\'daa E
AN B B

Adding Intelligence to Media

XMP TOOLKIT SDK

ADDENDUM FOR THE PROGRAMMER'’S
GUIDE

August 2016

Al

Adobe



Copyright © 2016 Adobe. All rights reserved.
Extensible Metadata Platform (XMP) Toolkit SDK, Addendum for the Programmer’s Guide.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

Adobe, the Adobe logo, InDesign, Photoshop, PostScript, and the XMP logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States and/or other countries. MS-DOS, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Apple, Macintosh, and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and
other countries. UNIX is a trademark in the United States and other countries, licensed exclusively through X/Open
Company, Ltd. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be
construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or
liability for any errors or inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this
publication, and expressly disclaims any and all warranties of merchantability, fitness for particular purposes, and
noninfringement of third party rights.



Contents

o =] - T o 4
Additions to the Programmer's GUIe . ...ttt i e 4

How this documentisorganized ............co ittt eininianeaans 4

Conventions used in thisdocument ..ot i 4

1 Getting started ® 0 0. 00000000000 000000000 O OO0 OO SO PONPOSEOEOEOSOSPOSEPEEOENOPONDN 5
2 Reading XIMP properties ......ccoeeeeerreieeerssesccesssssscsssssssassssssns 6
BaSiC PrOPEItY LY POS . .o ettt e 6

14T o [ o 0] o T=T o 41T 7

Vg =)V o] e o 1] = PP 7

) (U e (U o o] o T=] o 11 P 8

Special value handling . .....o.inii i e 9
Property qualifiers and language alternatives ..............cccoiiiiiiiiiiiiiininnen.. 10

3 Modifying XMP data in the XMP object ..........c.ccoiiiiiiiinnienenneeeeees 12

Creating and modifying simple properties ...........ooiuiiiiin it ieaaas 12
Creating and Modifying arrays .. ......oouvurt ittt ettt 13
Creating and modifying StrUCTUIES .. ... ..o ettt e e ie e 13
Modifying and creating complex properties . ........coviiiiin ittt 13
Modifying qualifiers in complex properties ..........oviiiiiii ittt e 16
4 Workingwithschemas .........ccoiiiiiiiiiiiiierenisecessscsccsssccssnnss 18
Creating CUStOM SCNEMIAS ... .ttt e e e ettt e e e e ieiananas 18
RegiSteriNgG NAM S PACES . o ittt ittt ettt ettt e et a i e 18
EXtending SChEmMaAs ... oo e e e 19
DOM Implementation Registry ..........ceniiniiii it eeans 20



Preface

The XMPCore component of the XMP Toolkit SDK provides path-based APIs for manipulating and
serializing XMP data, along with support utilities for building particular structures and iterations. This
release introduces new DOM based APIs in XMPCore to access metadata tree hierarchy. This document
describes these DOM based APIs in XMPCore.

This document extends the following sections of the XMP Toolkit SDK Programmer's Guide for DOM based
APIs.

» Reading XMP Properties
» Modifying XMP data in the XMP object

» Working with Schemas

This document has the following sections:

» Chapter 1, “Getting started, describes how to build and use the DOM-based APIs.

» Chapter 2, “Reading XMP properties," provides information about the two types of XMP properties -
simple and complex.

» Chapter 3, “Modifying XMP data in the XMP object," describes how to use XMPCore to modify XMP
properties.

» Chapter 4, “Working with schemas," describes the process of creating or extending existing metadata
schemas.

The following type styles are used for specific types of text:

Typeface Style Used for:
Monospaced bold XMP property names. For example, xmp : CreateDate
Monospaced Regular XML code and other literal values, such as value types and names in

other languages or formats




1

Getting started

This section describes how to build and use the DOM-based APIs.

XMPCore uses INCLUDE_CPP_DOM SOURCE flag to include source files for the DOM APIs. By default, this flag
is set to true. If you do not want to compile the DOM APIs, set this flag to false in
build/XMP_Config.cmake.

Client application need to set ENABLE cPP_DoM MODEL to 1 to use the DOM APIs.



Reading XMP properties

NoOTE: This section provides only a brief overview of the XMP Data Model. Before working with the XMP
Toolkit SDK, developers should understand the XMP Data Model, as documented in XMP Specification Part
1, Data and Serialization Models.

XMP properties are simple or complex:

» Simple properties have literal values such as strings and booleans

» Array and structures are sets of related values.

D> Arrays are sets of indexed items, with each item holding a value.
D> Structures are sets of named properties (fields), with each field holding a value.

Structures and arrays can contain other structures or arrays, nested to any depth. See the XMP Specification
Part 1 for complete details on data types and properties.

In addition to these basic types, there is special handling for Property qualifiers and language alternatives,
and also for dates and times.

In DOM-based model, each property can be viewed as a node. Top most node is called Metadata node,
which is basically a structure node. Metadata node contains the entire XMP data in the form of tree
hierarchy. It contain nodes which can be one of the following types:

» Simple nodes
» Array nodes
» Structure nodes

Simple nodes represent simple properties with values. Similarly, an Array nodes represent array data type
and Structure nodes represent structure data type.

To create a new Metadata DOM tree, you can use the createMetadata () static function of IMetadata
interface as follows:

spIMetaData metaNode = IMetaData::CreateMetadata() ;
This function creates an empty Metadata node, which you can populate according to your needs.

Also you can set the information about the resource, you need to call setaboutURI () function. Provide
the function with the AboutURI and AboutURI length, as shown in the following example:

metaNode->SetAboutURI ("http://ns.adobe.com/exif/1.0/", AdobeXMPCommon: :npos ) ;



CHAPTER 2: Reading XMP properties Simple properties 7

To access value of any simple property, you need to call GetsimpleNode () function. Provide the function
with the namespace URI, namespace URI length, property name, and property name length. If you know
that namespace URI and property name is null terminated, you can pass AdobeXMPCommon : : npos instead
of length.

spISimpleNode simpleNode = metaNode->GetSimpleNode (kXMP NS XMP, AdobeXMPCommon: :npos,
"CreatorTool", AdobeXMPCommon: :npos) ;

The GetsimpleNode () function returns shared pointer of 1simpleNode interface. This returned shared
pointer is pointing to specific simple node if that node exists with the specified namespace and property
name, otherwise it points to NULL. You should always check the return shared pointer to discover whether
you can use the returned contents.

AdobeXMPCore: :spISimpleNode simpleNode = metaNode->GetSimpleNode (kXMP NS XMP,
AdobeXMPCommon: :npos, "CreatorTool", AdobeXMPCommon: :npos) ;

if (simpleNode == NULL)

{

//Error handling code.

}

To check the value of the specified property name, you can use cetvalue () function. It returns the const
shared pointer of std: : string type, which contains the property value.

AdobeXMPCore: :spISimpleNode simpleNode = metaNode->GetSimpleNode (kXMP NS XMP,
AdobeXMPCommon: :npos, "CreatorTool", AdobeXMPCommon: :npos) ;

if (simpleNode != NULL)

{

string simpleNodeValue = simpleNode->GetValue () ->c_str();

To access array elements, you need to call GetArrayNode () function. Provide the function with the
namespace URI, namespace URI length, property name, and property name length. If you know that
namespace URI and property name is null terminated, you can pass AdobeXMPCommon : : npos instead of
length.

spIArrayNode arrayNode = metaNode->GetArrayNode (kXMP NS DC, AdobeXMPCommon: :npos,
"creator", AdobeXMPCommon: :npos) ;

The getArrayNode () function returns shared pointer of 1arrayNode interface. This returned shared
pointer is pointing to specific array node if that node exists with the specified namespace and property
name, otherwise it points to NULL. You should always check the return shared pointer to discover whether
you can use the returned contents.

spIArrayNode arrayNode = metaNode->GetArrayNode (kXMP NS DC, AdobeXMPCommon: :npos,
"creator", AdobeXMPCommon: :npos) ;

if (arrayNode == NULL)



CHAPTER 2: Reading XMP properties Structure properties 8

{

//Error code.

}

Array elements can be one of the three forms: unordered, ordered, and alternative. If you need to know the
form of any particular array, you can call cetArrayForm ().This function returns enum earrayForm, which
determines the form of a particular array.

eArrayForm form = arrayNode-> GetArrayForm() ;

Arrays can contain simple array or structure node. To know about the type of elements of an array, you
need to call GetchildNodeType () function.

eNodeType nodeType = arrayNode-> GetChildNodeType() ;

The function returns value of type enum eNodeType, which can be either kNTNone, kNTSimple, kNTArray,
Oor kNTStructure.

To retrieve simple node from the array element at a specific index, you need to call
GetSimpleNodeAtIndex (index) function.

spISimpleNode nodeChild = arrayNode->GetSimpleNodeAtIndex (1) ;

Once you get the simple node, you can retrieve the property value using cetvalue () function as
described below.

string simpleNodeValue = nodeChild->GetValue()->c_str();

To retrieve array node from the array element at the specific index, you need to call
GetArrayNodeAtIndex (index) function.

spIArrayNode nodeChild = arrayNode-> GetArrayNodeAtIndex (1) ;

Similarly, you can obtain structure node from an array element by calling
GetStructureNodeAtIndex (index) function.

spIStructureNode nodeChild = arrayNode-> GetStructureNodeAtIndex (1) ;
NoTE: This is a 1-based index; that is, the index for the first element is 1, not 0.
You can use childcount () function to discover the number of elements in an array.

int numItems= arrayNode->ChildCount () ;

To access structure node elements, you need to call cet st ructureNode () function. Provide the function
with the namespace URI, namespace URI length, property name, and property name length. If you know
that namespace URI and property name is null terminated, you can pass AdobeXMPCommon : : npos instead
of length.

spIStructureNode structNode = metaNode->GetStructureNode (kXMP_NS_ EXIF,
AdobeXMPCommon: :npos, "Flash", AdobeXMPCommon: :npos) ;

The GetstructureNode () function returns shared pointer of I1structureNode interface. This returned
shared pointer is pointing to specific structure node if that node exists with the specified namespace and
property name, otherwise it points to NULL. You should always check the return shared pointer to discover
whether you can use the returned contents.



CHAPTER 2: Reading XMP properties Special value handling 9

spIStructureNode structNode = metaNode->GetStructureNode (kXMP NS EXIF,
AdobeXMPCommon: :npos, "Flash", AdobeXMPCommon: :npos) ;

if (structNode == NULL)
{

//Error code.

}

To know about the type of particular property node in a structure element, you need to call
GetChildNodeType () function

eNodeType type = structNode-> GetChildNodeType ( (kXMP_NS EXIF, AdobeXMPCommon: :npos,
"Flash", AdobeXMPCommon: :npos) ;

The GetchildNodeType () function returns the type of node with the specified namespace URI and
property name within the structure node. If no such node exist within structure element, it returns
kNTNone.

You can also count the number of fields present within structure element. For this, you need to call
ChildCount () function.

int numItems= structNode ->ChildCount () ;

Because arrays and structures can contain nested arrays and structures, you may need a path to access an
item or field value below the top level. In the XMP Toolkit SDK, paths are similar to, but not identical to,
those defined by the XML path language, XPath. It is highly recommended that you use the provided
utility functions to construct complex paths, rather than constructing them manually.

You need to call cetpath () function on any node object whose path from the top node is required.

spIStructureNode structNode = metaNode->GetStructureNode (kXMP_NS_ EXIF,
AdobeXMPCommon: :npos, "Flash", AdobeXMPCommon: :npos) ;

if (structNode != NULL)
{

spIPath pathToNode = structNode->GetPath() ;

}

GetPath () function returns shared pointer to Irath, which contains the path from top most node to the
specified node.

Similarly, you can retrieve the particular node using the rpath construct. You need to call the
GetNodeAtPath () function. Provide the function with 1Path construct reference as input parameter.

spINode pNode = structNode-> GetNodeAtPath (path) ;

The API provides helper functions for dealing with more complex values, including language alternatives
and date-times.



CHAPTER 2: Reading XMP properties Special value handling 10

Properties themselves may have their own properties attached to them. These properties of properties are
known as property quadlifiers. Any node may or may not have qualifiers node. Qualifiers node can be of the
type simple, array, or structure.To check whether the particular node has any qualifiers or not, you need to
call HasQualifiers () function on that node construct.

bool pHasQualifier = structNode->HasQualifiers ();

HasQualifier () function returns true if the particular node construct has any of the qualifiers, otherwise
it returns false.

To retrieve the qualifier node of the particular node, you need to call cetQualifier () function. You need
to provide the namespace URI, namespace URI length, property name, and property name length as input
parameters. If you do not know the length of the namespace URI and property name, you can pass
AdobeXMPCommon : :npos instead of length.

spINode pQualNode = structNode->GetQualifier (kXMP NS EXIF, AdobeXMPCommon: :npos,
"Flash", AdobeXMPCommon: :npos) ;

GetQualifier () function returns the shared pointer pointing to the qualifier node. If no qualifier node
exist with specified namespace URI and property name, Getgualifier () function returns an invalid
shared pointer. You should always check the function return value to discover whether you can use the
returned contents.

spINode pQualNode = structNode->GetQualifier (kXMP NS EXIF, AdobeXMPCommon: :npos,
"Flash", AdobeXMPCommon: :npos) ;

if (pQualNode == NULL)
{

//Error handling code
}

Also, you can use specialized functions GetSimpleQualifier (), GetStructureQualifier () Or
GetArrayQualifier () if you already know the type of the qualifier node.

To know the type of qualifier node, you need to call cetQualifierNodeType () function.You need to
provide namespace URI, namespace URI length, property name, and property name length as input
parameters. If you do not know the length of namespace URI and property name, you can pass
AdobeXMPCommon : :npos instead of length.

eNodeType type = structNode->GetQualifierNodeType (kXMP NS EXIF,
AdobeXMPCommon: :npos, "Flash", AdobeXMPCommon: :npos) ;

If any qualifier node with specified namespace and property name exists, GetQualifierNodeType ()
function returns the type of node i.e., kNTSimple, kNTArray, kNTStructure, otherwise it returns kNTNone.

A node's type can also be retrieved by calling cetNodeType () method.

spINode pQualNode = structNode->GetQualifier (kXMP NS EXIF, AdobeXMPCommon: :npos,
"Flash", AdobeXMPCommon: :npos) ;

eNodeType type = pQualNode->GetNodeType() ;



CHAPTER 2: Reading XMP properties Special value handling 11

Also, if you need to count the number of qualifiers attached to a particular node, you need to call
QualifiersCount () function.

int pQualCount = structNode-> QualifiersCount();
If no qualifier is attached to the calling node, Qualifiercount () function returns 0.

Similarly, if you need to know whether the specified node is a qualifier node or not, you need to call

IsQualifierNode () function. It returns true if the calling node is a qualifier node, otherwise it returns
false.

bool value = structNode->IsQualifierNode();



Modifying XMP data in the XMP object

This section discusses how to use XMPCore to modify XMP properties. These techniques are illustrated
using the samples provided with the SDK.

NOTE ON HANDLING NEWLINES IN USER INTERFACE: The way a user interface handles newlines in text values is
important to the global and cross-platform portability of XMP. When displaying text, applications should
recognize common newline characters and sequences and ensure that they display as such. One
technique is to modify the displayed text, substituting appropriate local newlines. You must take care,
however, that the stored XMP value is not modified simply as a result of display.

Typical newlines are a single ASClI linefeed (LF, U+000A), a single ASClII carriage return (CR, U+000D), or
ASCII CR-LF. Section 2.11 of the XML 1.0 specification includes other sequences as recognized newlines for
normalization purposes: U+0085, U+2028, and the pair U+000D U+0085.

It is recommended that applications store all newlines in XMP text values as ASCII linefeed.

The simplest way to create a new property is with createsimpleNode () function. It creates a simple node
which is not a part of any metadata. You need to provide namespace URI, namespace URI length, property
name, and property name length as input parameters with optional value field and value length field. If
you do not know the length of the namespace URI and property name, you can pass

AdobeXMPCommon : : npos instead of length.

spISimpleNode creatorChildl =ISimpleNode: :CreateSimpleNode (kXMP NS DC,
AdobeXMPCommon: :npos, "AuthorName", AdobeXMPCommon::npos, "abc",
AdobeXMPCommon: :npos) ;

CreateSimpleNode () function returns shared pointer to 1simpleNode interface. In case namespace URI
or property values have invalid contents or property name is not a valid XML name, error will be raised.

You can set or modify the value of already created property with setvalue () function. You need to
provide valid value and length of value as input parameters. In case of unknown length of value field, you
Can pass AdobeXMPCommon : : npos.

creatorChildl-> SetValue ("Updated By XMP SDK", AdobeXMPCommon: :npos) ;

Also, if a simple property is of URI type, you need to call setUrRIType () function with boolean true as input
parameter.

creatorChildl-> SetURIType (true);

Similarly, you can query whether the particular simple property is URI Type or not. You need to call
IsURIType () function, it returns true in case the property is of URI Type, otherwise it returns false.

12



CHAPTER 3: Modifying XMP data in the XMP object Creating and modifying arrays 13

Array nodes can also be created in similar fashion like simple properties. You need to call any of the
following functions depending on the required array form:

CreateUnorderedArrayNode (), CreateOrderedArrayNode(), or
CreateAlternativeArrayNode() .

spIArrayNode arrayNode = IArrayNode::CreateUnorderedArrayNode (kXMP NS DC,
AdobeXMPCommon: :npos, "creator", AdobeXMPCommon: :npos) ;

This function call creates an unordered array node, which is not part of any metadata. It returns invalid
shared pointer in case of invalid XML name or namespace URI contains NULL data.

In order to insert a node in this newly created array node, you need to call InsertNodeAtIndex ()
function. It takes the node to be inserted into the metadata node and the index where the node is to be
inserted. Array indexes are 1-based; that is, the index for the first element is 1, not 0.

arrayNode-> InsertNodeAtIndex (pNode, 1);

InsertNodeAtIndex () function throws an error if the inserting node is not valid, type of the node is not
same as other child of the array node, node is already a child of any other node, or the index value is not
correct i.e., index is less than 1 or greater than current child count + 1.

Similar to simple nodes and array nodes, structure nodes can also be created with
CreateStructureNode ().

spIStructureNode structNode = IStructureNode:: CreateStructureNode (kXMP_NS_ DC,
AdobeXMPCommon: :npos, "creator", AdobeXMPCommon: :npos) ;

This function creates a structure node, which is not part of any metadata. This function returns invalid
shared pointer if namespace URI or property name is NULL or property name is not a valid XML name.

To insert any node in structure node, you need to call 1nsertNode () function. It requires the valid node as
input parameter, which needs to be inserted in the structure node.

structNode-> InsertNode (anyValidNode) ;

If the node is already a part of the structure node or child of any other node in the metadata, an exception
is raised.

Schemas can contain very complex properties, such as arrays nested within structures. For instance, a
complex property can be:

» A structure with nested arrays.

» A structure with nested structures.
» An array with nested structures.
>

An array with nested arrays.



CHAPTER 3: Modifying XMP data in the XMP object Modifying and creating complex properties 14

Each property can have an arbitrary number of nested levels. For example, a structure can have arrays as its
field values; the array items themselves could also be arrays or structures, and so on.

This figure shows a conceptual diagram of a complex property:

|'Ja Resource. pdf x‘|
e i
sdkMyProperty

"AValue 1"

sllcFd ) (bag
«“"'A e slkFs

sclk:F4

|".A Value 5" |

In this example, Resource.pdf has a single property named myproperty. The property type is a structure
which has several fields, one of which is an ordered array. The array holds items which themselves are

structures.

"AValue 6"

"AValue a°

The same XMP serialized to RDF looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description xmlns:sdk="http://ns.adobe.com/xmp/sdk/" rdf:about="">
<sdk:MyProperty rdf:parseType="Resource">
<sdk:F1>A Valuel</sdk:Fl>
<sdk:F2>
<rdf:Seqg>
<rdf:1i rdf:parseType="Resource">
<sdk:F4>A Value3</sdk:F4>
<sdk:F5>A Valueé4</sdk:F5>
</rdf:1li>
<rdf:1i rdf:parseType="Resource">
<sdk:F4>A ValueS5</sdk:F4>

<sdk:F5>A Value6</sdk:F5>



CHAPTER 3: Modifying XMP data in the XMP object Modifying and creating complex properties 15

</rdf:1li>
</rdf:Seqg>
</sdk:F2>
<sdk:F3>A Value2</sdk:F3>
</sdk:MyProperty>
</rdf:Description>
</rdf :RDF>

In order to access deeply nested properties, such as sdk: F5, the name alone does not point to the correct
property; you must provide a path. To retrieve the path for sdk: Fs, you need to call getpath () function
on the node object holding property sdk: Fs.

spIPath path = node->GetPath() ;

If you need to serialize the path, which is returned by cetPath () function, you need to call serialize ()
function. You can provide the reference of INamesSpacePrefixMap for mapping between namespace and
prefixes. If you do not want to provide the mapping, default mapping will be used, but the preference will
always be given to user given mapping.

spIUTF8String serializedPath-> Serialize();
For example, if you serialize the path for property sdk: F5, it will be serialized in the following manner.
Sdk:MyProperty/sdk:F2[2] /sdk:F5

You should not try to compose a complex path manually. The XMP API provides utility functions, which
should be used to compose paths to deeply nested properties.

You can create the complex node and modify the current value of any node using the functions provided
by XMPCore.

For example, to add a value to sdk: F4 in the complex property structure shown in the diagram above. You
first retrieve the node which is holding the property sdk:F4.

Considering you have the metadata node, which is the top most node. Perform the following steps to
retrieve the node holding the property sdk:F4 (shown in the preceding diagram):

1. Retrieve the structure node, which contains MypProperty structure. To do so, call:

spIStructureNode MyPropertyNode =
metaNode->GetStructureNode ("http://ns.adobe.com/xmp/sdk/", AdobeXMPCommon: :npos, "
MyProperty ", AdobeXMPCommon: :npos) ;

This structure contains 3 fields, namely F1,F2, and F3.F2 is an ordered array.
2. Retrieve the array node from the structure node MyPropertyNode, which is retrieved in Step 1.

spIArrayNode arrayNode = MyPropertyNode
->GetArrayNode ("http://ns.adobe.com/xmp/sdk/", AdobeXMPCommon: :npos, "F2",
AdobeXMPCommon: :npos) ;

3. Now this array node contains two structures and property sdk: F4 is presented in the structure which
is indexed at position 1. To retrieve the structure node presented at the 1st index of the array node,
call:

spIStructureNode structureNodeChild = arrayNode-> GetStructureNodeAtIndex (1) ;



CHAPTER 3: Modifying XMP data in the XMP object Modifying qualifiers in complex properties 16

4. To retrieve simple node named sdx : 74 from the structure node, call:

spISimpleNode simpleNode = structureNodeChild
->GetSimpleNode ("http://ns.adobe.com/xmp/sdk/", AdobeXMPCommon: :npos, "F4",
AdobeXMPCommon: :npos) ;

5. Now you can modify or set the property value of sdk: F4.To do so, call:
simpleNode ->SetValue("A modified value", AdobeXMPCommon: :npos) ;

6. You can use the cetPath () function to get the path to this node and use that path to directly access
this node in future. To retrieve the node using the path, you need to call GetNodeatPath () function.
This function takes the 1path construct as an input parameter and returns the node at the specified
path.

Similarly, you can create any node and insert it into any other complex node like arrays and structures.
Suppose you want to create and insert a new node in the property MyProperty.

To do so, perform the following steps:

1. Create asimple node using CreateSimpleNode () function. Itis a static function so you do not require
any construct of IsimpleNode interface.

spISimpleNode node = ISimpleNode: :CreateSimpleNode ("http://ns.adobe.com/xmp/sdk/",
AdobeXMPCommon: :npos, "FO0", AdobeXMPCommon: :npos, "A Value 0",
AdobeXMPCommon: :npos) ;

This function creates a new simple property and sets its value to "A Value 0"
2. Toinsert this newly created property to the MyProperty property, call InsertNode () function:
MyPropertyNode->InsertNode (node) ;

Also, you can replace any existing node with the new node using ReplaceNode () function or remove
any node using RemoveNode () function.

spINode node = MyPropertyNode->RemoveNode ("http://ns.adobe.com/xmp/sdk/"
AdobeXMPCommon: :npos, "F0", AdobeXMPCommon: :npos) ;

It removes the existing node with specified namespace and property name. If no such node exist, this
function throws an exception.

Similarly, you can insert, remove, or replace any node in an array using InsertNodeAt Index (),
RemoveNodeAtIndex (), OF ReplaceNodeAtIndex () function. These functions take the node to be
inserted and the index at which it needs to be inserted.

To add a qualifier to a property, you must provide qualifier node and property node to which it is attached.
The following example shows how to add a qualifier for sdk : F4 (shown in the preceding diagram):

spISimpleNode qualifierNode =
ISimpleNode: :CreateSimpleNode ("http://ns.adobe.com/xmp/sdk/", AdobeXMPCommon: :npos,
"Qualifier Node", AdobeXMPCommon: :npos, "Qualifier", AdobeXMPCommon: :npos) ;



CHAPTER 3: Modifying XMP data in the XMP object Modifying qualifiers in complex properties 17

spIStructureNode MyPropertyNode =
metaNode->GetStructureNode ("http://ns.adobe.com/xmp/sdk/", AdobeXMPCommon: :npos, "
MyProperty ", AdobeXMPCommon: :npos) ;

spIArrayNode arrayNode = MyPropertyNode ->GetArrayNode ("http://ns.adobe.com/xmp/sdk/",
AdobeXMPCommon: :npos, "F2", AdobeXMPCommon: :npos) ;

spIStructureNode structureNodeChild = arrayNode-> GetStructureNodeAtIndex (1) ;

spISimpleNode simpleNode = structureNodeChild
->GetSimpleNode ("http://ns.adobe.com/xmp/sdk/", AdobeXMPCommon: :npos, "F4",
AdobeXMPCommon: :npos) ;

simpleNode->InsertQualifier (qualifierNode) ;

InsertQualifier () function inserts a qualifier node in the leaf property. If the qualifier node is already a
child of any property then this function throws an exception. You can remove or replace the qualifier from
the specified property using RemoveQualifier () and ReplaceQualifier () functions.



Working with schemas

There are a range of metadata schemas available for you to take advantage of, as described in the XMP
Specification Part 2, Standard Schemas. If you need, you can either extend an existing schema or create a
new one.

Although you can add new properties to extend an existing schema, the standard schemas are generally
intended for specific uses and should not be altered. Technically you can add a property to, say, the Dublin
Core schema, however, it is not recommended. If you need specific set of properties, you should create a
new schema. For example, you might create a schema com. companyName . xmp/1 . 0, and properties within
that schema for itemCode, orderNumber, and so on.

In order to avoid collisions with properties in other schemas, a schema must have a unique name. The
schema name is in the form of a URI and must comply with the XML 1.0 namespace rules, as defined at
http://www.w3.0rg/TR/2006/REC-xml-names-20060816/. You can also define a preferred prefix to use with
your namespace; defining a prefix is not mandatory, but it is recommended.

You will add properties to your namespace as you would to an existing schema. For your own schema, you
should also create a specification document that lists and describes all of the properties and data types. The
specification document is plain text, human readable, and does not need to be in any specialized format.
You should make it available to anyone wishing to work with your custom schema; however, it is not
necessary to publish it in the public domain.

To use your custom schema, you must register the namespace and prefix that you have chosen. There are
following ways to do this:

» Create an instance of INameSpacePrefixMap using static function
NameSpacePrefixMap: :CreateNameSpacePrefixMap () .

spINameSpacePrefixMap myCustomMap =
NameSpacePrefixMap: :CreateNameSpacePrefixMap () ;

Now, to register a namespace explicitly, you need to call 1nsert () function. It requires a prefix, length
of buffer holding prefix, namespace, and length of namespace buffer. It returns true in case of
successful registration on the given namespace and prefix, otherwise it returns false.

bool retValue = myCustomMap->Insert ("MyPrefix", AdobeXMPCommon: :npos
,"http://ns.adobe.com/MyNamespace/", AdobeXMPCommon: :npos) ;

You can pass this custom namespace prefix map to IPath: :Serialize () function.
» Create a new XMP object from valid RDF. Unknown namespaces are registered automatically.

» Register the namespace explicitly using the static function sxMpMeta: :RegisterNameSpace ().

18


http://www.w3.org/TR/2006/REC-xml-names-20060816/

CHAPTER 4: Working with schemas Extending schemas 19

To register a namespace explicitly, you provide the namespace URI and a preferred prefix:

string actualPrefix SXMPMeta: :RegisterNamespace (
"http://ns.adobe.com/MyNamespace/", "MyPrefix", &actualPrefix );

The prefix you pass is a suggestion; it is not guaranteed to be registered as the prefix for the namespace.
The last argument, actualPrefix, returns the actual prefix that will be used for the registered namespace.

» If you register a new namespace with a new prefix (that is, one not yet in use), the namespace is
registered with your suggested prefix, and the function returns it in the actualprrefix buffer.

» If the prefix you supply for a new namespace is already in use, the function generates a new, unique
prefix based on the one you supplied. For example, if there is already a prefix named MyPrefix, then
the actual prefix returned is MyPrefix 1 ;or, ifMyPrefix 1 isalready used, MyPrefix 2 ,and soon.

» If you register an existing namespace with a new prefix, the function returns the prefix that is already
registered for that namespace.

You can retrieve the default register namespace map by calling static function INameSpacePrefixMap: :
GetDefaultNameSpacePrefixMap (); This function returns the shared pointer pointing to
INameSpacePrefixMap instance, which contains mapping of standard namespace and their prefixes. Also,
it contains mapping of namespace and prefixes registered by calling RegisterNamespace () function
above.

Prefix collisions can occasionally occur, both at run time and when XMP is serialized and stored. You should
never depend on the suggested prefix being used, but always check for and use the actual returned prefix
when registering a namespace.

There are no restrictions as to what properties you can add to a namespace. However, it is recommended
that you try to keep properties consistent with those already existing in a schema.

» New properties that you add to a schema do not interfere with existing applications, as they have no
knowledge of your extensions. This also means, of course, that they cannot take advantage of them.
Your extensions are of use only to your own applications.

» You should not change existing property definitions from other schemas. This may cause existing
applications to perform unexpectedly and produce incorrect results.

To add a new property to a schema you need to only create that property and set a value, even if the value
is empty. For example, if you wish to add a new text property to a schema you have created, the following
is sufficient:

spISimpleNode node = ISimpleNode: :CreateSimpleNode ("http://ns.adobe.com/xmp/sdk/",
AdobeXMPCommon: :npos, "FO0", AdobeXMPCommon: :npos, "A Value 0", AdobeXMPCommon: :npos) ;

MyPropertyNode->InsertNode (node) ;

Any property type can be used when extending a schema and there are is no limitation to the number of
properties that can be added. When the XMP object is written back to the resource, the new property is
also written.

As long as you have provided a unique namespace URI for your schema, new properties that you define
are guaranteed to not interfere with existing schemas or their properties, even if your new properties have
the same local name as a property defined elsewhere.



CHAPTER 4: Working with schemas DOM Implementation Registry 20

You can also define new property value types. For example, your properties can define structures and
arrays. The specification document for your schema should document all schema properties and any new

property types.

To use, parse, and serialize functions of DOM based APIs in XMPCore, client should call the following
function to obtain IDOMImplementationRegistry.

spIDOMImplementationRegistry registry =
DOMImplementationRegistry: :GetDOMImplementationRegistry () ;

This function returns a shared pointer of ITDOMImplementationRegistry interface. Using
IDOMImplementationRegistry interface pointer, client can set or get their own serializer and parser. Also,
client can obtain the default RDF parser and serializer by using the following function call:

spIDOMParser parser = registry->GetParser( "rdf" );

The above function gets the default RDF parser of the new XMPCore.
spIDOMSerializer serializer = registry->GetSerializer ("rdf");

The above function gets the default RDF serializer of the new XMPCore.
Also, client can register their own parser using the following function:
bool APICALL RegisterParser( const char * key, pIClientDOMParser base parser );

RegisterParser function takes two input parameters:
1. key contains the name of the parser the clients want to give to their parser.

2. pIClientDOMParser base parser contains the pointer of the class which implements
IClientDOMParser interface. Clients have to implement

virtual spINode APICALL Parse( const char * buffer, sizet bufferLength, pcIConfigurable
configurationParameters, ReportErrorAndContinueFunctor proc );

so that the provided buffer can be parsed according to the clients’ requirements.

parse function takes four input parameters:

1. const char* buffer: pointer to the buffer which needs to be parse.

2. sizet bufferLength:length of the buffer which is pointed by the butfer.

3. pclIConfigurable configurationParameters:pohﬂerOfIConfigurableinteﬁace

4. ReportErrorAndContinueFunctor proc:A Functor for reporting errors back to the library while
performing the parsing operation.

For Example:
class customParser : public IClientDOMParser{
public:

virtual spINode APICALL Parse( const char * buffer, sizet bufferLength, pcIConfigurable
configurationParameters, ReportErrorAndContinueFunctor proc );



CHAPTER 4: Working with schemas DOM Implementation Registry 21

}:

spINode customParser:: Parse( const char * buffer, sizet bufferLength, pcIConfigurable
configurationParameters, ReportErrorAndContinueFunctor proc ) {

//Some Parsing functionality here

}

To register customParser to DOMImplementationRegistry:

spIDOMImplementationRegistry registry =
DOMImplementationRegistry: :GetDOMImplementationRegistry () ;

registry-> RegisterParser ("CustomParser", new customParser());

To get the customParser from DOMImplementationRegistry
spIDOMParser parser = registry->GetParser( " CustomParser " );

Now to parse the buffer using client customized parser, call the following function with appropriate
arguments as shown above:

spIMetadata meta = parser ->Parse(..);

In a similar way, client can register its own custom serializer and use it to serialize the XMP Meta Object.
To Register the serializer:
» Getthe IDOMImplementationRegistry using the following function:

spIDOMImplementationRegistry registry =
DOMImplementationRegistry: :GetDOMImplementationRegistry () ;

» Callthe RegistersSerializer function, using the obtained IDOMImplementationRegistry pointer

registry ->RegisterSerializer( const char * key, const spcIDOMSerializer &
serializer );

RegisterSerializer function takes two input parameters:

> const char * key contains the name of the serializer, which clients want to give to their
serializer.

> const spcIDOMSerializer & serializer contains the pointer of the class which implements
IClientDOMSerializer interface. Clients have to implement

virtual void APICALL Serialize( const spINode & node, const spcINameSpacePrefixMap &
nameSpacePrefixMap, pcIConfigurable configurationParameters,
ReportErrorAndContinueFunctor functor, const spIUTF8String & string );

so that the provided node can be serialized according to the clients’ requirements.

Serialize function takes five input parameters:

» const spINode& node:node to be serialized.

P const spcINameSpacePrefixMap & nameSpacePrefixMap:An(ﬂﬂectoftype
INameSpacePrefixMap, Which contains preferred prefixes for namespaces.



CHAPTER 4: Working with schemas DOM Implementation Registry 22

» pcIConfigurable configurationParameters:An object of type
AdobeXMPCommon: : IConfigurable containing all configuration parameters requested by the client
to be handled while serializing.

» ReportErrorAndContinueFunctor proc:Afunction object to be used by the serializing operation to
report back any encountered errors/warnings.

» const spIUTF8String & string: A shared pointer to an 1UTF8String object which should be filled
with the serialized form of XMP Data Model.

For Example:
class customSerializer : public IClientDOMSerializer{
public:

virtual void APICALL Serialize( const spINode & node, const spcINameSpacePrefixMap &
nameSpacePrefixMap, pcIConfigurable configurationParameters,
ReportErrorAndContinueFunctor functor, const spIUTF8String & string );

}:

void customSerializer::Serialize( const spINode & node, const spcINameSpacePrefixMap &
nameSpacePrefixMap, pcIConfigurable configurationParameters,
ReportErrorAndContinueFunctor functor, const spIUTF8String & string ) {

//Some Serialization functionality here

}

To register customSerializer t0O DOMImplementationRegistry

spIDOMImplementationRegistry registry =
DOMImplementationRegistry: :GetDOMImplementationRegistry () ;

registry-> RegisterSerializer ("CustomSerializer", new customSerializer());
To get the customSerializer from DOMImplementationRegistry

spIDOMSerializer serializer = registry->GetSerializer( " CustomSerializer " );

Now to serialize the node using client customized serializer, call the following function with appropriate
arguments as shown above:

serializer ->Serialize(...);



	XMP Toolkit SDK
	Preface
	Additions to the Programmer's Guide
	How this document is organized
	Conventions used in this document


	Getting started
	Reading XMP properties
	Basic property types
	Simple properties
	Array properties
	Structure properties
	Special value handling
	Property qualifiers and language alternatives


	Modifying XMP data in the XMP object
	Creating and modifying simple properties
	Creating and modifying arrays
	Creating and modifying structures
	Modifying and creating complex properties
	Modifying qualifiers in complex properties

	Working with schemas
	Creating custom schemas
	Registering namespaces
	Extending schemas
	DOM Implementation Registry


