
XMP SPECIFICATION PART 1
DATA MODEL, SERIALIZATION, AND

CORE PROPERTIES
April, 2012

Copyright © 2012 Adobe Systems Incorporated. All rights reserved.

Extensible Metadata Platform (XMP) Specification: Part 1, Data Model, Serialization, and Core Properties.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, ActionScript, Creative Suite, Photoshop, and the XMP logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries. MS-DOS, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Apple, Macintosh, Mac OS, and QuickTime are trademarks of Apple Computer, Inc., registered in the United
States and other countries. UNIX is a trademark in the United States and other countries, licensed exclusively through
X/Open Company, Ltd. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility
or liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to
this publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third party rights.

©Adobe Systems Incorporated, 2012 iii

ISO 16684-1:2011(E)

Contents Page

Preface . v
Introduction . vii
1 Scope . 1
2 Normative references . 1
3 Terms and definitions. 2
4 Notations . 3
5 Conformance. 3
5.1 General . 3
5.2 Conforming readers . 4
5.3 Conforming writers . 4
5.4 Conforming products . 4
6 Data model. 4
6.1 XMP packets. 4
6.2 XMP names. 5
6.3 XMP value forms . 6

6.3.1 General. 6
6.3.2 Simple values . 6
6.3.3 Structure values . 7
6.3.4 Array values . 7

6.4 Qualifiers . 8
7 Serialization. 9
7.1 General . 9
7.2 Equivalent RDF and XML . 9
7.3 Optional outer XML . 10

7.3.1 General. 10
7.3.2 XMP packet wrapper . 10
7.3.3 x:xmpmeta element . 11

7.4 rdf:RDF and rdf:Description elements. 11
7.5 Simple valued XMP properties . 12
7.6 Structure valued XMP properties . 13
7.7 Array valued XMP properties . 13
7.8 Qualifiers . 14
7.9 Equivalent forms of RDF. 16

7.9.1 General. 16
7.9.2 Allowed equivalent RDF . 16
7.9.3 Prohibited equivalent RDF . 20

8 Core properties . 20
8.1 Overview. 20
8.2 Core value types . 21

8.2.1 Basic value types . 21
8.2.2 Derived value types . 22

8.3 Dublin Core namespace . 25
8.4 XMP namespace . 27
8.5 XMP Rights Management namespace . 28
8.6 XMP Media Management namespace . 28
8.7 xmpidq namespace . 29

 Annex A
(informative)

Document and instance IDs . 31

ISO 16684-1:2011(E)

iv ©Adobe Systems Incorporated, 2012

 Annex B
(informative)

Implementation guidance . 33

 Annex C
(informative)

RDF parsing information . 35

Bibliography . 44

©Adobe Systems Incorporated, 2012 v

Preface

This document set provides a complete specification for the Extensible Metadata Platform (XMP), which
provides a standard format for the creation, processing, and interchange of metadata, for a wide variety of
resources.

The Specification has three parts:

• Part 1, Data Model, Serialization, and Core Properties, covers the basic metadata representation model
that is the foundation of the XMP standard format. The data model prescribes how XMP metadata can be
organized; it is independent of file format or specific usage. The serialization information prescribes how
the data model is represented in XML, specifically RDF/XML. Core properties are those XMP properties
that have general applicability across a broad range of resources; these include general-purpose
namespaces such as Dublin Core. This document also provides details needed to implement a metadata
manipulation system such as the XMP Toolkit (which is available from Adobe®).

• Part 2, Additional Properties, provides detailed property lists and descriptions for standard XMP metadata
namespaces beyond the core properties; these include special-purpose namespaces for Adobe
applications such as Photoshop®. It also provides information on extending existing namespaces and
creating new namespaces.

• Part 3, Storage in Files, provides information about how serialized XMP metadata is packaged into XMP
packets and embedded in different file formats. It includes information about how XMP relates to and
incorporates other metadata formats, and how to reconcile values that are represented in multiple
metadata formats.

About this document
This document, XMP Specification Part 1, Data Model, Serialization, and Core Properties, provides a thorough
understanding of the XMP data model. It is useful for anyone who wishes to use XMP metadata, including both
developers and end-users of applications that handle metadata for resources of any kind.

The serialization information is vital for developers of applications that will generate, process, or manage files
containing XMP metadata. Such developers may use either the XMP Toolkit provided by Adobe, or
independent implementations. The serialization information will also interest application developers wishing to
understand file content.

This document also provides guidelines and important information for programmers who will implement XMP
metadata manipulation systems of their own.

Conventions used in this document
This document uses normative language that follows ISO practice as defined in Annex H of ISO/IEC Directives
Part 2. The following table lists the most common verbal forms and gives the definitions from Annex H:

 Table 1 — Normative language

Verbal form Meaning

shall, shall not Requirements to be strictly followed in order to conform to this document and from
which no deviation is permitted.

should, should not Among several possibilities, one is recommended as particularly suitable without
excluding others, or a certain course of action is preferred but not necessarily
required, or (in the negative form) a certain possibility or course of action is
deprecated but not prohibited.

may, need not A course of action that is permissible within the limits of the document.

can, cannot Statements of possibility and capability.

vi ©Adobe Systems Incorporated, 2012

©Adobe Systems Incorporated, 2012 vii

ISO 16684-1:2011(E)

Introduction

This document specifies a standard for the definition, creation, and processing of metadata that can be applied
to a broad range of resource types. The Extensible Metadata Platform (XMP) was introduced by Adobe
Systems Incorporated in 2001 and has since established itself as a critical technology for improving business
efficiency in many industries

Metadata is data that describes the characteristics or properties of a resource. It can be distinguished from the
main content of a resource. For example, for a word processing document, the content includes the actual text
data and formatting information, while the metadata might include properties such as author, modification date,
or copyright status.

Some information could be treated as either content or metadata, depending on context. In general, metadata
is useful without regard for a resource’s content. For example, a list of all fonts used in a document could be
useful metadata, while information about the specific font used for a specific paragraph on a page would be
logically treated as content.

Metadata allows users and applications to work more effectively with resources. Applications can make use of
metadata, even if they cannot understand the native format of the resource’s content. Metadata can greatly
increase the utility of resources in collaborative production workflows. For example, an image file might contain
metadata such as its working title, description, and intellectual property rights. Accessing the metadata makes
it easier to perform such tasks as searching for images, locating image captions, or determining the copyright
clearance to use an image.

File systems have typically provided metadata such as file modification dates and sizes. Other metadata can
be provided by other applications, or by users. Metadata might or might not be stored as part of the resource
with which it is associated.

ISO 16684-1:2011(E)

viii ©Adobe Systems Incorporated, 2012

©Adobe Systems Incorporated, 2012 1

ISO 16684-1:2011(E)

Extensible metadata platform (XMP) — Part 1: Data model,
serialization, and core properties

1 Scope

This document defines two essential components of XMP metadata:

• Data model: The data model is the most fundamental aspect. This is an abstract model that defines the
forms of XMP metadata items, essentially the structure of statements that XMP can make about resources.

• Serialization: The serialization of XMP defines how any instance of the XMP data model can be recorded
as XML.

In addition, this document defines a collection of core properties, which are XMP metadata items that can be
applied across a broad range of file formats and domains of usage.

The embedding of XMP packets in specific file formats and domain-specific XMP properties are beyond the
scope of this document.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

IEEE 754, Standard for Binary Floating-Point Arithmetic
 http://grouper.ieee.org/groups/754/

IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, November 1996
 http://www.ietf.org/rfc/rfc2046.txt

IETF RFC 3066, Tags for the Identification of Languages, January 2001
 http://www.ietf.org/rfc/rfc3066.txt

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, January 2005
 http://www.ietf.org/rfc/rfc3986.txt

Date and Time Formats, W3C submission, September 1997
 http://www.w3.org/TR/NOTE-datetime

Dublin Core Metadata Element Set, Version 1.1, October 2010
 http://dublincore.org/documents/dces/

Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation 26 November 2008
 http://www.w3.org/TR/2008/REC-xml-20081126/

Namespaces in XML 1.0 (Second Edition), August 2006
 http://www.w3.org/TR/2006/REC-xml-names-20060816/

RDF/XML Syntax Specification (Revised), W3C Recommendation 10 February 2004
 http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

The Unicode Standard
 http://www.unicode.org/standard/standard.html

http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2006/REC-xml-names-20060816/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.unicode.org/standard/standard.html
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3066.txt
http://dublincore.org/documents/dces/
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/NOTE-datetime
http://grouper.ieee.org/groups/754/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

ISO 16684-1:2011(E)

2 ©Adobe Systems Incorporated, 2012

URIs, URLs, and URNs: Clarifications and Recommendations 1.0, W3C Note 21 September 2001
 http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
character data
XML text that is not markup

[Extensible Markup Language specification, Section 2.4]

3.2
element content
XML text between the start-tag and end-tag of an element

[Extensible Markup Language specification, Section 3.1, syntax production 43]

3.3
empty-element tag
XML tag identifying an element with no content

[Extensible Markup Language specification, Section 3.1]

3.4
NCName
XML name that does not contain a colon (‘:’, U+003A)

[Namespaces in XML, Section 3, syntax production 4]

3.5
property
named container for a metadata value at the top level of an XMP packet

NOTE Lower-level components of an XMP packet are structure fields, array items, and qualifiers.

3.6
RDF
Resource Description Framework, an XML syntax for describing metadata

[RDF/XML Syntax Specification]

3.7
rendition (of a resource)
resource that is a rendering of some other resource in a particular form

NOTE Various renditions of a resource have the same content in differing forms. For example, a digital image could have
high resolution, low resolution, or thumbnail renditions. A text document could be in a word processor format for editing or
rendered as a PDF for sharing. See also version (of a resource).

3.8
URI
Uniform Resource Identifier, a compact sequence of characters that identifies an abstract or physical resource

[IETF RFC 3986]

http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/

©Adobe Systems Incorporated, 2012 3

ISO 16684-1:2011(E)

3.9
version (of a resource)
resource that is the result of editing some other resource

NOTE Different versions of a resource typically have differing content in the same form. See also rendition (of a resource).

3.10
XML element
primary component of XML syntax

[Extensible Markup Language specification, Section 3, syntax production 39]

3.11
XML expanded name
pair of strings consisting of a namespace URI and a local name

[Namespaces in XML, Section 2.1]

3.12
XMP processor
hardware or software component that is responsible for reading, modifying, or writing XMP

3.13
white space
XML text consisting of one or more space characters, carriage returns, line feeds, or tabs

[Extensible Markup Language specification, Section 2.3]

4 Notations

Table 1 shows the type styles used for specific types of text:

The following names are used for important Unicode characters:

• SPACE - U+0020

• QUOTE - U+0022 (")

• APOSTROPHE - U+0027 (')

5 Conformance

5.1 General

Conforming XMP packets shall adhere to all requirements of this document and conforming XMP packets are
not required to use any feature other than those explicitly required by this document.

NOTE The proper mechanism by which XML can presumptively identify itself as being an XMP packet is described in 7.3,
“Optional outer XML”, and 7.4, “rdf:RDF and rdf:Description elements”.

 Table 1 — Conventions for type styles

Typeface style Used for

Bold XMP property names. For example, xmp:CreateDate

Italic Terms when defined in text, document titles, or emphasis.

ISO 16684-1:2011(E)

4 ©Adobe Systems Incorporated, 2012

5.2 Conforming readers

A conforming reader shall comply with all requirements regarding reader functional behaviour specified in this
document. The requirements of this document with respect to reader behaviour are stated in terms of general
functional requirements applicable to all conforming readers. A conforming reader shall accept all output from
conforming writers, including optional output that conforming writers may produce. This document does not
prescribe any specific technical design, user interface, or implementation details for conforming readers.

5.3 Conforming writers

A conforming writer shall comply with all requirements regarding writer functional behaviour specified in this
document. The requirements of this document with respect to writer behaviour are stated in terms of general
functional requirements applicable to all conforming writers and focus on the creation of conforming XMP
packets. This document does not prescribe any specific technical design, user interface, or implementation
details for conforming writers.

5.4 Conforming products

A conforming product shall comply with all requirements regarding reader and writer functional behaviour as
specified in this document.

6 Data model

6.1 XMP packets

An instance of the XMP data model is called an XMP packet. An XMP packet is a set of XMP metadata
properties. Each property has a name and a value. Each property name in an XMP packet shall be unique
within that packet.

NOTE 1 The restriction for unique names means that it is invalid to have multiple occurrences of the same property name
in an XMP packet. Multiple values are represented using an XMP array value (see 6.3.4, “Array values”). Instead of having
three dc:subject properties that each hold one keyword, there would be one dc:subject property that is an array with three
items.

All properties in a single XMP packet shall describe a single resource. Separate XMP packets may describe the
same resource. Conflict resolution for separate packets that describe the same resource is beyond the scope
of this document.

Lower-level components of an XMP packet (structure fields or array items) may describe one or more other
resources.

NOTE 2 The provision for lower-level components about some other resource is not an addition to the data model, in that
this is not a formal feature of the data model and is not reflected in written XMP in any specific manner. Rather, it is a
clarification to the “one packet about one resource” rule, to avoid disallowing certain data models. The XMP about a
compound resource might have a list of constituent resources and even copies of XMP about those constituents. This
would all be modelled using the defined XMP value forms.

The composition of a resource and the precise association of an XMP packet with a resource is beyond the
scope of this document. Where feasible, an XMP packet should be physically associated with the resource that
it describes.

NOTE 3 A common resource is a complete digital file, or an identifiable part of a digital file such as an embedded image in
PDF. The structure of a PDF file and the manner of associating XMP with any particular component of a PDF file is beyond
the scope of this document.

©Adobe Systems Incorporated, 2012 5

ISO 16684-1:2011(E)

The XMP packet that describes a digital file or part of a digital file should be embedded in the file using
standard features of the file format to provide the association between the XMP packet and the resource. The
embedding mechanisms for specific file formats are beyond the scope of this document.

An XMP packet may contain a URI, called the AboutURI, that identifies the resource that the packet describes.
The URI scheme, detailed URI syntax, and association of the URI with any target entity is beyond the scope of
this document.

NOTE 4 It is possible for an XMP packet to not contain an AboutURI and not have a physical association with the
resource. Instead, there can be an external means of association.

EXAMPLE Consider the statement, “The author of Moby Dick is Herman Melville”. This statement is represented by
metadata in which the resource is the book “Moby Dick”, the property name is “author”, and the property value is “Herman
Melville”, as in Figure 1. (This is only a diagram, not an example of well-formed XMP.)

 Figure 1 — Simple properties example diagram

NOTE 5 Notation such as that in Figure 1 is used in this document to illustrate the XMP data model.

An XMP processor should accept all well-formed XMP as input, regardless of the data model expressed, and
should by default preserve all unanticipated XMP when modifying a resource.

NOTE 6 The intent of these rules is that XMP is generally open to arbitrary extension of properties. Users of XMP are
allowed to freely invent custom metadata and to expect XMP-aware applications to support the creation, modification, and
viewing of that metadata. Therefore, this is expressed as a recommendation instead of as a requirement because any
particular environment could have local policies about XMP usage.

6.2 XMP names

Properties (6.1, “XMP packets”) have names, as do fields of structure values (6.3.3, “Structure values”) and
qualifiers (6.4, “Qualifiers”). All names in XMP shall be XML expanded names, consisting of a namespace URI
and a local name. The namespace URI for an XMP name shall not be empty. Two XMP names shall be
equivalent if their namespace URIs are identical and their local names are identical. This comparison shall be
physical, byte-for-byte equality using the same Unicode encoding. Other processing, including but not limited to
Unicode character normalizations, shall not be applied.

NOTE 1 XML namespace URIs are generally best viewed as string literals. There is no commitment that the URI is
resolvable to a Web resource. Although many XML namespace URIs begin with "http://", there might be no HTTP page at
that address.

The namespace prefix used in written XML—and, as a consequence, in XMP—serves only as a key to look up
the appropriate URI. For convenience in this document, XMP names are commonly written in a prefix:local
style, for example, dc:title. The relevant URI for the prefix used in this document is either explicit, clear from
local context, or irrelevant (as in the generic value-form diagrams where the specific URI does not matter).

NOTE 2 The specific convenience is that dc:title is more concise and readable than something like ("http://purl.org/dc/
elements/1.1/", creator) in the cases where the namespace URI is known and meaningful. This is especially so when the
precise URI is not relevant, as in an artificial example.

"Herman Melville"

Moby Dick

"1851"

Author Date Written

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

ISO 16684-1:2011(E)

6 ©Adobe Systems Incorporated, 2012

A namespace URI used in XMP should end in a character that is not allowed in an XML NCName (the local
name). Recommended characters are the slash ("/", U+002F) or the number sign ("#", U+0023). This can
improve compatibility with applications that concatenate the namespace URI and local name, avoiding potential
collisions.

NOTE 3 The textual concatenation of a namespace URI and local name is seen in generic RDF processors that utilize the
RDF triple notation. See B.3, “Namespace URI termination”, for details.

Other than xml: and rdf:, all namespaces used in 6, “Data model”, and Figure 5, “Qualifiers example”, are
illustrative. In particular, the "http://ns.adobe.com/xmp-example/" URI is fictional. The use of specific XMP
names in the illustrations does not imply that they are defined in this document. The namespaces defined in 8,
“Core properties”, are normative.

Following typical XML and World Wide Web practice, the creation of XMP names should use a namespace URI
that incorporates a domain name owned by the creator. This diminishes the chance of namespace collisions
and identifies the origin of the namespace.

In this document, the xml: prefix is bound to the URI "http://www.w3.org/XML/1998/" that is defined in the
Extensible Markup Language specification. The rdf: prefix is bound to the URI "http://www.w3.org/1999/02/22-
rdf-syntax-ns#" that is defined in the RDF/XML Syntax Specification. The Extensible Markup Language
specification and the RDF/XML Syntax Specification heavily restrict the use of these namespaces. Except for
rdf:type, these namespaces shall not be used for any XMP property or structure field. Except for rdf:type and
xml:lang, these namespaces shall not be used for any XMP qualifier. See also 7.9.2.5, “RDF Typed Nodes”.

6.3 XMP value forms

6.3.1 General

Values in the XMP data model have one of three forms: simple, structure, or array. There are two variants of
simple values: normal and URI. There are three variants of the array form: unordered array, ordered array, and
alternative array. The fields in structures and the items in arrays may have any value form. There is no fixed
bound on the complexity of XMP data modelling.

These forms are the primitive values of XMP. Higher-level data types may be defined that combine these
primitive forms with additional constraints, such as those defined in 8, “Core properties”.

6.3.2 Simple values

A simple value is a string of Unicode text as defined in The Unicode Standard. The string may be empty.

There are two variants of simple values: normal and URI. The URI variant of a simple value should be used for
values that represent URIs; the normal variant should be used for all other simple values.

NOTE The distinction between normal and URI simple values is not critical to the organization of the abstract XMP data
model. The distinction does have an effect on the RDF serialization, as seen in 7.5, “Simple valued XMP properties”. This
allows XMP data modelling to more closely align with general RDF data modelling.

EXAMPLE In Figure 2, the document XMP_Specification.pdf is shown with two properties, each with a simple value:

The value of the property dc:format is "application/pdf".

The value of the property xmp:CreateDate is "2002-08-15T17:10:04-06:00".

http://ns.adobe.com/xmp-example/
http://www.w3.org/XML/1998/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#

©Adobe Systems Incorporated, 2012 7

ISO 16684-1:2011(E)

 Figure 2 — Simple values example

6.3.3 Structure values

A structure is a container for zero or more named fields. The order of fields in a structure shall not be
significant. Fields may be optional or required.

Each field in a structure shall have a unique name within that structure. Field names shall be XML expanded
names. Fields need not be in the same namespace as their parent structure nor in the same namespace as
other fields in the structure.

Each field in a structure may have any value form. The usage and consistency of fields in a given structure type
is beyond the scope of this document.

EXAMPLE Figure 3 shows a single structured property with three fields: stDim:w (width), stDim:h (height) and
stDim:unit (units), whose values are "8.5", "11.0", and "inch".

 Figure 3 — Example of structure values

6.3.4 Array values

An array is a container for zero or more items indexed by ordinal position, starting from 1. The form of the array
items may be any XMP value form. All items in an array shall have the same data type.

There are three variants of array: ordered, unordered, and alternative. The variant indicates the anticipated use
of the array and constrains what XMP processors may do with it:

• An unordered array shall have no meaning or constraints on the order of items within it. The items in an
unordered array may be reordered at any time.

• The items in an ordered array are ordered by their indices. The items in an ordered array shall not be
arbitrarily reordered. The meaning of the order may be defined by data type or by application. Except for
the data types defined in 8, “Core properties”, this document does not specify any assumed or default

"application/pdf"

XMP_Specification.pdf

"2002-08-15T17:10:04-06:00"

dc:format xmp:CreateDate

"8.5"

xmpTPg:MaxPageSize

stDim:w

stDim:h

stDim:unit

"11.0"

"inch"

XMP_Specification.pdf

ISO 16684-1:2011(E)

8 ©Adobe Systems Incorporated, 2012

meaning to the order of items in an ordered array.

• The items in an alternative array are ordered and shall not be arbitrarily reordered. The meaning of the
order may be defined by data type or by application. Except for the data types defined in 8, “Core
properties”, this document does not specify any assumed or default ordering. If any item is a preferred
default, it should be the first item in the array. The first item in the array should be chosen when no other
criteria apply. An alternative array need not have an explicitly designed default item.

NOTE 1 The intent is that a reader who has no idea how to choose an item from the alternative array is encouraged to pick
the first item.

NOTE 2 The anticipated usage of an unordered or ordered array is to consider all items together, such as an unordered list
of keywords or an ordered list of authors. The anticipated usage of an alternative array is to select one item based on some
criteria, for example, having multiple descriptions of a resource in various languages, then selecting one based on the
user’s preferred language. Both ordered and alternative arrays have ordered items; the anticipated usage determines which
array variant to use.

EXAMPLE Figure 4 shows an example of the Dublin Core property dc:subject (see 8.3, “Dublin Core namespace”), which
is an unordered array. In this example, it contains three items.

 Figure 4 — Array values example

6.4 Qualifiers

XMP qualifiers may be used to attach annotations to any XMP value, without changing the form of that value.
For example, a simple value remains a simple value even when some XMP processor attaches arbitrary
qualifiers to it. Qualifiers are metadata about the value to which they are attached. Each qualifier has a name
and a value. The names shall be XML expanded names. The names of all qualifiers attached to a particular
value shall be unique in that value. The value of a qualifier may be any XMP value form. A qualifier value may
have qualifiers.

The xml:lang qualifier shall have a simple non-URI value and shall not have qualifiers on its value. An
xml:lang qualifier on a structure or array should be considered a default language for the structure fields or
array items. In accordance with IETF RFC 3066, the value of the xml:lang qualifier shall be a language code
and all comparisons of xml:lang values shall be case-insensitive.

EXAMPLE Figure 5 shows an example of qualifiers.

"metadata"

dc:subject

1

2

3

"example"

"XMP"

XMP_Specification.pdf

unordered

©Adobe Systems Incorporated, 2012 9

ISO 16684-1:2011(E)

 Figure 5 — Qualifiers example

7 Serialization

7.1 General

The abstract XMP data model needs a concrete representation when given a physical representation such as a
digital file or a printed document. This document defines a canonical serialization of XMP metadata using a
subset of the RDF metadata syntax. The RDF serialization shall use Unicode text as defined in The Unicode
Standard. The choice of Unicode encoding (UTF-8, UTF-16, or UTF-32) is beyond the scope of this document.
Other file embedding or usage standards may specify the Unicode encoding.

For this serialization, a single XMP packet shall be serialized using a single rdf:RDF XML element.

Serialized XMP shall be well-formed XML and well-formed RDF. An XMP reader shall conform to the rules of
XML and RDF given in their respective specifications.

An XMP reader shall recognize and honour a leading Unicode U+FEFF character as a byte-order marker. An
XMP writer using UTF-16 or UTF-32 should include a leading Unicode U+FEFF character. An XMP writer using
UTF-8 may include a leading Unicode U+FEFF character, although it is not recommended.

NOTE 1 One reason to avoid the U+FEFF with UTF-8 is that devices might exist that read only UTF-8 and are not
prepared for a leading U+FEFF. The only rationale for using a leading U+FEFF with UTF-8 is as a clear encoding marker for
when a reader might get either UTF-8 or UTF-16/32.

NOTE 2 The XMP serialization is intentionally presented as a fragment of an XML document, not as a fully formed XML
document. That is, it is presented as a single outer XML element and element content, with no mention of the XML
document prolog. This is done to allow the inclusion of multiple XMP packets in larger XML documents.

7.2 Equivalent RDF and XML

The normative statements in 7.4 to 7.8 define a canonical usage of the RDF syntax. Equivalent forms of RDF
syntax that are allowed or prohibited are defined in 7.9, “Equivalent forms of RDF”. Serialization of XMP uses
only a subset of the RDF syntax. Parts of the RDF syntax not presented in this document shall not be used in
serialized XMP.

Except where explicitly noted, XML white space, comments, and processing instructions may be written
anywhere allowed by the RDF/XML Syntax Specification. Non-white character data is heavily constrained by
RDF and XMP. It shall be used only in the element content of leaf elements that represent simple XMP values.

"William Gilbert"

1 2

"lyricist"

"Arthur Sullivan"

Pirates of Penzance

ordered

dc:creator

xe:role

"composer"

xe:role

ISO 16684-1:2011(E)

10 ©Adobe Systems Incorporated, 2012

Comments and processing instructions may be ignored when reading and need not be preserved when
updating an XMP packet.

NOTE 1 Phrases in this document such as “… element content shall consist of only …” do not constitute an explicit
prohibition of white space, comments, or processing instructions. Such phrases restrict only the use of XML elements,
attributes, and non-white character data.

NOTE 2 The purpose of the RDF serialization of XMP is to carry an instance of the XMP data model. XML comments and
processing instructions have no effect on the XMP data model, no matter where they appear. White space outside of the
rdf:RDF element has no effect on the XMP data model. Allowed white space inside the rdf:RDF element has no effect on
the XMP data model except when it is part of the element content for a simple value (7.5, “Simple valued XMP properties”),
in which case it is part of the value.

All equivalent forms of XML text may be written. This includes but is not limited to:

• Use of either an empty-element tag (of the form <ns:name/>) or an element with empty element content (of
the form <ns:name></ns:name>).

• Use of either QUOTEs or APOSTROPHEs for attribute values.

• Order of attributes within an element.

• Distribution of xmlns attributes.

• The specific prefix associated with an XML namespace URI.

NOTE 3 When XMP is embedded within digital files, including white-space padding is sometimes helpful. Doing so
facilitates modification of the XMP packet in-place. The rest of the file is unaffected, which could eliminate a need to rewrite
the entire file if the XMP changes in size. Appropriate padding is SPACE characters placed anywhere white space is
allowed by the general XML syntax and XMP serialization rules, with a linefeed (U+000A) every 100 characters or so to
improve human display. The amount of padding is workflow-dependent; around 2000 bytes is often a reasonable amount.

7.3 Optional outer XML

7.3.1 General

Other XML elements may appear around the rdf:RDF element. The XML processing instructions and elements
defined in this clause can assist in locating the XMP packet in some use cases.

7.3.2 XMP packet wrapper

A wrapper consisting of a pair of XML processing instructions (PIs) may be placed around the rdf:RDF
element. If used, the wrapped packet layout shall consist of the following, in order: a header PI, the serialized
XMP data model (the XMP packet) with optional white-space padding, and a trailer PI.

NOTE 1 File formats or use cases defined elsewhere can forbid the packet wrapper, for instance where minimal size is
paramount or where the stored XMP is not contiguous. Discontiguous XMP can occur in a file format that models paged
virtual memory.

NOTE 2 The packet wrapper, if used, facilitates primitive byte-oriented XMP packet scanning and in-place editing in data
streams of unknown format. The packet wrapper has no purpose other than to provide markers allowing the packet scanner
to locate the bounds of the XMP packet. The packet wrapper has no meaning once the XMP has been located, whether by
scanning or format knowledge. The recommended practice is to use format knowledge and locate the XMP by other means
whenever possible. Byte-oriented packet scanning is fragile and is appropriate only as a means of last resort.

EXAMPLE This outline of a wrapped XMP packet shows the text of the header and trailer:

<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?>
<rdf:RDF xmlns:rdf= ...>

...
</rdf:RDF>

... XML white space as padding ...

©Adobe Systems Incorporated, 2012 11

ISO 16684-1:2011(E)

<?xpacket end="w"?>

The header PI shall be an XML processing instruction of exactly the form shown in Figure 6. The text of the
header PI contains a GUID, making it unlikely to appear by accident in the data stream. In Figure 6, the
character represents the Unicode character U+FEFF used as a byte-order marker. The U+FEFF may be
omitted from the begin="".

<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?>

 Figure 6 — Header PI form

QUOTEs should be used around the values for "begin" and "id". APOSTROPHEs may be used instead. A
single SPACE shall be used before "begin" and before "id". Other text may appear immediately before the
closing "?>"; it shall be ignored.

The trailer PI shall be an XML processing instruction of exactly one of the two forms shown in Figure 7.
QUOTEs should be used around the value assigned to "end". APOSTROPHEs may be used instead. No white
space shall be used within the trailer PI, except for a single SPACE before the "end".

<?xpacket end="w"?>
<?xpacket end="r"?>

 Figure 7 — Allowed forms of the trailer PI

The end="w" or end="r" portion shall be used by packet scanning processors to determine whether the XMP
may be modified in-place. The end="w" form indicates writable and the end="r" form indicates read-only. The
writable or read-only indication should be ignored by all “smart” (not packet scanning) processors.

NOTE 3 A smart processor has implicit permission to use more appropriate means to determine whether it is OK to modify
the XMP and to modify a file appropriately. Examples include using file system permissions or updating a separate
checksum that is part of some file formats. A packet scanner has no context other than the packet itself.

7.3.3 x:xmpmeta element

An optional x:xmpmeta element may be placed around the rdf:RDF element. The element’s namespace URI
shall be "adobe:ns:meta/".

The purpose of this element is to identify XMP metadata within general XML text that might contain other non-
XMP uses of RDF. While this element might be used in any XMP, it has no meaning in other contexts. An XMP
processor should tolerate an x:xmpmeta element in any input and look within it for the rdf:RDF element.

If both a packet wrapper and an x:xmpmeta element are present, the x:xmpmeta element may be inside or
outside of the packet wrapper. While there are no standard attributes for the x:xmpmeta element, XMP
processors may write custom attributes. Unknown attributes shall be ignored when reading.

EXAMPLE An example of x:xmpmeta:

<x:xmpmeta xmlns:x="adobe:ns:meta/">
<rdf:RDF xmlns:rdf= ...>

...
</rdf:RDF>

</x:xmpmeta>

7.4 rdf:RDF and rdf:Description elements

A single XMP packet shall be serialized using a single rdf:RDF XML element. The rdf:RDF element content
shall consist of only zero or more rdf:Description elements.

ISO 16684-1:2011(E)

12 ©Adobe Systems Incorporated, 2012

The element content of top-level rdf:Description elements shall consist of zero or more XML elements for
XMP properties. XMP properties may be arbitrarily apportioned among the rdf:Description elements.

The recommended approach is to have either a single rdf:Description element containing all XMP properties
or a separate rdf:Description element for each XMP property namespace.

If the XMP data model has an AboutURI (6.1, “XMP packets”), that same URI shall be the value of an
rdf:about attribute in each top-level rdf:Description element. Otherwise, the rdf:about attributes for all top-
level rdf:Description elements shall be present with an empty value. The rdf:about attribute shall not be used
in more deeply nested rdf:Description elements.

For compatibility with very early XMP usage, it is recommended that XMP readers tolerate a missing rdf:about
attribute and treat it as present with an empty value. It is also recommended that XMP readers tolerate a mix of
empty and non-empty rdf:about values, as long as all non-empty values are identical.

EXAMPLE An rdf:RDF element containing one rdf:Description element:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xmp="http://ns.adobe.com/xap/1.0/">

<rdf:Description rdf:about="">
 <xmp:Rating>3</xmp:Rating>
</rdf:Description>

</rdf:RDF>

The RDF serialization of an XMP property shall be an XML element whose name is the name of the XMP
property. The element content shall be determined by the form of the XMP value being serialized (simple,
structure, or array), and whether the XMP value has qualifiers.

7.5 Simple valued XMP properties

The element content for an unqualified XMP property with a normal (non-URI) simple value (6.3.2, “Simple
values”) shall be text that provides the value. The text shall contain only character data, entity references,
character references, and CDATA sections. The element shall not contain nested XML elements.

EXAMPLE 1 See xmp:Rating in the example in 7.4, “rdf:RDF and rdf:Description elements”.

The element content for an XMP property with a URI simple value shall be empty. The value shall be provided
as the value of an rdf:resource attribute attached to the XML element.

EXAMPLE 2 A URI simple value:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xmp="http://ns.adobe.com/xap/1.0/">

<rdf:Description rdf:about="">
<xmp:BaseURL rdf:resource="http://www.adobe.com/"/>

</rdf:Description>
</rdf:RDF>

General RDF allows an rdf:parseType="Literal" attribute to be placed in certain XML elements. This attribute
specifies that the entire XML content of that element be treated as a single literal string. The
rdf:parseType="Literal" attribute shall not be used in XMP.

When an XMP simple value contains XML markup characters, the value shall be written using XML entities or
CDATA sections.

NOTE The use of CDATA sections is discouraged. They are not necessary and there is no way to escape the presence of
"]]>" in a value. XML entities are sufficient for all cases.

EXAMPLE 3 Examples of simple values containing XML markup:

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xap/1.0/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xap/1.0/
http://www.adobe.com/"/

©Adobe Systems Incorporated, 2012 13

ISO 16684-1:2011(E)

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<rdf:Description rdf:about="">
<xe:Entity>Embedded <bold>XML</bold> markup</xe:Entity>
<xe:CDATA><![CDATA[Embedded <bold>XML</bold> markup]]></xe:CDATA>

</rdf:Description>
</rdf:RDF>

7.6 Structure valued XMP properties

The element content for an unqualified XMP property with a structure value (6.3.3, “Structure values”) shall be
a nested rdf:Description element. The element content of the nested rdf:Description element shall consist of
zero or more XML elements whose names are the names of the fields of the XMP structure.

The element content for each field in the structure shall follow the rules for properties, varying according to the
form of the XMP value being serialized (simple, structure, or array), and whether the XMP value has qualifiers.

EXAMPLE Serialized XMP property with a structure value:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xmpTPg="http://ns.adobe.com/xap/1.0/t/pg/"
xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#">

<rdf:Description rdf:about="" >

<xmpTPg:MaxPageSize>
<rdf:Description>

<stDim:h>11.0</stDim:h>
<stDim:w>8.5</stDim:w>
<stDim:unit>inch</stDim:unit>

</rdf:Description>
</xmpTPg:MaxPageSize>

</rdf:Description>

</rdf:RDF>

NOTE Many XMP processors use a more concise notation for structure values as described in 7.9.2.3,
“rdf:parseType="Resource" attribute”.

7.7 Array valued XMP properties

The element content for an unqualified XMP property with an array value (6.3.4, “Array values”) shall consist of
exactly one nested element. The nested element shall be one of the following:

• An rdf:Bag element for an unordered array.

• An rdf:Seq element for an ordered array.

• An rdf:Alt element for an alternative array.

The nested element’s element content shall consist of zero or more rdf:li elements, one for each item in the
array.

The element content of the rdf:li element for each array item shall follow the rules for properties, varying
according to the form of the XMP value being serialized (simple, structure, or array), and whether the XMP
value has qualifiers.

EXAMPLE Serialized XMP property with an unordered array value containing three items:

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xmp-example/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xap/1.0/t/pg/
http://ns.adobe.com/xap/1.0/sType/Dimensions#

ISO 16684-1:2011(E)

14 ©Adobe Systems Incorporated, 2012

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="">

<dc:subject>
<rdf:Bag>

<rdf:li>XMP</rdf:li>
<rdf:li>metadata</rdf:li>
<rdf:li>ISO standard</rdf:li>

</rdf:Bag>
</dc:subject>

</rdf:Description>

</rdf:RDF>

7.8 Qualifiers

Except for the xml:lang qualifier, the presence of qualifiers significantly modifies the RDF serialization of an
XMP value.

NOTE 1 The use of the xml:lang attribute is not a part of the RDF formal grammar. The RDF/XML Syntax Specification
states, “The xml:lang attribute can be used on any node element or property element to indicate that the included content
is in the given language.”

An xml:lang qualifier shall be serialized as an xml:lang attribute attached to the named XML element for any
property, structure field, array item (rdf:li), or qualifier which has the qualified value. The xml:lang attribute
may be used on any of these elements regardless of the form of the value (it is not restricted to simple values).
The xml:lang attribute shall not be used on an rdf:Description, rdf:Bag, rdf:Seq, rdf:Alt, or rdf:value
element.

NOTE 2 Clause 6.4, “Qualifiers”, states that the xml:lang qualifier shall have a simple non-URI value and shall not have
qualifiers on its value. The reason for this restriction is the serialization of an xml:lang qualifier as an XML attribute. This
serialization of xml:lang follows standard RDF practice.

EXAMPLE 1 Serialized XMP with xml:lang qualifiers:

<!-- These examples illustrate the syntax for xml:lang qualifiers. -->
<!-- They do not imply particularly appropriate use of xml:lang. -->

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xmp="http://ns.adobe.com/xap/1.0/">

<rdf:Description rdf:about="">

<dc:source xml:lang="en-us">Adobe XMP Specification, April 2010</dc:source>

<xmp:BaseURL rdf:resource="http://www.adobe.com/" xml:lang="en"/>

<dc:subject xml:lang="en">
<rdf:Bag>

<rdf:li>XMP</rdf:li>
<rdf:li>metadata</rdf:li>
<rdf:li>ISO standard</rdf:li>
<rdf:li xml:lang="fr">Norme internationale de l’ISO</rdf:li>

</rdf:Bag>
</dc:subject>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://ns.adobe.com/xap/1.0/
http://www.adobe.com/

©Adobe Systems Incorporated, 2012 15

ISO 16684-1:2011(E)

</rdf:Description>
</rdf:RDF>

If a value has any qualifier other than xml:lang, the value shall be serialized as a nested rdf:Description
element. The element content of that rdf:Description element shall consist of exactly one rdf:value element
and one or more XML elements whose names are the names of the qualifiers. This form should not be used
when there are no qualifiers other than xml:lang.

The element content of the rdf:value element shall be the original XMP value being serialized, the one which is
qualified. The element content of the rdf:value element and the qualifier elements shall follow the rules for
properties, varying according to the form of the respective XMP values being serialized (simple, structure, or
array), and whether the qualifier values are themselves further qualified.

The rdf:value element shall not contain an xml:lang attribute and shall not contain nested general qualifiers.

NOTE 3 Although the rdf:value element looks a lot like a structure field, it is not a structure field and is not allowed to have
qualifiers in the start tag (xml:lang) or content (nested general qualifiers). Example 3, “Prohibited nesting of general
qualifiers:”, illustrates this restriction.

EXAMPLE 2 Serialized XMP with general qualifiers:

<!-- These examples illustrate the syntax for general qualifiers. -->
<!-- They do not imply particularly appropriate use of general qualifiers. -->

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xmp="http://ns.adobe.com/xap/1.0/"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<rdf:Description rdf:about="">

<dc:source>
<rdf:Description>

<rdf:value>Adobe XMP Specification, April 2010</rdf:value>
<xe:qualifier>artificial example</xe:qualifier>

</rdf:Description>
</dc:source>

<xmp:BaseURL>

<rdf:Description>
<rdf:value rdf:resource="http://www.adobe.com/"/>
<xe:qualifier>artificial example</xe:qualifier>

</rdf:Description>
</xmp:BaseURL>

<dc:subject>

<rdf:Bag>
<rdf:li>XMP</rdf:li>
<rdf:li>

<rdf:Description>
<rdf:value>metadata</rdf:value>
<xe:qualifier>artificial example</xe:qualifier>

</rdf:Description>
</rdf:li>
<rdf:li>

<rdf:Description> <!-- Discouraged without qualifiers. ->
<rdf:value>ISO standard</rdf:value>

</rdf:Description>
</rdf:li>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://ns.adobe.com/xap/1.0/
http://ns.adobe.com/xmp-example/
http://www.adobe.com/"/

ISO 16684-1:2011(E)

16 ©Adobe Systems Incorporated, 2012

</rdf:Bag>
</dc:subject>

</rdf:Description>

</rdf:RDF>

EXAMPLE 3 Prohibited nesting of general qualifiers:

<!-- This example illustrates prohibited nesting of general qualifiers. -->

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<rdf:Description rdf:about="">

<!-- This usage is permitted. -->
<xe:source-a>

<rdf:Description>
<xe:qual1>one</xe:qual1>
<xe:qual2>two</xe:qual2>
<rdf:value>Adobe XMP Specification, April 2010</rdf:value>

</rdf:Description>
</xe:source-a>

<!-- This usage is prohibited. -->
<xe:source-b>

<rdf:Description>
<xe:qual1>one</xe:qual1>
<rdf:value>

<rdf:Description>
<xe:qual2>two</xe:qual2>
<rdf:value>Adobe XMP Specification, April 2010</rdf:value>

</rdf:Description>
</rdf:value>

</rdf:Description>
</xe:source-b>

</rdf:Description>

</rdf:RDF>

7.9 Equivalent forms of RDF

7.9.1 General

The RDF presented in 7.4 to 7.8 defines a canonical form for XMP serialization. The RDF/XML Syntax
Specification defines a number of equivalent forms, each presenting distinct XML usage that conveys an
equivalent RDF data model and hence an equivalent XMP data model. Some equivalent forms of RDF are
allowed in XMP; some are prohibited.

7.9.2 Allowed equivalent RDF

7.9.2.1 Summary

The following equivalent forms of RDF may be used when serializing XMP.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xmp-example/

©Adobe Systems Incorporated, 2012 17

ISO 16684-1:2011(E)

7.9.2.2 rdf:Description with property attributes

Property and structure field elements that have normal (non-URI) simple, unqualified values may be replaced
with attributes in the rdf:Description element. This also applies to the pseudo-structure for general qualifiers,
including the rdf:value element. The element and attribute forms may be mixed.

EXAMPLE Simple valued elements shortened to attributes:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xmp="http://ns.adobe.com/xap/1.0/"
xmlns:xmpTPg="http://ns.adobe.com/xap/1.0/t/pg/"
xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<rdf:Description rdf:about="" xmp:Rating="3">

<xmpTPg:MaxPageSize>

<rdf:Description stDim:h="11.0" stDim:w="8.5">
<!-- Best to use attributes for all, illustrates allowed mixing. -->
<stDim:unit>inch</stDim:unit>

</rdf:Description>
</xmpTPg:MaxPageSize>

<xmp:BaseURL>

<rdf:Description xe:qualifier="artificial example">
<rdf:value rdf:resource="http://www.adobe.com/"/>

</rdf:Description>
</xmp:BaseURL>

</rdf:Description>

</rdf:RDF>

7.9.2.3 rdf:parseType="Resource" attribute

The rdf:Description element within a structure element may be replaced with an rdf:parseType="Resource"
attribute in the structure element. This also applies to the pseudo-structure for general qualifiers.

EXAMPLE Structure replacing rdf:Description with rdf:resource attribute:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xmpTPg="http://ns.adobe.com/xap/1.0/t/pg/"
xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#"
xmlns:xmp="http://ns.adobe.com/xap/1.0/"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<rdf:Description rdf:about="">

<xmpTPg:MaxPageSize rdf:parseType="Resource">

<stDim:h>11.0</stDim:h>
<stDim:w>8.5</stDim:w>
<stDim:unit>inch</stDim:unit>

</xmpTPg:MaxPageSize>

<xmp:BaseURL rdf:parseType="Resource">
<rdf:value rdf:resource="http://www.adobe.com/"/>
<xe:qualifier>artificial example</xe:qualifier>

</xmp:BaseURL>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/
http://ns.adobe.com/xap/1.0/
http://ns.adobe.com/xap/1.0/t/pg/
http://ns.adobe.com/xap/1.0/sType/Dimensions#
http://ns.adobe.com/xmp-example/
http://www.adobe.com/"/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xap/1.0/t/pg/
http://ns.adobe.com/xap/1.0/sType/Dimensions#
http://ns.adobe.com/xap/1.0/
http://ns.adobe.com/xmp-example/
http://www.adobe.com/"/

ISO 16684-1:2011(E)

18 ©Adobe Systems Incorporated, 2012

</rdf:Description>

</rdf:RDF>

7.9.2.4 Structure element with field attributes

If all fields of a structure have normal (non-URI) simple, unqualified values, the fields may be written as
attributes of the structure element instead of using a nested rdf:Description element and field elements within
that. The structure element in this case shall have empty element content. All fields of a structure shall be
written in the same manner, either as nested elements or as attributes. This shorthand may also be applied to
the pseudo-structure for general qualifiers. This use of field attributes shall not be mixed with the
rdf:parseType="Resource" attribute.

EXAMPLE Structure with all simple fields as attributes:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xmpTPg="http://ns.adobe.com/xap/1.0/t/pg/"
xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#">

<rdf:Description rdf:about="">
<xmpTPg:MaxPageSize stDim:h="11.0" stDim:w="8.5" stDim:unit="inch"/>

</rdf:Description>

</rdf:RDF>

7.9.2.5 RDF Typed Nodes

RDF has a notation called Typed Nodes that allows an arbitrarily named element to appear where an
rdf:Description element is expected. This is equivalent to having an rdf:Description element instead with a
nested rdf:type element. All other attributes and nested element content are retained in the replacement
rdf:Description element. The added rdf:type element has empty element content and one attribute. That
attribute is an rdf:resource attribute whose value is the concatenation of the original element’s namespace
URI and local name.

EXAMPLE 1 The following two snippets are equivalent in general RDF:

<!-- Assume rdf: namespace and xmlns:xe="http://ns.adobe.com/xmp-example/". -->

<xe:myType>

<!-- Arbitrary other RDF. -->
</xe:myType>

<rdf:Description>
<rdf:type rdf:resource="http://ns.adobe.com/xmp-example/myType"/>
<!-- Same other RDF as above. -->

</rdf:Description>

NOTE 1 This conversion of the XML qualified name to the rdf:type value is another motivation for the previous
recommendation (6.2, “XMP names”) to terminate namespace URIs with a character that is not part of an XML NCName.
Conversion in the other direction is problematic. Because the rdf:type value is a literal, the associated namespace URI
might not even be defined. A possibly unfounded presumption would be made about where to separate the namespace URI
and the local name.

The use of Typed Nodes is restricted in XMP and carries different semantics from the RDF textual equivalence.
The rdf:Bag, rdf:Seq, and rdf:Alt elements used for XMP arrays are in fact uses of RDF Typed Nodes; their
use in XMP is defined in 7.9.3.2, “Arrays not using Typed Node form”.

NOTE 2 The rdf:Description element is used as a container in three ways in XMP: for properties, for structure fields, and
for general qualifiers. These are the places where the use of Typed Nodes requires definition.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xap/1.0/t/pg/
http://ns.adobe.com/xap/1.0/sType/Dimensions#
http://ns.adobe.com/xmp-example/
http://ns.adobe.com/xmp-example/myType"/

©Adobe Systems Incorporated, 2012 19

ISO 16684-1:2011(E)

Top-level typed nodes, immediately within the rdf:RDF element, shall not be used in XMP. An rdf:type
property may be explicitly used in XMP.

EXAMPLE 2 Top-level Typed Node and rdf:type property:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<!-- A Typed Node immediately within rdf:RDF is not allowed in XMP. -->
<xe:myType>

<!-- Arbitrary other XMP. -->
</xe:myType>

<!-- A top-level rdf:type property is allowed in XMP. -->
<rdf:Description>

<rdf:type rdf:resource="http://ns.adobe.com/xmp-example/myType"/>
<!-- Same other XMP as above. -->

</rdf:Description>

</rdf:RDF>

The use of an inner Typed Node in XMP shall attach an rdf:type qualifier to the containing element. The value
of the rdf:type qualifier shall be a URI consisting of the Typed Node element’s namespace URI concatenated
with the local name. The remaining interpretation shall be as though an rdf:Description element were used
instead of the original Typed Node element.

NOTE 3 The addition of the rdf:type qualifier will significantly alter the serialization of the equivalent XMP interpretation of
the Typed Node. The XMP processing is not a simple textual replacement like RDF.

EXAMPLE 3 Inner Typed Node interpretation in XMP:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<rdf:Description>

<!-- A Typed Node used for a structure value. -->
<xe:Prop1>

<xe:myType>
<xe:Field>value</xe:Field>

</xe:myType>
</xe:Prop1>

<!-- This is equivalent XMP to the above Typed Node. -->
<xe:Prop2>

<rdf:Description>
<rdf:value rdf:parseType="Resource">

 <xe:Field>value</xe:Field>
</rdf:value>
<rdf:type rdf:resource="http://ns.adobe.com/xmp-example/myType"/>

</rdf:Description>
</xe:Prop2>

</rdf:Description>
</rdf:RDF>

An explicit structure field named rdf:type may be used in XMP.

EXAMPLE 4 An explicit rdf:type field in an XMP structure:

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xmp-example/
http://ns.adobe.com/xmp-example/myType"/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xmp-example/
http://ns.adobe.com/xmp-example/myType"/

ISO 16684-1:2011(E)

20 ©Adobe Systems Incorporated, 2012

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xe="http://ns.adobe.com/xmp-example/">

<rdf:Description>

<!-- In XMP this is not related to the Typed Node usage. -->
<xe:Prop3>

<rdf:Description>
<xe:Field>value</xe:Field>
<rdf:type rdf:resource="http://ns.adobe.com/xmp-example/myType"/>

</rdf:Description>
</xe:Prop3>

</rdf:Description>
</rdf:RDF>

7.9.3 Prohibited equivalent RDF

7.9.3.1 Summary

The following equivalent forms of RDF shall not be used when serializing XMP.

7.9.3.2 Arrays not using Typed Node form

As noted in 7.9.2.5, “RDF Typed Nodes”, the canonical RDF for an XMP array uses RDF Typed Node notation.
The rdf:Bag, rdf:Seq, and rdf:Alt elements are in fact an example of RDF Typed Node syntax. These three
elements shall be used for XMP arrays. The equivalent RDF using rdf:Description and rdf:type elements
shall not be used in XMP.

7.9.3.3 rdf:_n elements and attributes

RDF allows a sequence of rdf:li elements to be replaced with elements of the form rdf:_1, rdf:_2, and so on.
Because these are unique names, element-to-attribute substitution similar to 7.9.2.2, “rdf:Description with
property attributes”, is also allowed in general RDF. The rdf:li element shall be used in XMP and the rdf:_n
form shall not be used in XMP.

8 Core properties

8.1 Overview

This clause defines a collection of XMP properties that have broad applicability across domains of usage and
digital file formats, along with data types that are used to represent values of these properties. The XMP names
listed here originated in other standards and specifications, as is reflected in the namespace URIs using
domains owned by those originators. This document does not claim ownership over those namespaces. Their
respective owners may define additional XMP names in those namespaces, whether properties, structure
fields, or qualifiers.

NOTE Unless local conditions dictate otherwise, XMP processors are encouraged to support the unrestricted use of XMP
properties in these and other namespaces. There is no intent that the properties defined here be the only allowed ones.

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xmp-example/
http://ns.adobe.com/xmp-example/myType"/

©Adobe Systems Incorporated, 2012 21

ISO 16684-1:2011(E)

8.2 Core value types

8.2.1 Basic value types

8.2.1.1 Boolean

Boolean values shall be "True" or "False".

8.2.1.2 Date

A date-time value is represented using a subset of the formats as defined in Date and Time Formats:

YYYY
YYYY-MM
YYYY-MM-DD
YYYY-MM-DDThh:mmTZD
YYYY-MM-DDThh:mm:ssTZD
YYYY-MM-DDThh:mm:ss.sTZD

In which:

• YYYY = four-digit year

• MM = two-digit month (01=January)

• DD = two-digit day of month (01 to 31)

• hh = two digits of hour (00 to 23)

• mm = two digits of minute (00 to 59)

• ss = two digits of second (00 to 59)

• s = one or more digits representing a decimal fraction of a second

• TZD = time zone designator (Z or +hh:mm or -hh:mm)

The time zone designator need not be present in XMP. When not present, the time zone is unknown, and an
XMP processor should not assume anything about the missing time zone.

 Local time-zone designators +hh:mm or -hh:mm should be used when possible instead of converting to UTC.

NOTE If a file was saved at noon on October 23, a timestamp of 2004-10-23T12:00:00-06:00 conveys more
information than 2004-10-23T18:00:00Z.

8.2.1.3 Integer

A signed or unsigned numeric string used as an integer number representation. The string consists of an
arbitrary-length decimal numeric string with an optional leading “+” or “–” sign.

8.2.1.4 Real

A simple text value denoting a floating-point numeric value, written using decimal notation of an optional sign
followed by an integer part and a fraction part. Either the integer part or the fraction part, but not both, may be
omitted. The sign, if present, is "+" (U+002B) or "-" (U+002D). The integer part, if present, is a sequence of one
or more decimal digits (U+0030 to U+0039). The fraction, if present, is a decimal point (".", U+002E) followed
by a sequence of one or more decimal digits.

The precise range and precision for the general type are not specified by this document. If converted to a
binary value, an XMP processor shall support at least the 32-bit IEEE 754 range and precision, and it should

ISO 16684-1:2011(E)

22 ©Adobe Systems Incorporated, 2012

support at least the 64-bit IEEE 754 range and precision. A particular use of the Real type may specify a
required range or precision, such as nonnegative or microsecond resolution (for a duration in seconds).

8.2.1.5 Text

A possibly empty Unicode string.

8.2.2 Derived value types

8.2.2.1 AgentName

The name of an XMP processor, a Text value.

It is recommended that the value use this format convention:

Organization Software_name Version (token;token;...)

• Organization: The name of the company or organization providing the software, no SPACEs.

• Software_name: The full name of the software, SPACEs allowed.

• version: The version of the software, no SPACEs.

• tokens: Can be used to identify an operating system, plug-in, or more detailed version information.

EXAMPLE "Adobe Acrobat 9.0 (Mac OS X 10.5)"

8.2.2.2 Choice

A value chosen from a vocabulary of values. Vocabularies provide a means of specifying a limited and possibly
extensible set of values for a property.

A choice can be open or closed:

• An open choice has one or more lists of preferred values, but other values can be used freely.

• A closed choice has one or more lists of allowed values, other values shall not be used.

NOTE An XMP reader would be more robust if it tolerated unexpected values for closed choice types when the set of
allowed values can be expected to grow over time.

8.2.2.3 GUID

A string representing a “globally unique identifier”. A GUID shall be a normal (non-URI) simple value, even
though it might appear similar to a URI string. This document does not require any particular methodology for
creating a GUID, nor does it require any specific means of formatting the GUID as a simple XMP value. The
only valid operations on GUIDs are to create them, to assign one to another, and to compare two of them for
equality. This comparison shall use the Unicode string value as-is, using a direct byte-for-byte check for
equality.

8.2.2.4 Language Alternative

An alternative array of simple text items. Language alternatives facilitate the selection of a simple text item
based on a desired language. Each array item shall have an xml:lang qualifier. Each xml:lang value shall be
unique among the items. As defined in IETF RFC 3066, the xml:lang value is composed of one or more parts:
a primary language subtag and a (possibly empty) series of subsequent subtags. The same primary subtag
may be used alone and in conjunction with one or more lower-level subtags. A default value, if known, should
be the first array item. The order of other array items is not specified by this document.

©Adobe Systems Incorporated, 2012 23

ISO 16684-1:2011(E)

An xml:lang value of "x-default" may be used to explicitly denote a default item. If used, the "x-default" item
shall be first in the array and its simple text value should be repeated in another item in which xml:lang
specifies its actual language. However, an "x-default" item may be the only item, in which case there is only a
default value in no defined language.

EXAMPLE 1 Language alternative with an "x-default" item:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="">

<!-- Line wrapping of rdf:li elements is for presentation in this example. -->
<!-- Leading and trailing white space is part of the array item values. -->

<dc:title>
<rdf:Alt>

<rdf:li xml:lang="x-default">
XMP - Extensible Metadata Platform

</rdf:li>
<rdf:li xml:lang="en-us">

XMP - Extensible Metadata Platform
</rdf:li>
<rdf:li xml:lang="fr">

XMP - Une Platforme Extensible pour les Met́adonneés
</rdf:li>

</rdf:Alt>
</dc:title>

</rdf:Description>

</rdf:RDF>

8.2.2.5 Locale

A simple text value denoting a language code as defined in IETF RFC 3066.

8.2.2.6 MIMEType

A simple text value denoting a digital file format as defined in IETF RFC 2046.

8.2.2.7 ProperName

A simple text value denoting the name of a person or organization.

8.2.2.8 RenditionClass

A simple text Open Choice value denoting the form or intended usage of a resource. A series of colon-
separated (":", U+003A) tokens and parameters, the first of which names the basic usage of the rendition.
Additional tokens need not be present; they provide specific characteristics of the rendition. Table 2 lists
defined values.

NOTE See definitions of rendition (3.7) and version (3.9).

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/elements/1.1/

ISO 16684-1:2011(E)

24 ©Adobe Systems Incorporated, 2012

.

8.2.2.9 ResourceRef

A structure denoting a multiple-component reference to a resource. The field values are taken from various
properties in the referenced resource.

• The field namespace URI shall be "http://ns.adobe.com/xap/1.0/sType/ResourceRef#".

• The preferred field namespace prefix is stRef.

Table 3 lists the fields available in ResourceRef. Fields need not be present. The fields, if used, shall be of the
specified types. The field content should be as described.

8.2.2.10 URI

Text denoting an Internet Uniform Resource Identifier as defined in IETF RFC 3986.

8.2.2.11 URL

Text denoting an Internet Uniform Resource Locator as defined in URIs, URLs, and URNs: Clarifications and
Recommendations.

 Table 2 — Defined values for rendition tokens

Token Defined value

default The master resource; no additional tokens allowed.

draft A review rendition.

low-res A low-resolution, full-size stand-in.

proof A review proof.

screen Screen resolution or Web rendition.

thumbnail A simplified or reduced preview. Additional tokens can provide characteristics. The
recommended order is: thumbnail:format:size:colorspace.
EXAMPLE
thumbnail:jpeg, thumbnail:16x16, thumbnail:gif:8x8:bw.

 Table 3 — ResourceRef fields

Name Type Field content

stRef:documentID GUID The value of the xmpMM:DocumentID property from the
referenced resource.

stRef:filePath URI The referenced resource’s file path or URL.

stRef:instanceID GUID The value of the xmpMM:InstanceID property from the
referenced resource.
NOTE The difference in capitalization between

stRef:documentID and xmpMM:DocumentID is real,
the result of historical accident. This is also true of the
other ResourceRef fields.

stRef:renditionClass RenditionClass The value of the xmpMM:RenditionClass property from the
referenced resource.

stRef:renditionParams Text The value of the xmpMM:RenditionParams property from
the referenced resource.

http://ns.adobe.com/xap/1.0/sType/ResourceRef#

©Adobe Systems Incorporated, 2012 25

ISO 16684-1:2011(E)

8.3 Dublin Core namespace

The Dublin Core namespace provides a set of commonly used properties. The names and usage shall be as
defined in the Dublin Core Metadata Element Set, created by the Dublin Core Metadata Initiative (DCMI).

• The namespace URI shall be "http://purl.org/dc/elements/1.1/".

• The preferred namespace prefix is dc.

NOTE 1 The Dublin Core elements as defined by DCMI all have URIs of the form "http://purl.org/dc/elements/1.1/<name>"
where the <name> part differs.

The Dublin Core elements are defined in XMP as properties using the namespace URI "http://purl.org/dc/elements/1.1/";
the local names are the leaf part of the DCMI URI.

The XMP data modelling of these is consistent with the apparent Dublin Core intent, but specific to XMP.

As a corollary of the data modelling, the RDF serialization of Dublin Core in XMP might not exactly match other RDF usage
of the Dublin Core element set.

XMP does not “include Dublin Core” in any fuller sense.

Table 4 lists properties in the Dublin Core namespace. The properties, if used, shall be of the specified types.
The property content should be as described.

NOTE 2 In Table 4 the property content has subsections for the DCMI definition and comment, plus an XMP addition. The
DCMI definition and comment text come directly from the Dublin Core Metadata Element Set. The XMP addition is specific
to this document.

 Table 4 — Dublin Core properties

Name Type Property content

dc:contributor Unordered
array of
ProperName

DCMI definition: An entity responsible for making contributions to the resource.
DCMI comment: Examples of a contributor include a person, an organization, or
a service. Typically, the name of a contributor should be used to indicate the entity.
XMP addition: XMP usage is a list of contributors. These contributors should not
include those listed in dc:creator.

dc:coverage Text DCMI definition: The spatial or temporal topic of the resource, the spatial
applicability of the resource, or the jurisdiction under which the resource is
relevant.
XMP addition: XMP usage is the extent or scope of the resource.

dc:creator Ordered array
of
ProperName

DCMI definition: An entity primarily responsible for making the resource.
DCMI comment: Examples of a creator include a person, an organization, or a
service. Typically, the name of a creator should be used to indicate the entity.
XMP addition: XMP usage is a list of creators. Entities should be listed in order of
decreasing precedence, if such order is significant.

dc:date Ordered array
of Date

DCMI definition: A point or period of time associated with an event in the life
cycle of the resource.

dc:description Language
Alternative

DCMI definition: An account of the resource.
XMP addition: XMP usage is a list of textual descriptions of the content of the
resource, given in various languages.

http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/
http://purl.org/dc/elements/1.1/

ISO 16684-1:2011(E)

26 ©Adobe Systems Incorporated, 2012

dc:format MIMEType DCMI definition: The file format, physical medium, or dimensions of the resource.
DCMI comment: Examples of dimensions include size and duration.
Recommended best practice is to use a controlled vocabulary such as the list of
Internet Media Types [MIME].
XMP addition: XMP usage is a MIME type. Dimensions would be stored using a
media-specific property, beyond the scope of this document.

dc:identifier Text DCMI definition: An unambiguous reference to the resource within a given
context.
DCMI comment: Recommended best practice is to identify the resource by
means of a string conforming to a formal identification system.

dc:language Unordered
array of
Locale

DCMI definition: A language of the resource.
XMP addition: XMP usage is a list of languages used in the content of the
resource.

dc:publisher Unordered
array of
ProperName

DCMI definition: An entity responsible for making the resource available.
DCMI comment: Examples of a publisher include a person, an organization, or a
service. Typically, the name of a publisher should be used to indicate the entity.
XMP addition: XMP usage is a list of publishers.

dc:relation Unordered
array of Text

DCMI definition: A related resource.
DCMI comment: Recommended best practice is to identify the related resource
by means of a string conforming to a formal identification system.
XMP addition: XMP usage is a list of related resources.

dc:rights Language
Alternative

DCMI definition: Information about rights held in and over the resource.
DCMI comment: Typically, rights information includes a statement about various
property rights associated with the resource, including intellectual property rights.
XMP addition: XMP usage is a list of informal rights statements, given in various
languages.

dc:source Text DCMI definition: A related resource from which the described resource is
derived.
DCMI comment: The described resource may be derived from the related
resource in whole or in part. Recommended best practice is to identify the related
resource by means of a string conforming to a formal identification system.

dc:subject Unordered
array of Text

DCMI definition: The topic of the resource.
DCMI comment: Typically, the subject will be represented using keywords, key
phrases, or classification codes. Recommended best practice is to use a
controlled vocabulary. To describe the spatial or temporal topic of the resource,
use the dc:coverage element.
XMP addition: XMP usage is a list of descriptive phrases or keywords that specify
the content of the resource.

 Table 4 — Dublin Core properties (continued)

Name Type Property content

©Adobe Systems Incorporated, 2012 27

ISO 16684-1:2011(E)

8.4 XMP namespace

The XMP basic namespace contains properties that provide basic descriptive information.

• The namespace URI shall be "http://ns.adobe.com/xap/1.0/".

• The preferred namespace prefix is xmp.

Table 5 lists properties in the XMP namespace. The properties, if used, shall be of the specified types. The
property content should be as described in Table 5.

dc:title Language
Alternative

DCMI definition: A name given to the resource.
DCMI comment: Typically, a title will be a name by which the resource is formally
known.
XMP addition: XMP usage is a title or name, given in various languages.

dc:type Unordered
array of Text

DCMI definition: The nature or genre of the resource.
DCMI comment: Recommended best practice is to use a controlled vocabulary
such as the DCMI Type Vocabulary [DCMITYPE]. To describe the file format,
physical medium, or dimensions of the resource, use the dc:format element.
XMP addition: See the dc:format entry for clarification of the XMP usage of that
element.

 Table 4 — Dublin Core properties (continued)

Name Type Property content

 Table 5 — Properties in the XMP namespace

Name Type Property content

xmp:CreateDate Date The date and time the resource was created. For a digital file, this need not
match a file-system creation time. For a freshly created resource, it should
be close to that time, modulo the time taken to write the file. Later file
transfer, copying, and so on, can make the file-system time arbitrarily
different.

xmp:CreatorTool AgentName The name of the first known tool used to create the resource.

xmp:Identifier Unordered
array of Text

An unordered array of text strings that unambiguously identify the resource
within a given context. An array item may be qualified with xmpidq:Scheme
(see 8.7, “xmpidq namespace”) to denote the formal identification system to
which that identifier conforms.
NOTE The xmp:Identifier property was added because dc:identifier has

been defined in the original XMP specification as a single identifier
instead of as an array, and changing dc:identifier to an array would
break compatibility with existing XMP processors.

xmp:Label Text A word or short phrase that identifies a resource as a member of a user-
defined collection.
NOTE One anticipated usage is to organize resources in a file browser.

xmp:MetadataDate Date The date and time that any metadata for this resource was last changed. It
should be the same as or more recent than xmp:ModifyDate.

http://ns.adobe.com/xap/1.0/

ISO 16684-1:2011(E)

28 ©Adobe Systems Incorporated, 2012

8.5 XMP Rights Management namespace

The XMP Rights Management namespace contains properties that provide information regarding the legal
restrictions associated with a resource.

• The namespace URI shall be "http://ns.adobe.com/xap/1.0/rights/".

• The preferred namespace prefix is xmpRights.

NOTE These XMP properties are intended to provide a means of rights expression. They are not intended to provide
digital rights management (DRM) controls.

Table 6 lists XMP Rights Management properties. The properties, if used, shall be of the specified types. The
property content should be as described.

8.6 XMP Media Management namespace

The XMP Media Management namespace contains properties that provide information regarding the
identification, composition, and history of a resource.

• The namespace URI shall be "http://ns.adobe.com/xap/1.0/mm/".

• The preferred namespace prefix is xmpMM.

xmp:ModifyDate Date The date and time the resource was last modified.
NOTE The value of this property is not necessarily the same as the file’s

system modification date because it is typically set before the file is
saved.

xmp:Rating Closed Choice
of Real

A user-assigned rating for this file. The value shall be -1 or in the range
[0..5], where -1 indicates “rejected” and 0 indicates “unrated”. If xmp:Rating
is not present, a value of 0 should be assumed.
NOTE Anticipated usage is for a typical “star rating” UI, with the addition of

a notion of rejection.

 Table 5 — Properties in the XMP namespace (continued)

Name Type Property content

 Table 6 — Properties in the XMP Rights Management namespace

Name Type Property content

xmpRights:Certificate Text A Web URL for a rights management certificate.
NOTE This is a normal (non-URI) simple value because of

historical usage.

xmpRights:Marked Boolean When true, indicates that this is a rights-managed resource. When
false, indicates that this is a public-domain resource. Omit if the
state is unknown.

xmpRights:Owner Unordered
array of
ProperName

A list of legal owners of the resource.

xmpRights:UsageTerms Language
Alternative

A collection of text instructions on how a resource can be legally
used, given in a variety of languages.

xmpRights:WebStatement Text A Web URL for a statement of the ownership and usage rights for
this resource.
NOTE This is a normal (non-URI) simple value because of

historical usage.

http://ns.adobe.com/xap/1.0/rights/
http://ns.adobe.com/xap/1.0/mm/

©Adobe Systems Incorporated, 2012 29

ISO 16684-1:2011(E)

Table 7 lists XMP Media Management properties. The properties, if used, shall be of the specified types. The
property content should be as described.

8.7 xmpidq namespace

The xmpidq namespace contains a single qualifier that defines the scheme used in the xmp:Identifier array.

• The namespace URI shall be "http://ns.adobe.com/xmp/Identifier/qual/1.0/".

• The preferred namespace prefix is xmpidq.

 Table 7 — XMP Media Management properties

Name Type Property content

xmpMM:DerivedFrom ResourceRef A reference to the resource from which this one is derived.
This should be a minimal reference, in which missing
components can be assumed to be unchanged.
See definitions of rendition (3.7) and version (3.9).
NOTE A rendition might need to specify only the

xmpMM:InstanceID and xmpMM:RenditionClass of
the original.

xmpMM:DocumentID GUID The common identifier for all versions and renditions of a
resource. See Annex A, “(informative) Document and
instance IDs” and definitions of rendition (3.7) and version
(3.9).

xmpMM:InstanceID GUID An identifier for a specific incarnation of a resource, updated
each time a file is saved.
See Annex A, “(informative) Document and instance IDs”.

xmpMM:OriginalDocumentID GUID The common identifier for the original resource from which
the current resource is derived. For example, if you save a
resource to a different format, then save that one to another
format, each save operation should generate a new
xmpMM:DocumentID that uniquely identifies the resource in
that format, but should retain the ID of the source file here.
See Annex A, “(informative) Document and instance IDs”.

xmpMM:RenditionClass RenditionClass The rendition class name for this resource. This property
should be absent or set to default for a resource that is not
a derived rendition. See definitions of rendition (3.7) and
version (3.9).

xmpMM:RenditionParams Text Can be used to provide additional rendition parameters that
are too complex or verbose to encode in
xmpMM:RenditionClass.

http://ns.adobe.com/xmp/Identifier/qual/1.0/

ISO 16684-1:2011(E)

30 ©Adobe Systems Incorporated, 2012

Table 8 lists the single xmpidq qualifier. The qualifier shall be of the specified type. The qualifier content should
be as described.

 Table 8 — XMP xmpidq qualifier

Name Type Qualifier content

xmpidq:Scheme Text A qualifier providing the name of the formal identification
scheme used for an item in the xmp:Identifier array.

©Adobe Systems Incorporated, 2012 31

ISO 16684-1:2011(E)

 Annex A
(informative)

Document and instance IDs

There can often be ambiguity when referring to resources. The contents of a resource can change over time.
Depending on the situation, it might be desirable to refer to either:

• a specific state of the resource as it exists at a point in time, or

• the resource in general, as a persistent container whose content can change.

Some characteristics of a resource (such as the application that created it) are normally expected to be
persistent over its life. Other characteristics (such as word count) are expected to change as the content of the
resource changes. Some characteristics (such as copyright information or authors’ names) might or might not
change.

In the same way, XMP properties that represent such characteristics of a resource are inherently ambiguous as
to whether they refer to the current content of a resource or to the resource in general. XMP itself provides no
mechanisms for distinguishing these.

This document defines three GUIDs that are intended to help manage copies of a resource, to identify a
specific state when desired, and to associate related copies of the same conceptual resource. These are not
the only items in XMP that are intended to help resource management, but they are important ones. The XMP
Media Management namespace (8.6, “XMP Media Management namespace”) defines these properties:

• xmpMM:DocumentID: Created once for new resources. Different renditions are expected to have different
values for xmpMM:DocumentID.

• xmpMM:InstanceID: Changes with each save operation.

• xmpMM:OriginalDocumentID: Links a resource to its original source. For example, when you save a
PSD document as a JPEG, then convert the JPEG to GIF format, the immediate source of the GIF is the
JPEG, and the original source is the PSD. The value of xmpMM:OriginalDocumentID in both the JPEG
and GIF files is the value of xmpMM:DocumentID from the original PSD file.

In addition, the xmpMM:DerivedFrom property is defined to store linkage information from one resource to its
ancestors, possibly including these GUIDs.

The use of robust GUIDs is encouraged; having globally unique values is important. In practical terms, this
means that the probability of a collision is so remote as to be effectively impossible. Typically, 128-bit or 144-bit
numbers are used, encoded as hexadecimal strings.

This document does not require any particular methodology for creating a GUID, nor does it require any
specific means of formatting the GUID as a simple XMP value.

The only valid operations on XMP IDs are to create them, to assign one to another, and to compare two of them
for equality. Comparisons use the Unicode string value as-is, using a direct byte-for-byte check for equality.

IETF RFC 4122 (http://www.ietf.org/rfc/rfc4122.txt) describes ways to create and format GUID strings. For
privacy, the use of a MAC address is not recommended. See section 4.1.6 of RC 4122 for details and
alternatives.

http://www.ietf.org/rfc/rfc4122.txt
http://www.ietf.org/rfc/rfc4122.txt

ISO 16684-1:2011(E)

32 ©Adobe Systems Incorporated, 2012

©Adobe Systems Incorporated, 2012 33

ISO 16684-1:2011(E)

 Annex B
(informative)

Implementation guidance

B.1 General

This annex contains informative text about a variety of implementation issues facing XMP processors. It
provides informal guidance on a variety of separate topics. These generally clarify some smaller aspects of the
mappings between the XMP data model and RDF.

B.2 Escaping XML markup in values

The following sections of the Extensible Markup Language specification discuss the treatment of special
characters used in element character data content or attribute values:

• Section 2.1, “Well-Formed XML Documents”

• Section 2.2, “Characters”

• Section 2.4, “Character Data and Markup”

• Section 2.11, “End-of-Line Handling”

• Section 3.3.3, “Attribute-Value Normalization”

• Section 4, “Physical Structures”

• Appendix D, “Expansion of Entity and Character References (Non-Normative)”

These rules require that certain characters in XMP values be escaped on output.

The rules from section 2.4 reduce to escaping of "&", "<", ">", and the other characters in the RestrictedChar
set. Use of CDATA sections is discouraged in XMP; there is no way to escape the presence of "]]>" in a value.

The rules from section 2.4 prohibit all ASCII controls (U+000..U+001F) except for tab (U+0009), linefeed
(U+000A), and carriage return (U+000D). The prohibited controls cannot even appear as character entities.

B.3 Namespace URI termination

This section expands on the namespace URI termination issues mentioned in 6.2, “XMP names”.

The formal definition of RDF transforms the XML representation into “triples” in a manner that concatenates
XML namespace URI strings with the local part of XML element and attribute names. This can lead to
ambiguities if the URI does not end in a separating character that cannot appear in the local name. This is not
a problem for an XMP processor that avoids use of the RDF triple representation. But it could be a problem in
other implementations of XMP, or if the RDF form of XMP were fed to a traditional RDF processor.

EXAMPLE Here is an artificial example of RDF that produces ambiguities in the triples:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ns1="http://ns.adobe.com/xmp-example/namespace"
xmlns:ns2="http://ns.adobe.com/xmp-example/name">

<rdf:Description
rdf:about="http://ns.adobe.com/xmp-example/RDF-predicate-collision">

<ns1:ship>value of ns1:ship</ns1:ship>

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ns.adobe.com/xmp-example/namespace
http://ns.adobe.com/xmp-example/name
http://ns.adobe.com/xmp-example/RDF-predicate-collision

ISO 16684-1:2011(E)

34 ©Adobe Systems Incorporated, 2012

<ns2:spaceship>value of ns2:spaceship</ns2:spaceship>
</rdf:Description>

</rdf:RDF>

Here are the ambiguous RDF triples from the RDF Validator (http://www.w3.org/RDF/Validator/). Notice that the two
predicates are the same:

Subject: http://ns.adobe.com/xmp-example/RDF-predicate-collision
Predicate: http://ns.adobe.com/xmp-example/namespaceship
Object: "value of ns1:ship"

Subject: http://ns.adobe.com/xmp-example/RDF-predicate-collision
Predicate: http://ns.adobe.com/xmp-example/namespaceship
Object: "value of ns2:spaceship"

B.4 Case-neutral xml:lang values

The values of xml:lang qualifiers, and some standard XMP properties, obey the rules for language identifiers
given in IETF RFC 3066. Implementers are encouraged to pay particular attention to these aspects of IETF
RFC 3066:

• Both two-letter and three-letter primary subtags as defined by ISO 639-1 and ISO 639-2 are supported.

• When a language has both an ISO 639-1 two-character code and an ISO 639-2 three-character code, the
tag derived from the ISO 639-1 two-character code is used.

• All tags are treated as case-insensitive; there exist conventions for capitalization of some of them, but case
is not allowed to carry meaning. For instance, ISO 3166 recommends that country codes be capitalized
(MN Mongolia), while ISO 639 recommends that language codes be written in lower case (mn Mongolian).

Since the values are required to be treated as case-insensitive, XMP processors are allowed to normalize them
on input and to output the normalized values. The recommendations of ISO 639 and ISO 3166 are preferred.
This document does not define or require a normalization policy. Since comparisons are case-insensitive,
differences in policy can have no substantive effect.

http://www.w3.org/RDF/Validator/
http://www.w3.org/RDF/Validator/
http://ns.adobe.com/xmp-example/RDF-predicate-collision
http://ns.adobe.com/xmp-example/namespaceship
http://ns.adobe.com/xmp-example/RDF-predicate-collision
http://ns.adobe.com/xmp-example/namespaceship

©Adobe Systems Incorporated, 2012 35

ISO 16684-1:2011(E)

 Annex C
(informative)

RDF parsing information

C.1 General

This annex presents the formal grammar for RDF and a walkthrough for implementing a top-down parser that
recognizes the XMP subset of RDF. The parsing description is based on the grammar in section 7, “RDF/XML
Grammar”, of the RDF/XML Syntax Specification.

7.2.2 coreSyntaxTerms
rdf:RDF | rdf:ID | rdf:about | rdf:parseType |

rdf:resource | rdf:nodeID | rdf:datatype

7.2.3 syntaxTerms
coreSyntaxTerms | rdf:Description | rdf:li

7.2.4 oldTerms
rdf:aboutEach | rdf:aboutEachPrefix | rdf:bagID

7.2.5 nodeElementURIs
anyURI - (coreSyntaxTerms | rdf:li | oldTerms)

7.2.6 propertyElementURIs
anyURI - (coreSyntaxTerms | rdf:Description | oldTerms)

7.2.7 propertyAttributeURIs
anyURI - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

7.2.8 doc
root (document-element == RDF, children == list (RDF))

7.2.9 RDF
start-element (URI == rdf:RDF, attributes == set())

nodeElementList
end-element()

7.2.10 nodeElementList
ws* (nodeElement ws*)*

7.2.11 nodeElement
start-element (URI == nodeElementURIs,

 attributes == set ((idAttr | nodeIdAttr | aboutAttr)?,
propertyAttr*))

propertyEltList
end-element()

7.2.12 ws
A text event matching white space defined by [XML] definition
White Space Rule [3] S in section Common Syntactic Constructs.

7.2.13 propertyEltList
ws* (propertyElt ws*)*

ISO 16684-1:2011(E)

36 ©Adobe Systems Incorporated, 2012

7.2.14 propertyElt
resourcePropertyElt | literalPropertyElt |
parseTypeLiteralPropertyElt | parseTypeResourcePropertyElt |
parseTypeCollectionPropertyElt | parseTypeOtherPropertyElt |
emptyPropertyElt

7.2.15 resourcePropertyElt
start-element (URI == propertyElementURIs, attributes == set (idAttr?))

ws* nodeElement ws*
end-element()

7.2.16 literalPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, datatypeAttr?))
text()

end-element()

7.2.17 parseTypeLiteralPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, parseLiteral))
literal
end-element()

7.2.18 parseTypeResourcePropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, parseResource))
propertyEltList

end-element()

7.2.19 parseTypeCollectionPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, parseCollection))
nodeElementList

end-element()

7.2.20 parseTypeOtherPropertyElt
start-element (URI == propertyElementURIs, attributes

== set (idAttr?, parseOther))
propertyEltList

end-element()

7.2.21 emptyPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, (resourceAttr | nodeIdAttr)?,
propertyAttr*))

end-element()

7.2.22 idAttr
attribute (URI == rdf:ID, string-value == rdf-id)

7.2.23 nodeIdAttr
attribute (URI == rdf:nodeID, string-value == rdf-id)

7.2.24 aboutAttr
attribute (URI == rdf:about, string-value == URI-reference)

7.2.25 propertyAttr
attribute (URI == propertyAttributeURIs, string-value == anyString)

©Adobe Systems Incorporated, 2012 37

ISO 16684-1:2011(E)

7.2.26 resourceAttr
attribute (URI == rdf:resource, string-value == URI-reference)

7.2.27 datatypeAttr
attribute (URI == rdf:datatype, string-value == URI-reference)

7.2.28 parseLiteral
attribute (URI == rdf:parseType, string-value == "Literal")

7.2.29 parseResource
attribute (URI == rdf:parseType, string-value == "Resource")

7.2.30 parseCollection
attribute (URI == rdf:parseType, string-value == "Collection")

7.2.31 parseOther
attribute (URI == rdf:parseType,

 string-value == anyString - ("Resource" | "Literal" |
"Collection"))

7.2.32 URI-reference
An RDF URI Reference.

7.2.33 literal
Any XML element content that is allowed according to [XML] definition
Content of Elements Rule [43] content in section 3.1 Start-Tags, End-Tags, and
Empty-Element Tags.

7.2.34 rdf-id
An attribute string-value matching any legal [XML-NS] token NCName.

C.2 Top-down parsing of RDF

C.2.1 Overview

Here is a sample description of the desired RDF parsing support. This covers all forms for the RDF, the XMP
canonical form, and all alternatives. The description presumes an initial raw XML parse that creates a runtime
data structure of the XML. As a simplification, xmlns attributes are presumed to have been removed; the run-
time data structure for the raw XML parse has propagated the namespace URIs.

The syntax and descriptions presented here are appropriate for construction of a top-down parser. They are not
appropriate for a bottom-up parser. For example, there are significant ambiguities in the use of XML elements
that are not RDF terms: they could be the Typed Node form of a nodeElement or one of the seven propertyElt
forms.

The xml:lang, rdf:about, rdf:ID, rdf:nodeID, and rdf:datatype attributes are special in RDF. The use of
xml:lang is not shown in the syntax productions. As mentioned in 7.8, “Qualifiers”, it is mapped to an XMP
qualifier. The other attributes are specifically represented in the RDF syntax. Other than rdf:about for a top-
level rdf:Description element, they are not allowed in XMP, as specified in 7.1, “General”.

C.2.2 Outermost element, rdf:RDF

7.2.9 RDF
start-element (URI == rdf:RDF, attributes == set())

nodeElementList
end-element()

ISO 16684-1:2011(E)

38 ©Adobe Systems Incorporated, 2012

7.2.10 nodeElementList
ws* (nodeElement ws*)*

<rdf:RDF>
...

</rdf:RDF>

The outermost RDF element is rdf:RDF. Although optional in general RDF, the rdf:RDF element is required in
XMP. The content of the rdf:RDF element represents a single XMP packet. No attributes are allowed on the
rdf:RDF element. Inside rdf:RDF is a top-level nodeElementList, a sequence of zero or more white-space
separated nodeElements with “top-level” restrictions.

C.2.3 Top-level and inner nodeElements

7.2.5 nodeElementURIs
anyURI - (coreSyntaxTerms | rdf:li | oldTerms)

7.2.11 nodeElement
start-element (URI == nodeElementURIs,

attributes == set ((idAttr | nodeIdAttr | aboutAttr)?,
propertyAttr*))

propertyEltList
end-element()

<rdf:RDF>
<rdf:Description rdf:about=""> <!-- Top level rdf:Description nodeElement -->

<ns:Struct1>
<rdf:Description> <!-- Inner rdf:Description nodeElement -->

...
</rdf:Description>

</ns:Struct1>

<ns:Struct2>
<ns:MyType> <!-- Inner Typed Node form of nodeElement -->

...
</ns:MyType>

</ns:Struct2>

</rdf:Description>
</rdf:RDF>

In the RDF syntax, a nodeElement (top-level or inner) can be an rdf:Description element, or any other
element that is not an RDF term. Use of an RDF term element is an error. In XMP, a top-level nodeElement can
only be rdf:Description. A nodeElement that is rdf:Bag, rdf:Seq, or rdf:Alt represents an XMP array value.
Any other nodeElement that is not rdf:Description is a Typed Node, which is processed according to the
canonical Typed Node expansion using rdf:Description and rdf:type shown in 7.9.2.5, “RDF Typed Nodes”.

C.2.4 Attributes of a nodeElement

7.2.7 propertyAttributeURIs
anyURI - (coreSyntaxTerms | rdf:Description | rdf:li | oldTerms)

7.2.11 nodeElement
start-element (URI == nodeElementURIs,

attributes == set ((idAttr | nodeIdAttr | aboutAttr)?,
propertyAttr*))

propertyEltList
end-element()

©Adobe Systems Incorporated, 2012 39

ISO 16684-1:2011(E)

The attributes of a nodeElement can be rdf:about, rdf:ID, rdf:nodeID, or anything else that is not an RDF
term. As specified in 7.4, “rdf:RDF and rdf:Description elements”, a top-level nodeElement in XMP is required
to have an rdf:about attribute; the values of rdf:about attributes are all required to match. An XMP processor
should allow a top-level nodeElement element to have no rdf:about attribute and treat this as identical to an
rdf:about attribute with an empty value. For maximum compatibility with older files, an XMP processor might
choose to allow a mix of empty and non-empty rdf:about values, but still require that all non-empty values
match. The rdf:about, rdf:ID, and rdf:nodeID attributes are mutually exclusive in the RDF syntax. The rdf:ID
and rdf:nodeID attributes are not allowed in XMP.

XMP does not allow an xml:lang attribute on a nodeElement.

Other attributes (propertyAttr) of a top-level nodeElement become simple unqualified properties in the XMP
packet. Other attributes of an inner nodeElement become simple unqualified fields of the XMP struct value
represented by the nodeElement, or become qualifiers if the nodeElement represents a value with general
qualifiers, or a simple qualified value if the attribute is rdf:value.

C.2.5 Content of a nodeElement

7.2.11 nodeElement
start-element (URI == nodeElementURIs,

attributes == set ((idAttr | nodeIdAttr | aboutAttr)?,
propertyAttr*))

propertyEltList
end-element()

7.2.13 propertyEltList
ws* (propertyElt ws*)*

7.2.14 propertyElt
resourcePropertyElt | literalPropertyElt |
parseTypeLiteralPropertyElt | parseTypeResourcePropertyElt |
parseTypeCollectionPropertyElt | parseTypeOtherPropertyElt |
emptyPropertyElt

The contained elements of a nodeElement are a propertyEltList (property element list), a sequence of zero or
more white-space separated propertyElts (property elements). The contained elements of a top-level
nodeElement become properties in the XMP packet. The contained elements of an inner nodeElement become
fields of the XMP struct value represented by the nodeElement, qualifiers or the qualified value if the
nodeElement represents an XMP value with general qualifiers, or items in the XMP array value represented by
the nodeElement. This pertains to the “valid” contained elements as defined in the rules for the various forms of
a propertyElt.

The syntax of a propertyElt is somewhat complex. The various forms are not generally distinguished by their
XML element name, but by attributes. Exceptions are resourcePropertyElt, literalPropertyElt, and
emptyPropertyElt, which are distinguished by a combination of attributes and XML content. For those
distinguished by attribute, xml:lang attributes cause some small complication. The use of xml:lang in RDF is
special; it is not part of the syntax productions. An xml:lang attribute in the RDF always maps to an xml:lang
qualifier in XMP.

The rules for distinguishing the propertyElt forms are:

• If there are more than three attributes (counting xml:lang), this is an emptyPropertyElt.

• Look for an attribute that is not xml:lang or rdf:ID.

• If none is found, look at the XML content of the propertyElt.

— If there is no content, this is an emptyPropertyElt.

— If the only content is character data, this is a literalPropertyElt.

ISO 16684-1:2011(E)

40 ©Adobe Systems Incorporated, 2012

— Otherwise this is a resourcePropertyElt.

• Otherwise (if an attribute is found that is not xml:lang or rdf:ID):

— If the attribute name is rdf:datatype, this is a literalPropertyElt.

— If the attribute name is not rdf:parseType, this is an emptyPropertyElt.

— If the attribute value is Literal, this is a parseTypeLiteralPropertyElt.

— If the attribute value is Resource, this is a parseTypeResourcePropertyElt.

— If the attribute value is Collection, this is a parseTypeCollectionPropertyElt.

• Otherwise, this is a parseTypeOtherPropertyElt.

The use of phrases such as “this is an emptyPropertyElt” in the preceding list means that the only applicable
RDF syntax production has been identified. Further processing performs additional error checking to verify the
specific syntax.

C.2.6 The resourcePropertyElt

7.2.15 resourcePropertyElt
start-element (URI == propertyElementURIs, attributes == set (idAttr?))

ws* nodeElement ws*
end-element()

<ns:Struct> <!-- resourcePropertyElt -->
<rdf:Description> <!-- nodeElement -->

<ns:Field> ... </ns:Field>
...

</rdf:Description>
</ns:Struct>

<ns:Array> <!-- resourcePropertyElt -->
<rdf:Bag> <!-- nodeElement -->

<rdf:li> ... </rdf:li>
...

</rdf:Bag>
</ns:Array>

<ns:Prop> <!-- resourcePropertyElt -->
<rdf:Description> <!-- nodeElement -->

<rdf:value> ... </rdf:value>
<ns:Qual> ... </ns:Qual>
...

</rdf:Description>
</ns:Prop>

A resourcePropertyElt most commonly represents an XMP struct or array property. It can also represent a
property with general qualifiers (other than xml:lang as an attribute). These are expressed in RDF as pseudo-
structs with a special rdf:value “field”.

The rdf:ID attribute is not allowed in XMP.

A resourcePropertyElt can have an xml:lang attribute; it becomes an xml:lang qualifier on the XMP value
represented by the resourcePropertyElt.

<ns:Prop> <!-- resourcePropertyElt -->
<ns:Type> <!-- Typed Node form of a nodeElement -->

...
</ns:Type>

</ns:Prop>

©Adobe Systems Incorporated, 2012 41

ISO 16684-1:2011(E)

A resourcePropertyElt can contain an RDF Typed Node, a form of shorthand that elevates an rdf:type qualifier
to a more visible position in the XML.

Note that the canonical array form used by XMP is in fact a Typed Node. Because of their common usage and
known semantics, the array forms are more easily dealt with as direct special cases. The XMP treatment of
Typed Nodes is discussed in 7.9.2.5, “RDF Typed Nodes”.

C.2.7 The literalPropertyElt

7.2.16 literalPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, datatypeAttr?))
text()

end-element()

<ns:Prop>value</ns:Prop> <!-- literalPropertyElt -->

A literalPropertyElt is the typical element form of a simple property. The text content is the property value.
Attributes of the element become qualifiers in the XMP data model.

The rdf:ID and rdf:datatype attributes are not allowed in XMP.

A literalPropertyElt can have an xml:lang attribute. It becomes an xml:lang qualifier on the XMP value
represented by the literalPropertyElt.

C.2.8 The parseTypeLiteralPropertyElt

7.2.17 parseTypeLiteralPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, parseLiteral))
literal

end-element()

<ns:Prop rdf:parseType="Literal"> <!-- parseTypeLiteralPropertyElt -->
...

</ns:Prop>

The parseTypeLiteralPropertyElt is not allowed by XMP. It is a controversial component of RDF that requires
the entire XML content of the outer element to be preserved and reconstituted as a textual literal. That is, in
essence, the original XML input text of all contained elements, processing instructions, comments, and
character data comprise the “literal”. In XMP, this would be a simple property whose value happened to contain
XML markup. The XMP approach is to serialize this with escaping, not as text that is actual XML markup.

C.2.9 The parseTypeResourcePropertyElt

7.2.18 parseTypeResourcePropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, parseResource))
propertyEltList

end-element()

<ns:Struct rdf:parseType="Resource"> <!-- parseTypeResourcePropertyElt -->
<ns:Field> ... </ns:Field>
...

</ns:Struct>

ISO 16684-1:2011(E)

42 ©Adobe Systems Incorporated, 2012

<ns:Struct> <!-- resourcePropertyElt -->
<rdf:Description> <!-- nodeElement -->

<ns:Field> ... </ns:Field>
...

</rdf:Description>
</ns:Struct>

A parseTypeResourcePropertyElt is a form of shorthand that replaces the inner nodeElement of a
resourcePropertyElt with an rdf:parseType="Resource" attribute on the outer element. This form is
commonly used in XMP as a cleaner way to represent a struct.

The rdf:ID attribute is not allowed in XMP.

A parseTypeResourcePropertyElt can have an xml:lang attribute. It becomes an xml:lang qualifier on the
XMP value represented by the parseTypeResourcePropertyElt.

C.2.10 The parseTypeCollectionPropertyElt

7.2.19 parseTypeCollectionPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, parseCollection))
nodeElementList

end-element()

<ns:List rdf:parseType="Collection"> <!-- parseTypeCollectionPropertyElt -->
...

</ns:List>

A parseTypeCollectionPropertyElt is not allowed by XMP. It appeared as an addition to RDF after XMP was first
delivered, and does not map well to the XMP data model. In RDF usage, a collection models a LISP-like
sequential list, with additional RDF-specific semantics.

C.2.11 The parseTypeOtherPropertyElt

7.2.20 parseTypeOtherPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, parseOther))
propertyEltList

end-element()

<ns:Prop rdf:parseType="..."> <!-- parseTypeOtherPropertyElt -->
...

</ns:Prop>

A parseTypeOtherPropertyElt is not allowed by XMP. It is an element containing an rdf:parseType attribute
whose value is other than Resource, Literal, or Collection. The RDF/XML Syntax Specification says that the
content of a parseTypeOtherPropertyElt is to be treated as a literal in the same manner as a
parseTypeLiteralPropertyElt.

C.2.12 The emptyPropertyElt

7.2.21 emptyPropertyElt
start-element (URI == propertyElementURIs,

attributes == set (idAttr?, (resourceAttr | nodeIdAttr)?,
propertyAttr*))

end-element()

<ns:Prop1/> <!-- a simple property with an empty value -->
<ns:Prop2 rdf:resource="http://www.adobe.com/"/> <!-- a URI value -->

http://www.adobe.com/"/

©Adobe Systems Incorporated, 2012 43

ISO 16684-1:2011(E)

<ns:Prop3 rdf:value="..." ns:Qual="..."/> <!-- a simple qualified property -->
<ns:Prop4 ns:Field1="..." ns:Field2="..."/> <!-- a struct with simple fields -->

An emptyPropertyElt is an element with no contained content, just a possibly empty set of attributes. An
emptyPropertyElt can represent three special cases of simple XMP properties: a simple property with an empty
value (ns:Prop1 above); a simple property whose value is a URI (ns:Prop2 above); or an alternative RDF form
for a simple property with simple qualifiers (ns:Prop3 above). An emptyPropertyElt can also represent an XMP
struct whose fields are all simple and unqualified (ns:Prop4 above).

An emptyPropertyElt can have an xml:lang attribute. It becomes an xml:lang qualifier on the XMP data model
property represented by the emptyPropertyElt.

The rdf:ID and rdf:nodeID attributes are not allowed in XMP.

The XMP mapping for an emptyPropertyElt is a bit different from generic RDF, partly for design reasons and
partly for historical reasons. The XMP mapping rules are:

1 If there is an rdf:value attribute, then this is a simple property. All other attributes are qualifiers.

2 If there is an rdf:resource attribute, then this is a simple property with a URI value. All other attributes are
qualifiers.

3 If there are no attributes other than xml:lang, rdf:ID, or rdf:nodeID, then this is a simple property with an
empty value.

4 Finally, this is a struct, and the attributes other than xml:lang, rdf:ID, or rdf:nodeID are the fields.

Proper operation requires that the XMP mapping rules be applied in the order shown. The concurrent use of
rdf:value and rdf:resource is discouraged.

In the form with an rdf:resource attribute, the fact that the value is a URI is not a qualifier in XMP; it is part of
the value form.

ISO 16684-1:2011(E)

44 ©Adobe Systems Incorporated, 2012

Bibliography

[1] ISO 639-1, Codes for the representation of names of languages — Part 1: Alpha-2 code

[2] ISO 639-2, Codes for the representation of names of languages — Part 2: Alpha-3 code

[3] ISO 3166-1, Codes for the representation of names of countries and their subdivisions — Part 1: Country
codes

[4] IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005 :
http://www.ietf.org/rfc/rfc4122.txt

http://www.ietf.org/rfc/rfc4122.txt

	XMP Specification Part 1
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Notations
	5 Conformance
	5.1 General
	5.2 Conforming readers
	5.3 Conforming writers
	5.4 Conforming products

	6 Data model
	6.1 XMP packets
	6.2 XMP names
	6.3 XMP value forms
	6.3.1 General
	6.3.2 Simple values
	6.3.3 Structure values
	6.3.4 Array values

	6.4 Qualifiers

	7 Serialization
	7.1 General
	7.2 Equivalent RDF and XML
	7.3 Optional outer XML
	7.3.1 General
	7.3.2 XMP packet wrapper
	7.3.3 x:xmpmeta element

	7.4 rdf:RDF and rdf:Description elements
	7.5 Simple valued XMP properties
	7.6 Structure valued XMP properties
	7.7 Array valued XMP properties
	7.8 Qualifiers
	7.9 Equivalent forms of RDF
	7.9.1 General
	7.9.2 Allowed equivalent RDF
	7.9.2.1 Summary
	7.9.2.2 rdf:Description with property attributes
	7.9.2.3 rdf:parseType="Resource" attribute
	7.9.2.4 Structure element with field attributes
	7.9.2.5 RDF Typed Nodes

	7.9.3 Prohibited equivalent RDF
	7.9.3.1 Summary
	7.9.3.2 Arrays not using Typed Node form
	7.9.3.3 rdf:_n elements and attributes

	8 Core properties
	8.1 Overview
	8.2 Core value types
	8.2.1 Basic value types
	8.2.1.1 Boolean
	8.2.1.2 Date
	8.2.1.3 Integer
	8.2.1.4 Real
	8.2.1.5 Text

	8.2.2 Derived value types
	8.2.2.1 AgentName
	8.2.2.2 Choice
	8.2.2.3 GUID
	8.2.2.4 Language Alternative
	8.2.2.5 Locale
	8.2.2.6 MIMEType
	8.2.2.7 ProperName
	8.2.2.8 RenditionClass
	8.2.2.9 ResourceRef
	8.2.2.10 URI
	8.2.2.11 URL

	8.3 Dublin Core namespace
	8.4 XMP namespace
	8.5 XMP Rights Management namespace
	8.6 XMP Media Management namespace
	8.7 xmpidq namespace

	Annex A (informative) Document and instance IDs
	Annex B (informative) Implementation guidance
	B.1 General
	B.2 Escaping XML markup in values
	B.3 Namespace URI termination
	B.4 Case-neutral xml:lang values

	Annex C (informative) RDF parsing information
	C.1 General
	C.2 Top-down parsing of RDF
	C.2.1 Overview
	C.2.2 Outermost element, rdf:RDF
	C.2.3 Top-level and inner nodeElements
	C.2.4 Attributes of a nodeElement
	C.2.5 Content of a nodeElement
	C.2.6 The resourcePropertyElt
	C.2.7 The literalPropertyElt
	C.2.8 The parseTypeLiteralPropertyElt
	C.2.9 The parseTypeResourcePropertyElt
	C.2.10 The parseTypeCollectionPropertyElt
	C.2.11 The parseTypeOtherPropertyElt
	C.2.12 The emptyPropertyElt

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [594.000 792.000]
>> setpagedevice

