - { - if( rInput.SequenceX[nOuter].getLength() <= 1 ) - continue; //we need at least two points - - sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 - const double* pOldX = rInput.SequenceX[nOuter].getConstArray(); - const double* pOldY = rInput.SequenceY[nOuter].getConstArray(); - const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray(); - - ::std::vector < double > aParameter(nMaxIndexPoints+1); - aParameter[0]=0.0; - for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ ) - { - aParameter[nIndex]=aParameter[nIndex-1]+1; - } - - // Split the calculation to X, Y and Z coordinate - tPointVecType aInputX; - aInputX.resize(nMaxIndexPoints+1); - tPointVecType aInputY; - aInputY.resize(nMaxIndexPoints+1); - tPointVecType aInputZ; - aInputZ.resize(nMaxIndexPoints+1); - for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ ) - { - aInputX[ nN ].first=aParameter[nN]; - aInputX[ nN ].second=pOldX[ nN ]; - aInputY[ nN ].first=aParameter[nN]; - aInputY[ nN ].second=pOldY[ nN ]; - aInputZ[ nN ].first=aParameter[nN]; - aInputZ[ nN ].second=pOldZ[ nN ]; - } - - // generate a spline for each coordinate. It holds the complete - // information to calculate each point of the curve - double fXDerivation; - double fYDerivation; - lcl_SplineCalculation* aSplineX; - lcl_SplineCalculation* aSplineY; - // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in - // a data series are equal. No spline calculation needed, but copy - // coordinate to output - - if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] && - pOldY[ 0 ] == pOldY[nMaxIndexPoints] && - pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] && - nMaxIndexPoints >=2 ) - { // periodic spline - aSplineX = new lcl_SplineCalculation( aInputX) ; - aSplineY = new lcl_SplineCalculation( aInputY) ; - // aSplineZ = new lcl_SplineCalculation( aInputZ) ; - } - else // generate the kind "natural spline" - { - double fInfty; - ::rtl::math::setInf( &fInfty, sal_False ); - fXDerivation = fInfty; - fYDerivation = fInfty; - aSplineX = new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation ); - aSplineY = new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation ); - } - - // fill result polygon with calculated values - rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1); - rResult.SequenceY[nOuter].realloc( nMaxIndexPoints*nGranularity + 1); - rResult.SequenceZ[nOuter].realloc( nMaxIndexPoints*nGranularity + 1); - - double* pNewX = rResult.SequenceX[nOuter].getArray(); - double* pNewY = rResult.SequenceY[nOuter].getArray(); - double* pNewZ = rResult.SequenceZ[nOuter].getArray(); - - sal_uInt32 nNewPointIndex = 0; // Index in result points - // needed for inner loop - double fInc; // step for intermediate points - sal_uInt32 nj; // for loop - double fParam; // a intermediate parameter value - - for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ ) - { - // given point is surely a curve point - pNewX[nNewPointIndex] = pOldX[ni]; - pNewY[nNewPointIndex] = pOldY[ni]; - pNewZ[nNewPointIndex] = pOldZ[ni]; - nNewPointIndex++; - - // calculate intermediate points - fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity ); - for(nj = 1; nj < nGranularity; nj++) - { - fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) ); - - pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam ); - pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam ); - // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam ); - pNewZ[nNewPointIndex] = pOldZ[ni]; - nNewPointIndex++; - } - } - // add last point - pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints]; - pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints]; - pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints]; - delete aSplineX; - delete aSplineY; - // delete aSplineZ; - } -} - - -// The implementation follows closely ODF1.2 spec, chapter chart:interpolation -// using the same names as in spec as far as possible, without prefix. -// More details can be found on -// Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes -// Unit 9: Interpolation and Approximation/Curve Global Interpolation -// Department of Computer Science, Michigan Technological University -// http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/ -// [last called 2011-05-20] -void SplineCalculater::CalculateBSplines( - const ::com::sun::star::drawing::PolyPolygonShape3D& rInput - , ::com::sun::star::drawing::PolyPolygonShape3D& rResult - , sal_uInt32 nResolution - , sal_uInt32 nDegree ) -{ - // nResolution is ODF1.2 file format attribut chart:spline-resolution and - // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition. - // nDegree is ODF1.2 file format attribut chart:spline-order and - // ODF1.2 spec variable p - OSL_ASSERT( nResolution > 1 ); - OSL_ASSERT( nDegree >= 1 ); - sal_uInt32 p = nDegree; - - rResult.SequenceX.realloc(0); - rResult.SequenceY.realloc(0); - rResult.SequenceZ.realloc(0); - - sal_Int32 nOuterCount = rInput.SequenceX.getLength(); - if( !nOuterCount ) - return; // no input - - rResult.SequenceX.realloc(nOuterCount); - rResult.SequenceY.realloc(nOuterCount); - rResult.SequenceZ.realloc(nOuterCount); - - for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter ) - { - if( rInput.SequenceX[nOuter].getLength() <= 1 ) - continue; // need at least 2 points, next piece of the series - - // Copy input to vector of points and remove adjacent double points. The - // Z-coordinate is equal for all points in a series and holds the depth - // in 3D mode, simple copying is enough. - lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1 - const double* pOldX = rInput.SequenceX[nOuter].getConstArray(); - const double* pOldY = rInput.SequenceY[nOuter].getConstArray(); - const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray(); - double fZCoordinate = pOldZ[0]; - tPointVecType aPointsIn; - aPointsIn.resize(nMaxIndexPoints+1); - for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i ) - { - aPointsIn[ i ].first = pOldX[i]; - aPointsIn[ i ].second = pOldY[i]; - } - aPointsIn.erase( ::std::unique( aPointsIn.begin(), aPointsIn.end()), - aPointsIn.end() ); - - // n is the last valid index to the reduced aPointsIn - // There are n+1 valid data points. - const lcl_tSizeType n = aPointsIn.size() - 1; - if (n < 1 || p > n) - continue; // need at least 2 points, degree p needs at least n+1 points - // next piece of series - - double* t = new double [n+1]; - if (!createParameterT(aPointsIn, t)) - { - delete[] t; - continue; // next piece of series - } - - lcl_tSizeType m = n + p + 1; - double* u = new double [m+1]; - createKnotVector(n, p, t, u); - - // The matrix N contains the B-spline basis functions applied to parameters. - // In each row only p+1 adjacent elements are non-zero. The starting - // column in a higher row is equal or greater than in the lower row. - // To store this matrix the non-zero elements are shifted to column 0 - // and the amount of shifting is remembered in an array. - double** aMatN = new double*[n+1]; - for (lcl_tSizeType row = 0; row <=n; ++row) - { - aMatN[row] = new double[p+1]; - for (sal_uInt32 col = 0; col <= p; ++col) - aMatN[row][col] = 0.0; - } - lcl_tSizeType* aShift = new lcl_tSizeType[n+1]; - aMatN[0][0] = 1.0; //all others are zero - aShift[0] = 0; - aMatN[n][0] = 1.0; - aShift[n] = n; - for (lcl_tSizeType k = 1; k<=n-1; ++k) - { // all basis functions are applied to t_k, - // results are elements in row k in matrix N - - // find the one interval with u_i <= t_k < u_(i+1) - // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1 - lcl_tSizeType i = p; - while (!(u[i] <= t[k] && t[k] < u[i+1])) - { - ++i; - } - - // index in reduced matrix aMatN = (index in full matrix N) - (i-p) - aShift[k] = i - p; - - applyNtoParameterT(i, t[k], p, u, aMatN[k]); - } // next row k - - // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn - // aPointsIn is overwritten with C. - // Gaussian elimination is possible without pivoting, see reference - lcl_tSizeType r = 0; // true row index - lcl_tSizeType c = 0; // true column index - double fDivisor = 1.0; // used for diagonal element - double fEliminate = 1.0; // used for the element, that will become zero - double fHelp; - tPointType aHelp; - lcl_tSizeType nHelp; // used in triangle change - bool bIsSuccessful = true; - for (c = 0 ; c <= n && bIsSuccessful; ++c) - { - // search for first non-zero downwards - r = c; - while ( aMatN[r][c-aShift[r]] == 0 && r < n) - { - ++r; - } - if (aMatN[r][c-aShift[r]] == 0.0) - { - // Matrix N is singular, although this is mathematically impossible - bIsSuccessful = false; - } - else - { - // exchange total row r with total row c if necessary - if (r != c) - { - for ( sal_uInt32 i = 0; i <= p ; ++i) - { - fHelp = aMatN[r][i]; - aMatN[r][i] = aMatN[c][i]; - aMatN[c][i] = fHelp; - } - aHelp = aPointsIn[r]; - aPointsIn[r] = aPointsIn[c]; - aPointsIn[c] = aHelp; - nHelp = aShift[r]; - aShift[r] = aShift[c]; - aShift[c] = nHelp; - } - - // divide row c, so that element(c,c) becomes 1 - fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above - for (sal_uInt32 i = 0; i <= p; ++i) - { - aMatN[c][i] /= fDivisor; - } - aPointsIn[c].first /= fDivisor; - aPointsIn[c].second /= fDivisor; - - // eliminate forward, examine row c+1 to n-1 (worst case) - // stop if first non-zero element in row has an higher column as c - // look at nShift for that, elements in nShift are equal or increasing - for ( r = c+1; aShift[r]<=c && r < n; ++r) - { - fEliminate = aMatN[r][0]; - if (fEliminate != 0.0) // else accidentally zero, nothing to do - { - for (sal_uInt32 i = 1; i <= p; ++i) - { - aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i]; - } - aMatN[r][p]=0; - aPointsIn[r].first -= fEliminate * aPointsIn[c].first; - aPointsIn[r].second -= fEliminate * aPointsIn[c].second; - ++aShift[r]; - } - } - } - }// upper triangle form is reached - if( bIsSuccessful) - { - // eliminate backwards, begin with last column - for (lcl_tSizeType cc = n; cc >= 1; --cc ) - { - // In row cc the diagonal element(cc,cc) == 1 and all elements left from - // diagonal are zero and do not influence other rows. - // Full matrix N has semibandwidth < p, therefore element(r,c) is - // zero, if abs(r-cc)>=p. abs(r-cc)=cc-r, because r<cc. - r = cc - 1; - while ( r !=0 && cc-r < p ) - { - fEliminate = aMatN[r][ cc - aShift[r] ]; - if ( fEliminate != 0.0) // else element is accidentically zero, no action needed - { - // row r -= fEliminate * row cc only relevant for right side - aMatN[r][cc - aShift[r]] = 0.0; - aPointsIn[r].first -= fEliminate * aPointsIn[cc].first; - aPointsIn[r].second -= fEliminate * aPointsIn[cc].second; - } - --r; - } - } - } // aPointsIn contains the control points now. - if (bIsSuccessful) - { - // calculate the intermediate points according given resolution - // using deBoor-Cox algorithm - lcl_tSizeType nNewSize = nResolution * n + 1; - rResult.SequenceX[nOuter].realloc(nNewSize); - rResult.SequenceY[nOuter].realloc(nNewSize); - rResult.SequenceZ[nOuter].realloc(nNewSize); - double* pNewX = rResult.SequenceX[nOuter].getArray(); - double* pNewY = rResult.SequenceY[nOuter].getArray(); - double* pNewZ = rResult.SequenceZ[nOuter].getArray(); - pNewX[0] = aPointsIn[0].first; - pNewY[0] = aPointsIn[0].second; - pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal - pNewX[nNewSize -1 ] = aPointsIn[n].first; - pNewY[nNewSize -1 ] = aPointsIn[n].second; - pNewZ[nNewSize -1 ] = fZCoordinate; - double* aP = new double[m+1]; - lcl_tSizeType nLow = 0; - for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex) - { - for (sal_uInt32 nResolutionStep = 1; - nResolutionStep <= nResolution && !( nTIndex == n-1 && nResolutionStep == nResolution); - ++nResolutionStep) - { - lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep; - double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution; - - // get index nLow, so that u[nLow]<= ux < u[nLow +1] - // continue from previous nLow - while ( u[nLow] <= ux) - { - ++nLow; - } - --nLow; - - // x-coordinate - for (lcl_tSizeType i = nLow-p; i <= nLow; ++i) - { - aP[i] = aPointsIn[i].first; - } - for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree) - { - double fFactor = 0.0; - for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i) - { - fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]); - aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i]; - } - } - pNewX[nNewIndex] = aP[nLow]; - - // y-coordinate - for (lcl_tSizeType i = nLow - p; i <= nLow; ++i) - { - aP[i] = aPointsIn[i].second; - } - for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree) - { - double fFactor = 0.0; - for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i) - { - fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]); - aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i]; - } - } - pNewY[nNewIndex] = aP[nLow]; - pNewZ[nNewIndex] = fZCoordinate; - } - } - delete[] aP; - } - delete[] aShift; - for (lcl_tSizeType row = 0; row <=n; ++row) - { - delete[] aMatN[row]; - } - delete[] aMatN; - delete[] u; - delete[] t; - - } // next piece of the series -} - -//............................................................................. -} //namespace chart -//............................................................................. - -/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |