/* * Copyright © 2007, 2011, 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Daniel Vetter * */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm_fourcc.h" #include "drmtest.h" #include "i915_drm.h" #include "intel_chipset.h" #include "intel_gpu_tools.h" /* This file contains a bunch of wrapper functions to directly use gem ioctls. * Mostly useful to write kernel tests. */ drm_intel_bo * gem_handle_to_libdrm_bo(drm_intel_bufmgr *bufmgr, int fd, const char *name, uint32_t handle) { struct drm_gem_flink flink; int ret; drm_intel_bo *bo; flink.handle = handle; ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink); igt_assert(ret == 0); bo = drm_intel_bo_gem_create_from_name(bufmgr, name, flink.name); igt_assert(bo); return bo; } static int is_intel(int fd) { struct drm_i915_getparam gp; int devid; gp.param = I915_PARAM_CHIPSET_ID; gp.value = &devid; if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp))) return 0; return IS_INTEL(devid); } bool gem_uses_aliasing_ppgtt(int fd) { struct drm_i915_getparam gp; int val; gp.param = 18; /* HAS_ALIASING_PPGTT */ gp.value = &val; if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp))) return 0; return val; } int gem_available_fences(int fd) { struct drm_i915_getparam gp; int val; gp.param = I915_PARAM_NUM_FENCES_AVAIL; gp.value = &val; if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp))) return 0; return val; } #define LOCAL_I915_EXEC_VEBOX (4 << 0) /* Ensure the gpu is idle by launching a nop execbuf and stalling for it. */ void gem_quiescent_gpu(int fd) { uint32_t batch[2] = {MI_BATCH_BUFFER_END, 0}; uint32_t handle; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 gem_exec[1]; handle = gem_create(fd, 4096); gem_write(fd, handle, 0, batch, sizeof(batch)); gem_exec[0].handle = handle; gem_exec[0].relocation_count = 0; gem_exec[0].relocs_ptr = 0; gem_exec[0].alignment = 0; gem_exec[0].offset = 0; gem_exec[0].flags = 0; gem_exec[0].rsvd1 = 0; gem_exec[0].rsvd2 = 0; execbuf.buffers_ptr = (uintptr_t)gem_exec; execbuf.buffer_count = 1; execbuf.batch_start_offset = 0; execbuf.batch_len = 8; execbuf.cliprects_ptr = 0; execbuf.num_cliprects = 0; execbuf.DR1 = 0; execbuf.DR4 = 0; execbuf.flags = 0; i915_execbuffer2_set_context_id(execbuf, 0); execbuf.rsvd2 = 0; do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); if (gem_has_blt(fd)) { execbuf.flags = I915_EXEC_BLT; do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); } if (gem_has_bsd(fd)) { execbuf.flags = I915_EXEC_BSD; do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); } if (gem_has_vebox(fd)) { execbuf.flags = LOCAL_I915_EXEC_VEBOX; do_ioctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf); } gem_sync(fd, handle); } /** * drm_get_card() - get an intel card number for use in /dev or /sys * * returns -1 on error */ int drm_get_card(void) { char *name; int i, fd; for (i = 0; i < 16; i++) { int ret; ret = asprintf(&name, "/dev/dri/card%u", i); igt_assert(ret != -1); fd = open(name, O_RDWR); free(name); if (fd == -1) continue; if (!is_intel(fd)) { close(fd); continue; } close(fd); return i; } igt_skip("No intel gpu found\n"); return -1; } /** Open the first DRM device we can find, searching up to 16 device nodes */ static int __drm_open_any(void) { char *name; int ret, fd; ret = asprintf(&name, "/dev/dri/card%d", drm_get_card()); if (ret == -1) return -1; fd = open(name, O_RDWR); free(name); if (!is_intel(fd)) { close(fd); fd = -1; } return fd; } static int __drm_open_any_render(void) { char *name; int i, fd; for (i = 128; i < (128 + 16); i++) { int ret; ret = asprintf(&name, "/dev/dri/renderD%u", i); igt_assert(ret != -1); fd = open(name, O_RDWR); free(name); if (fd == -1) continue; if (!is_intel(fd)) { close(fd); fd = -1; continue; } return fd; } return fd; } static void quiescent_gpu_at_exit(int sig) { int fd; fd = __drm_open_any(); if (fd >= 0) { gem_quiescent_gpu(fd); close(fd); } } static void quiescent_gpu_at_exit_render(int sig) { int fd; fd = __drm_open_any_render(); if (fd >= 0) { gem_quiescent_gpu(fd); close(fd); } } int drm_open_any(void) { static int open_count; int fd = __drm_open_any(); igt_require(fd >= 0); if (__sync_fetch_and_add(&open_count, 1)) return fd; gem_quiescent_gpu(fd); igt_install_exit_handler(quiescent_gpu_at_exit); return fd; } int drm_open_any_render(void) { static int open_count; int fd = __drm_open_any_render(); /* no render nodes, fallback to drm_open_any() */ if (fd == -1) return drm_open_any(); if (__sync_fetch_and_add(&open_count, 1)) return fd; gem_quiescent_gpu(fd); igt_install_exit_handler(quiescent_gpu_at_exit_render); return fd; } int __gem_set_tiling(int fd, uint32_t handle, int tiling, int stride) { struct drm_i915_gem_set_tiling st; int ret; memset(&st, 0, sizeof(st)); do { st.handle = handle; st.tiling_mode = tiling; st.stride = tiling ? stride : 0; ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &st); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret != 0) return -errno; igt_assert(st.tiling_mode == tiling); return 0; } void gem_set_tiling(int fd, uint32_t handle, int tiling, int stride) { igt_assert(__gem_set_tiling(fd, handle, tiling, stride) == 0); } bool gem_has_enable_ring(int fd,int param) { drm_i915_getparam_t gp; int ret, tmp; memset(&gp, 0, sizeof(gp)); gp.value = &tmp; gp.param = param; ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); if ((ret == 0) && (*gp.value > 0)) return true; else return false; } bool gem_has_bsd(int fd) { return gem_has_enable_ring(fd,I915_PARAM_HAS_BSD); } bool gem_has_blt(int fd) { return gem_has_enable_ring(fd,I915_PARAM_HAS_BLT); } #define LOCAL_I915_PARAM_HAS_VEBOX 22 bool gem_has_vebox(int fd) { return gem_has_enable_ring(fd,LOCAL_I915_PARAM_HAS_VEBOX); } int gem_get_num_rings(int fd) { int num_rings = 1; /* render ring is always available */ if (gem_has_bsd(fd)) num_rings++; else goto skip; if (gem_has_blt(fd)) num_rings++; else goto skip; if (gem_has_vebox(fd)) num_rings++; else goto skip; skip: return num_rings; } struct local_drm_i915_gem_caching { uint32_t handle; uint32_t caching; }; #define LOCAL_DRM_I915_GEM_SET_CACHEING 0x2f #define LOCAL_DRM_I915_GEM_GET_CACHEING 0x30 #define LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING \ DRM_IOW(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_SET_CACHEING, struct local_drm_i915_gem_caching) #define LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING \ DRM_IOWR(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_GET_CACHEING, struct local_drm_i915_gem_caching) void gem_require_caching(int fd) { struct local_drm_i915_gem_caching arg; int ret; arg.handle = gem_create(fd, 4096); igt_assert(arg.handle != 0); arg.caching = 0; ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg); gem_close(fd, arg.handle); igt_require(ret == 0); } void gem_set_caching(int fd, uint32_t handle, int caching) { struct local_drm_i915_gem_caching arg; int ret; arg.handle = handle; arg.caching = caching; ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg); igt_assert(ret == 0 || (errno == ENOTTY || errno == EINVAL)); igt_require(ret == 0); } uint32_t gem_get_caching(int fd, uint32_t handle) { struct local_drm_i915_gem_caching arg; int ret; arg.handle = handle; arg.caching = 0; ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING, &arg); igt_assert(ret == 0); return arg.caching; } uint32_t gem_open(int fd, uint32_t name) { struct drm_gem_open open_struct; int ret; open_struct.name = name; ret = ioctl(fd, DRM_IOCTL_GEM_OPEN, &open_struct); igt_assert(ret == 0); igt_assert(open_struct.handle != 0); return open_struct.handle; } uint32_t gem_flink(int fd, uint32_t handle) { struct drm_gem_flink flink; int ret; flink.handle = handle; ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink); igt_assert(ret == 0); return flink.name; } void gem_close(int fd, uint32_t handle) { struct drm_gem_close close_bo; close_bo.handle = handle; do_ioctl(fd, DRM_IOCTL_GEM_CLOSE, &close_bo); } void gem_write(int fd, uint32_t handle, uint32_t offset, const void *buf, uint32_t size) { struct drm_i915_gem_pwrite gem_pwrite; gem_pwrite.handle = handle; gem_pwrite.offset = offset; gem_pwrite.size = size; gem_pwrite.data_ptr = (uintptr_t)buf; do_ioctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &gem_pwrite); } void gem_read(int fd, uint32_t handle, uint32_t offset, void *buf, uint32_t length) { struct drm_i915_gem_pread gem_pread; gem_pread.handle = handle; gem_pread.offset = offset; gem_pread.size = length; gem_pread.data_ptr = (uintptr_t)buf; do_ioctl(fd, DRM_IOCTL_I915_GEM_PREAD, &gem_pread); } void gem_set_domain(int fd, uint32_t handle, uint32_t read_domains, uint32_t write_domain) { struct drm_i915_gem_set_domain set_domain; set_domain.handle = handle; set_domain.read_domains = read_domains; set_domain.write_domain = write_domain; do_ioctl(fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); } void gem_sync(int fd, uint32_t handle) { gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); } uint32_t gem_create(int fd, int size) { struct drm_i915_gem_create create; create.handle = 0; create.size = size; do_ioctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create); igt_assert(create.handle); return create.handle; } void gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *execbuf) { int ret; ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, execbuf); igt_assert(ret == 0); } void *gem_mmap__gtt(int fd, uint32_t handle, int size, int prot) { struct drm_i915_gem_mmap_gtt mmap_arg; void *ptr; mmap_arg.handle = handle; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg)) return NULL; ptr = mmap64(0, size, prot, MAP_SHARED, fd, mmap_arg.offset); if (ptr == MAP_FAILED) ptr = NULL; return ptr; } void *gem_mmap__cpu(int fd, uint32_t handle, int size, int prot) { struct drm_i915_gem_mmap mmap_arg; mmap_arg.handle = handle; mmap_arg.offset = 0; mmap_arg.size = size; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg)) return NULL; return (void *)(uintptr_t)mmap_arg.addr_ptr; } uint64_t gem_aperture_size(int fd) { struct drm_i915_gem_get_aperture aperture; aperture.aper_size = 256*1024*1024; do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); return aperture.aper_size; } uint64_t gem_mappable_aperture_size(void) { struct pci_device *pci_dev; int bar; pci_dev = intel_get_pci_device(); if (intel_gen(pci_dev->device_id) < 3) bar = 0; else bar = 2; return pci_dev->regions[bar].size; } int gem_madvise(int fd, uint32_t handle, int state) { struct drm_i915_gem_madvise madv; madv.handle = handle; madv.madv = state; madv.retained = 1; do_ioctl(fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } uint32_t gem_context_create(int fd) { struct drm_i915_gem_context_create create; int ret; ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); igt_require(ret == 0 || (errno != ENODEV && errno != EINVAL)); igt_assert(ret == 0); return create.ctx_id; } /* prime */ int prime_handle_to_fd(int fd, uint32_t handle) { struct drm_prime_handle args; args.handle = handle; args.flags = DRM_CLOEXEC; args.fd = -1; do_ioctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args); return args.fd; } uint32_t prime_fd_to_handle(int fd, int dma_buf_fd) { struct drm_prime_handle args; args.fd = dma_buf_fd; args.flags = 0; args.handle = 0; do_ioctl(fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args); return args.handle; } off_t prime_get_size(int dma_buf_fd) { off_t ret; ret = lseek(dma_buf_fd, 0, SEEK_END); igt_assert(ret >= 0 || errno == ESPIPE); igt_require(ret >= 0); return ret; } /* signal interrupt helpers */ static bool igt_only_list_subtests(void); static int exit_handler_count; static struct igt_helper_process signal_helper; long long int sig_stat; static void __attribute__((noreturn)) signal_helper_process(pid_t pid) { /* Interrupt the parent process at 500Hz, just to be annoying */ while (1) { usleep(1000 * 1000 / 500); if (kill(pid, SIGUSR1)) /* Parent has died, so must we. */ exit(0); } } static void sig_handler(int i) { sig_stat++; } void igt_fork_signal_helper(void) { if (igt_only_list_subtests()) return; signal(SIGUSR1, sig_handler); igt_fork_helper(&signal_helper) { signal_helper_process(getppid()); } } void igt_stop_signal_helper(void) { if (igt_only_list_subtests()) return; igt_stop_helper(&signal_helper); sig_stat = 0; } /* subtests helpers */ static bool list_subtests = false; static char *run_single_subtest = NULL; static const char *in_subtest = NULL; static bool in_fixture = false; static bool test_with_subtests = false; static enum { CONT = 0, SKIP, FAIL } skip_subtests_henceforth = CONT; /* fork support state */ pid_t *test_children; int num_test_children; int test_children_sz; bool test_child; bool __igt_fixture(void) { assert(!in_fixture); if (igt_only_list_subtests()) return false; if (skip_subtests_henceforth) return false; in_fixture = true; return true; } void __igt_fixture_complete(void) { assert(in_fixture); in_fixture = false; } void __igt_fixture_end(void) { assert(in_fixture); in_fixture = false; longjmp(igt_subtest_jmpbuf, 1); } bool igt_exit_called; static void check_igt_exit(int sig) { /* When not killed by a signal check that igt_exit() has been properly * called. */ assert(sig != 0 || igt_exit_called); } static void print_usage(const char *command_str, const char *help_str, bool output_on_stderr) { FILE *f = output_on_stderr ? stderr : stdout; fprintf(f, "Usage: %s [OPTIONS]\n" " --list-subtests\n" " --run-subtest \n", command_str); if (help_str) fprintf(f, "%s\n", help_str); } int igt_subtest_init_parse_opts(int argc, char **argv, const char *extra_short_opts, struct option *extra_long_opts, const char *help_str, igt_opt_handler_t extra_opt_handler) { int c, option_index = 0; static struct option long_options[] = { {"list-subtests", 0, 0, 'l'}, {"run-subtest", 1, 0, 'r'}, {"help", 0, 0, 'h'}, }; const char *command_str; char *short_opts; struct option *combined_opts; int extra_opt_count; int all_opt_count; int ret = 0; test_with_subtests = true; command_str = argv[0]; if (strrchr(command_str, '/')) command_str = strrchr(command_str, '/') + 1; /* First calculate space for all passed-in extra long options */ all_opt_count = 0; while (extra_long_opts && extra_long_opts[all_opt_count].name) all_opt_count++; extra_opt_count = all_opt_count; all_opt_count += ARRAY_SIZE(long_options); combined_opts = malloc(all_opt_count * sizeof(*combined_opts)); memcpy(combined_opts, extra_long_opts, extra_opt_count * sizeof(*combined_opts)); /* Copy the subtest long options (and the final NULL entry) */ memcpy(&combined_opts[extra_opt_count], long_options, ARRAY_SIZE(long_options) * sizeof(*combined_opts)); ret = asprintf(&short_opts, "%sh", extra_short_opts ? extra_short_opts : ""); assert(ret >= 0); while ((c = getopt_long(argc, argv, short_opts, combined_opts, &option_index)) != -1) { switch(c) { case 'l': if (!run_single_subtest) list_subtests = true; break; case 'r': if (!list_subtests) run_single_subtest = strdup(optarg); break; case 'h': print_usage(command_str, help_str, false); ret = -1; goto out; case '?': if (opterr) { print_usage(command_str, help_str, true); ret = -2; goto out; } /* * Just ignore the error, since the unknown argument * can be something the caller understands and will * parse by doing a second getopt scanning. */ break; default: ret = extra_opt_handler(c, option_index); if (ret) goto out; } } igt_install_exit_handler(check_igt_exit); out: return ret; } void igt_subtest_init(int argc, char **argv) { int ret; /* supress getopt errors about unknown options */ opterr = 0; ret = igt_subtest_init_parse_opts(argc, argv, NULL, NULL, NULL, NULL); if (ret < 0) /* exit with no error for -h/--help */ exit(ret == -1 ? 0 : ret); /* reset opt parsing */ optind = 1; } /* * Note: Testcases which use these helpers MUST NOT output anything to stdout * outside of places protected by igt_run_subtest checks - the piglit * runner adds every line to the subtest list. */ bool __igt_run_subtest(const char *subtest_name) { assert(!in_subtest); assert(!in_fixture); if (list_subtests) { printf("%s\n", subtest_name); return false; } if (skip_subtests_henceforth) { printf("Subtest %s: %s\n", subtest_name, skip_subtests_henceforth == SKIP ? "SKIP" : "FAIL"); return false; } if (!run_single_subtest) { return (in_subtest = subtest_name); } else { if (strcmp(subtest_name, run_single_subtest) == 0) return (in_subtest = subtest_name); return false; } } const char *igt_subtest_name(void) { return in_subtest; } static bool igt_only_list_subtests(void) { return list_subtests; } static bool skipped_one = false; static bool succeeded_one = false; static bool failed_one = false; static int igt_exitcode; static void exit_subtest(const char *) __attribute__((noreturn)); static void exit_subtest(const char *result) { printf("Subtest %s: %s\n", in_subtest, result); in_subtest = NULL; longjmp(igt_subtest_jmpbuf, 1); } void igt_skip(const char *f, ...) { va_list args; skipped_one = true; assert(!test_child); if (!igt_only_list_subtests()) { va_start(args, f); vprintf(f, args); va_end(args); } if (in_subtest) { exit_subtest("SKIP"); } else if (test_with_subtests) { skip_subtests_henceforth = SKIP; if (in_fixture) __igt_fixture_end(); } else { exit(77); } } void __igt_skip_check(const char *file, const int line, const char *func, const char *check, const char *f, ...) { va_list args; if (f) { static char *buf; /* igt_skip never returns, so try to not leak too badly. */ if (buf) free(buf); va_start(args, f); vasprintf(&buf, f, args); va_end(args); igt_skip("Test requirement not met in function %s, file %s:%i:\n" "Test requirement: (%s)\n%s", func, file, line, check, buf); } else { igt_skip("Test requirement not met in function %s, file %s:%i:\n" "Test requirement: (%s)\n", func, file, line, check); } } void igt_success(void) { succeeded_one = true; if (in_subtest) exit_subtest("SUCCESS"); } void igt_fail(int exitcode) { assert(exitcode != 0 && exitcode != 77); if (!failed_one) igt_exitcode = exitcode; failed_one = true; /* Silent exit, parent will do the yelling. */ if (test_child) exit(exitcode); if (in_subtest) exit_subtest("FAIL"); else { assert(!test_with_subtests || in_fixture); if (in_fixture) { skip_subtests_henceforth = FAIL; __igt_fixture_end(); } exit(exitcode); } } static bool run_under_gdb(void) { char buf[1024]; sprintf(buf, "/proc/%d/exe", getppid()); return (readlink (buf, buf, sizeof (buf)) != -1 && strncmp (basename (buf), "gdb", 3) == 0); } void __igt_fail_assert(int exitcode, const char *file, const int line, const char *func, const char *assertion, const char *f, ...) { va_list args; printf("Test assertion failure function %s, file %s:%i:\n" "Failed assertion: %s\n", func, file, line, assertion); if (f) { va_start(args, f); vprintf(f, args); va_end(args); } if (run_under_gdb()) abort(); igt_fail(exitcode); } void igt_exit(void) { igt_exit_called = true; if (igt_only_list_subtests()) exit(0); if (!test_with_subtests) exit(0); /* Calling this without calling one of the above is a failure */ assert(skipped_one || succeeded_one || failed_one); if (failed_one) exit(igt_exitcode); else if (succeeded_one) exit(0); else exit(77); } static int helper_process_count; static pid_t helper_process_pids[] = { -1, -1, -1, -1}; static void reset_helper_process_list(void) { for (int i = 0; i < ARRAY_SIZE(helper_process_pids); i++) helper_process_pids[i] = -1; helper_process_count = 0; } static void fork_helper_exit_handler(int sig) { for (int i = 0; i < ARRAY_SIZE(helper_process_pids); i++) { pid_t pid = helper_process_pids[i]; int status; if (pid != -1) { /* Someone forgot to fill up the array? */ assert(pid != 0); assert(kill(pid, SIGQUIT) == 0); while (waitpid(pid, &status, 0) == -1 && errno == -EINTR) ; helper_process_count--; } } assert(helper_process_count == 0); } bool __igt_fork_helper(struct igt_helper_process *proc) { pid_t pid; sighandler_t oldsig; int id; assert(!proc->running); assert(helper_process_count < ARRAY_SIZE(helper_process_pids)); for (id = 0; helper_process_pids[id] != -1; id++) ; igt_install_exit_handler(fork_helper_exit_handler); /* * XXX: There's a race between fork and the subsequent kill in * igt_stop_signal_helper if we don't ovewrite the SIGQUIT handler. Note * that inserting sufficient amounts of printf or other delays makes * this unnecessary. */ oldsig = signal(SIGQUIT, SIG_DFL); switch (pid = fork()) { case -1: igt_assert(0); case 0: exit_handler_count = 0; reset_helper_process_list(); return true; default: signal(SIGQUIT, oldsig); proc->running = true; proc->pid = pid; proc->id = id; helper_process_pids[id] = pid; helper_process_count++; return false; } } /** * igt_waitchildren - wait for all children forked with igt_fork * * The magic here is that exit codes from children will be correctly propagated */ void igt_stop_helper(struct igt_helper_process *proc) { int status; assert(proc->running); assert(kill(proc->pid, proc->use_SIGKILL ? SIGKILL : SIGQUIT) == 0); while (waitpid(proc->pid, &status, 0) == -1 && errno == -EINTR) ; igt_assert(WIFSIGNALED(status) && WTERMSIG(status) == (proc->use_SIGKILL ? SIGKILL : SIGQUIT)); proc->running = false; helper_process_pids[proc->id] = -1; helper_process_count--; } static void children_exit_handler(int sig) { assert(!test_child); for (int nc = 0; nc < num_test_children; nc++) { int status = -1; assert(kill(test_children[nc], SIGQUIT) == 0); while (waitpid(test_children[nc], &status, 0) == -1 && errno == -EINTR) ; } num_test_children = 0; } bool __igt_fork(void) { assert(!test_with_subtests || in_subtest); assert(!test_child); igt_install_exit_handler(children_exit_handler); if (num_test_children >= test_children_sz) { if (!test_children_sz) test_children_sz = 4; else test_children_sz *= 2; test_children = realloc(test_children, sizeof(pid_t)*test_children_sz); igt_assert(test_children); } switch (test_children[num_test_children++] = fork()) { case -1: igt_assert(0); case 0: test_child = true; exit_handler_count = 0; reset_helper_process_list(); return true; default: return false; } } /** * igt_waitchildren - wait for all children forked with igt_fork * * The magic here is that exit codes from children will be correctly propagated */ void igt_waitchildren(void) { assert(!test_child); for (int nc = 0; nc < num_test_children; nc++) { int status = -1; while (waitpid(test_children[nc], &status, 0) == -1 && errno == -EINTR) ; if (status != 0) { if (WIFEXITED(status)) { printf("child %i failed with exit status %i\n", nc, WEXITSTATUS(status)); igt_fail(WEXITSTATUS(status)); } else if (WIFSIGNALED(status)) { printf("child %i died with signal %i, %s\n", nc, WTERMSIG(status), strsignal(WTERMSIG(status))); igt_fail(99); } else { printf("Unhandled failure in child %i\n", nc); abort(); } } } num_test_children = 0; } static bool env_set(const char *env_var, bool default_value) { char *val; val = getenv(env_var); if (!val) return default_value; return atoi(val) != 0; } bool igt_run_in_simulation(void) { static int simulation = -1; if (simulation == -1) simulation = env_set("INTEL_SIMULATION", false); return simulation; } /** * igt_skip_on_simulation - skip tests when INTEL_SIMULATION env war is set * * Skip the test when running on simulation (and that's relevant only when * we're not in the mode where we list the subtests). * * This function is subtest aware (since it uses igt_skip) and so can be used to * skip specific subtests or all subsequent subtests. */ void igt_skip_on_simulation(void) { if (igt_only_list_subtests()) return; igt_require(!igt_run_in_simulation()); } bool drmtest_dump_aub(void) { static int dump_aub = -1; if (dump_aub == -1) dump_aub = env_set("IGT_DUMP_AUB", false); return dump_aub; } /* other helpers */ void igt_exchange_int(void *array, unsigned i, unsigned j) { int *int_arr, tmp; int_arr = array; tmp = int_arr[i]; int_arr[i] = int_arr[j]; int_arr[j] = tmp; } void igt_permute_array(void *array, unsigned size, void (*exchange_func)(void *array, unsigned i, unsigned j)) { int i; for (i = size - 1; i > 1; i--) { /* yes, not perfectly uniform, who cares */ long l = random() % (i +1); if (i != l) exchange_func(array, i, l); } } void igt_progress(const char *header, uint64_t i, uint64_t total) { int divider = 200; if (!isatty(fileno(stderr))) return; if (i+1 >= total) { fprintf(stderr, "\r%s100%%\n", header); return; } if (total / 200 == 0) divider = 1; /* only bother updating about every 0.5% */ if (i % (total / divider) == 0 || i+1 >= total) { fprintf(stderr, "\r%s%3llu%%", header, (long long unsigned) i * 100 / total); } } /* mappable aperture trasher helper */ drm_intel_bo **trash_bos; int num_trash_bos; void igt_init_aperture_trashers(drm_intel_bufmgr *bufmgr) { int i; num_trash_bos = gem_mappable_aperture_size() / (1024*1024); trash_bos = malloc(num_trash_bos * sizeof(drm_intel_bo *)); assert(trash_bos); for (i = 0; i < num_trash_bos; i++) trash_bos[i] = drm_intel_bo_alloc(bufmgr, "trash bo", 1024*1024, 4096); } void igt_trash_aperture(void) { int i; uint8_t *gtt_ptr; for (i = 0; i < num_trash_bos; i++) { drm_intel_gem_bo_map_gtt(trash_bos[i]); gtt_ptr = trash_bos[i]->virtual; *gtt_ptr = 0; drm_intel_gem_bo_unmap_gtt(trash_bos[i]); } } void igt_cleanup_aperture_trashers(void) { int i; for (i = 0; i < num_trash_bos; i++) drm_intel_bo_unreference(trash_bos[i]); free(trash_bos); } /* helpers to create nice-looking framebuffers */ static int create_bo_for_fb(int fd, int width, int height, int bpp, bool tiled, uint32_t *gem_handle_ret, unsigned *size_ret, unsigned *stride_ret) { uint32_t gem_handle; int size; unsigned stride; if (tiled) { int v; /* Round the tiling up to the next power-of-two and the * region up to the next pot fence size so that this works * on all generations. * * This can still fail if the framebuffer is too large to * be tiled. But then that failure is expected. */ v = width * bpp / 8; for (stride = 512; stride < v; stride *= 2) ; v = stride * height; for (size = 1024*1024; size < v; size *= 2) ; } else { /* Scan-out has a 64 byte alignment restriction */ stride = (width * (bpp / 8) + 63) & ~63; size = stride * height; } gem_handle = gem_create(fd, size); if (tiled) gem_set_tiling(fd, gem_handle, I915_TILING_X, stride); *stride_ret = stride; *size_ret = size; *gem_handle_ret = gem_handle; return 0; } void kmstest_paint_color(cairo_t *cr, int x, int y, int w, int h, double r, double g, double b) { cairo_rectangle(cr, x, y, w, h); cairo_set_source_rgb(cr, r, g, b); cairo_fill(cr); } void kmstest_paint_color_alpha(cairo_t *cr, int x, int y, int w, int h, double r, double g, double b, double a) { cairo_rectangle(cr, x, y, w, h); cairo_set_source_rgba(cr, r, g, b, a); cairo_fill(cr); } void kmstest_paint_color_gradient(cairo_t *cr, int x, int y, int w, int h, int r, int g, int b) { cairo_pattern_t *pat; pat = cairo_pattern_create_linear(x, y, x + w, y + h); cairo_pattern_add_color_stop_rgba(pat, 1, 0, 0, 0, 1); cairo_pattern_add_color_stop_rgba(pat, 0, r, g, b, 1); cairo_rectangle(cr, x, y, w, h); cairo_set_source(cr, pat); cairo_fill(cr); cairo_pattern_destroy(pat); } static void paint_test_patterns(cairo_t *cr, int width, int height) { double gr_height, gr_width; int x, y; y = height * 0.10; gr_width = width * 0.75; gr_height = height * 0.08; x = (width / 2) - (gr_width / 2); kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 1, 0, 0); y += gr_height; kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 0, 1, 0); y += gr_height; kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 0, 0, 1); y += gr_height; kmstest_paint_color_gradient(cr, x, y, gr_width, gr_height, 1, 1, 1); } int kmstest_cairo_printf_line(cairo_t *cr, enum kmstest_text_align align, double yspacing, const char *fmt, ...) { double x, y, xofs, yofs; cairo_text_extents_t extents; char *text; va_list ap; int ret; va_start(ap, fmt); ret = vasprintf(&text, fmt, ap); assert(ret >= 0); va_end(ap); cairo_text_extents(cr, text, &extents); xofs = yofs = 0; if (align & align_right) xofs = -extents.width; else if (align & align_hcenter) xofs = -extents.width / 2; if (align & align_top) yofs = extents.height; else if (align & align_vcenter) yofs = extents.height / 2; cairo_get_current_point(cr, &x, &y); if (xofs || yofs) cairo_rel_move_to(cr, xofs, yofs); cairo_text_path(cr, text); cairo_set_source_rgb(cr, 0, 0, 0); cairo_stroke_preserve(cr); cairo_set_source_rgb(cr, 1, 1, 1); cairo_fill(cr); cairo_move_to(cr, x, y + extents.height + yspacing); free(text); return extents.width; } static void paint_marker(cairo_t *cr, int x, int y) { enum kmstest_text_align align; int xoff, yoff; cairo_move_to(cr, x, y - 20); cairo_line_to(cr, x, y + 20); cairo_move_to(cr, x - 20, y); cairo_line_to(cr, x + 20, y); cairo_new_sub_path(cr); cairo_arc(cr, x, y, 10, 0, M_PI * 2); cairo_set_line_width(cr, 4); cairo_set_source_rgb(cr, 0, 0, 0); cairo_stroke_preserve(cr); cairo_set_source_rgb(cr, 1, 1, 1); cairo_set_line_width(cr, 2); cairo_stroke(cr); xoff = x ? -20 : 20; align = x ? align_right : align_left; yoff = y ? -20 : 20; align |= y ? align_bottom : align_top; cairo_move_to(cr, x + xoff, y + yoff); cairo_set_font_size(cr, 18); kmstest_cairo_printf_line(cr, align, 0, "(%d, %d)", x, y); } void kmstest_paint_test_pattern(cairo_t *cr, int width, int height) { paint_test_patterns(cr, width, height); cairo_set_line_cap(cr, CAIRO_LINE_CAP_SQUARE); /* Paint corner markers */ paint_marker(cr, 0, 0); paint_marker(cr, width, 0); paint_marker(cr, 0, height); paint_marker(cr, width, height); assert(!cairo_status(cr)); } void kmstest_paint_image(cairo_t *cr, const char *filename, int dst_x, int dst_y, int dst_width, int dst_height) { cairo_surface_t *image; int img_width, img_height; double scale_x, scale_y; image = cairo_image_surface_create_from_png(filename); assert(cairo_surface_status(image) == CAIRO_STATUS_SUCCESS); img_width = cairo_image_surface_get_width(image); img_height = cairo_image_surface_get_height(image); scale_x = (double)dst_width / img_width; scale_y = (double)dst_height / img_height; cairo_save(cr); cairo_translate(cr, dst_x, dst_y); cairo_scale(cr, scale_x, scale_y); cairo_set_source_surface(cr, image, 0, 0); cairo_paint(cr); cairo_surface_destroy(image); cairo_restore(cr); } #define DF(did, cid, _bpp, _depth) \ { DRM_FORMAT_##did, CAIRO_FORMAT_##cid, # did, _bpp, _depth } static struct format_desc_struct { uint32_t drm_id; cairo_format_t cairo_id; const char *name; int bpp; int depth; } format_desc[] = { DF(RGB565, RGB16_565, 16, 16), DF(RGB888, INVALID, 24, 24), DF(XRGB8888, RGB24, 32, 24), DF(XRGB2101010, RGB30, 32, 30), DF(ARGB8888, ARGB32, 32, 32), }; #undef DF #define for_each_format(f) \ for (f = format_desc; f - format_desc < ARRAY_SIZE(format_desc); f++) static uint32_t bpp_depth_to_drm_format(int bpp, int depth) { struct format_desc_struct *f; for_each_format(f) if (f->bpp == bpp && f->depth == depth) return f->drm_id; abort(); } /* Return fb_id on success, 0 on error */ unsigned int kmstest_create_fb(int fd, int width, int height, int bpp, int depth, bool tiled, struct kmstest_fb *fb) { memset(fb, 0, sizeof(*fb)); if (create_bo_for_fb(fd, width, height, bpp, tiled, &fb->gem_handle, &fb->size, &fb->stride) < 0) return 0; if (drmModeAddFB(fd, width, height, depth, bpp, fb->stride, fb->gem_handle, &fb->fb_id) < 0) { gem_close(fd, fb->gem_handle); return 0; } fb->width = width; fb->height = height; fb->tiling = tiled; fb->drm_format = bpp_depth_to_drm_format(bpp, depth); return fb->fb_id; } uint32_t drm_format_to_bpp(uint32_t drm_format) { struct format_desc_struct *f; for_each_format(f) if (f->drm_id == drm_format) return f->bpp; abort(); } unsigned int kmstest_create_fb2(int fd, int width, int height, uint32_t format, bool tiled, struct kmstest_fb *fb) { uint32_t handles[4]; uint32_t pitches[4]; uint32_t offsets[4]; uint32_t fb_id; int bpp; int ret; memset(fb, 0, sizeof(*fb)); bpp = drm_format_to_bpp(format); ret = create_bo_for_fb(fd, width, height, bpp, tiled, &fb->gem_handle, &fb->size, &fb->stride); if (ret < 0) return ret; memset(handles, 0, sizeof(handles)); handles[0] = fb->gem_handle; memset(pitches, 0, sizeof(pitches)); pitches[0] = fb->stride; memset(offsets, 0, sizeof(offsets)); if (drmModeAddFB2(fd, width, height, format, handles, pitches, offsets, &fb_id, 0) < 0) { gem_close(fd, fb->gem_handle); return 0; } fb->width = width; fb->height = height; fb->tiling = tiled; fb->drm_format = format; fb->fb_id = fb_id; return fb_id; } static cairo_format_t drm_format_to_cairo(uint32_t drm_format) { struct format_desc_struct *f; for_each_format(f) if (f->drm_id == drm_format) return f->cairo_id; abort(); } static cairo_surface_t *create_image_surface(int fd, struct kmstest_fb *fb) { cairo_surface_t *surface; cairo_format_t cformat; void *fb_ptr; cformat = drm_format_to_cairo(fb->drm_format); fb_ptr = gem_mmap(fd, fb->gem_handle, fb->size, PROT_READ | PROT_WRITE); surface = cairo_image_surface_create_for_data((unsigned char *)fb_ptr, cformat, fb->width, fb->height, fb->stride); assert(surface); return surface; } static cairo_t *create_cairo_ctx(int fd, struct kmstest_fb *fb) { cairo_t *cr; cairo_surface_t *surface; surface = create_image_surface(fd, fb); cr = cairo_create(surface); cairo_surface_destroy(surface); return cr; } void kmstest_write_fb(int fd, struct kmstest_fb *fb, const char *filename) { cairo_surface_t *surface; cairo_status_t status; surface = create_image_surface(fd, fb); status = cairo_surface_write_to_png(surface, filename); assert(status == CAIRO_STATUS_SUCCESS); cairo_surface_destroy(surface); } cairo_t *kmstest_get_cairo_ctx(int fd, struct kmstest_fb *fb) { if (!fb->cairo_ctx) fb->cairo_ctx = create_cairo_ctx(fd, fb); gem_set_domain(fd, fb->gem_handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); return fb->cairo_ctx; } void kmstest_remove_fb(int fd, struct kmstest_fb *fb) { if (fb->cairo_ctx) cairo_destroy(fb->cairo_ctx); do_or_die(drmModeRmFB(fd, fb->fb_id)); gem_close(fd, fb->gem_handle); } const char *kmstest_format_str(uint32_t drm_format) { struct format_desc_struct *f; for_each_format(f) if (f->drm_id == drm_format) return f->name; return "invalid"; } const char *kmstest_pipe_str(int pipe) { const char *str[] = { "A", "B", "C" }; if (pipe > 2) return "invalid"; return str[pipe]; } void kmstest_get_all_formats(const uint32_t **formats, int *format_count) { static uint32_t *drm_formats; if (!drm_formats) { struct format_desc_struct *f; uint32_t *format; drm_formats = calloc(ARRAY_SIZE(format_desc), sizeof(*drm_formats)); format = &drm_formats[0]; for_each_format(f) *format++ = f->drm_id; } *formats = drm_formats; *format_count = ARRAY_SIZE(format_desc); } struct type_name { int type; const char *name; }; #define type_name_fn(res) \ const char * kmstest_##res##_str(int type) { \ unsigned int i; \ for (i = 0; i < ARRAY_SIZE(res##_names); i++) { \ if (res##_names[i].type == type) \ return res##_names[i].name; \ } \ return "(invalid)"; \ } struct type_name encoder_type_names[] = { { DRM_MODE_ENCODER_NONE, "none" }, { DRM_MODE_ENCODER_DAC, "DAC" }, { DRM_MODE_ENCODER_TMDS, "TMDS" }, { DRM_MODE_ENCODER_LVDS, "LVDS" }, { DRM_MODE_ENCODER_TVDAC, "TVDAC" }, }; type_name_fn(encoder_type) struct type_name connector_status_names[] = { { DRM_MODE_CONNECTED, "connected" }, { DRM_MODE_DISCONNECTED, "disconnected" }, { DRM_MODE_UNKNOWNCONNECTION, "unknown" }, }; type_name_fn(connector_status) struct type_name connector_type_names[] = { { DRM_MODE_CONNECTOR_Unknown, "unknown" }, { DRM_MODE_CONNECTOR_VGA, "VGA" }, { DRM_MODE_CONNECTOR_DVII, "DVI-I" }, { DRM_MODE_CONNECTOR_DVID, "DVI-D" }, { DRM_MODE_CONNECTOR_DVIA, "DVI-A" }, { DRM_MODE_CONNECTOR_Composite, "composite" }, { DRM_MODE_CONNECTOR_SVIDEO, "s-video" }, { DRM_MODE_CONNECTOR_LVDS, "LVDS" }, { DRM_MODE_CONNECTOR_Component, "component" }, { DRM_MODE_CONNECTOR_9PinDIN, "9-pin DIN" }, { DRM_MODE_CONNECTOR_DisplayPort, "DP" }, { DRM_MODE_CONNECTOR_HDMIA, "HDMI-A" }, { DRM_MODE_CONNECTOR_HDMIB, "HDMI-B" }, { DRM_MODE_CONNECTOR_TV, "TV" }, { DRM_MODE_CONNECTOR_eDP, "eDP" }, }; type_name_fn(connector_type) static const char *mode_stereo_name(const drmModeModeInfo *mode) { switch (mode->flags & DRM_MODE_FLAG_3D_MASK) { case DRM_MODE_FLAG_3D_FRAME_PACKING: return "FP"; case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: return "FA"; case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: return "LA"; case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: return "SBSF"; case DRM_MODE_FLAG_3D_L_DEPTH: return "LD"; case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: return "LDGFX"; case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: return "TB"; case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: return "SBSH"; default: return NULL; } } void kmstest_dump_mode(drmModeModeInfo *mode) { const char *stereo = mode_stereo_name(mode); printf(" %s %d %d %d %d %d %d %d %d %d 0x%x 0x%x %d%s%s%s\n", mode->name, mode->vrefresh, mode->hdisplay, mode->hsync_start, mode->hsync_end, mode->htotal, mode->vdisplay, mode->vsync_start, mode->vsync_end, mode->vtotal, mode->flags, mode->type, mode->clock, stereo ? " (3D:" : "", stereo ? stereo : "", stereo ? ")" : ""); fflush(stdout); } int kmstest_get_pipe_from_crtc_id(int fd, int crtc_id) { struct drm_i915_get_pipe_from_crtc_id pfci; int ret; memset(&pfci, 0, sizeof(pfci)); pfci.crtc_id = crtc_id; ret = drmIoctl(fd, DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, &pfci); igt_assert(ret == 0); return pfci.pipe; } #define MAX_SIGNALS 32 #define MAX_EXIT_HANDLERS 5 static struct { sighandler_t handler; bool installed; } orig_sig[MAX_SIGNALS]; static igt_exit_handler_t exit_handler_fn[MAX_EXIT_HANDLERS]; static bool exit_handler_disabled; static sigset_t saved_sig_mask; static const int handled_signals[] = { SIGINT, SIGHUP, SIGTERM, SIGQUIT, SIGPIPE, SIGABRT, SIGSEGV, SIGBUS }; static int install_sig_handler(int sig_num, sighandler_t handler) { orig_sig[sig_num].handler = signal(sig_num, handler); if (orig_sig[sig_num].handler == SIG_ERR) return -1; orig_sig[sig_num].installed = true; return 0; } static void restore_sig_handler(int sig_num) { /* Just restore the default so that we properly fall over. */ signal(sig_num, SIG_DFL); } static void restore_all_sig_handler(void) { int i; for (i = 0; i < ARRAY_SIZE(orig_sig); i++) restore_sig_handler(i); } static void call_exit_handlers(int sig) { int i; if (!exit_handler_count) { return; } for (i = exit_handler_count - 1; i >= 0; i--) exit_handler_fn[i](sig); /* ensure we don't get called twice */ exit_handler_count = 0; } static void igt_atexit_handler(void) { restore_all_sig_handler(); if (!exit_handler_disabled) call_exit_handlers(0); } static void fatal_sig_handler(int sig) { restore_all_sig_handler(); /* * exit_handler_disabled is always false here, since when we set it * we also block signals. */ call_exit_handlers(sig); raise(sig); } /* * Set a handler that will be called either when the process calls exit() or * returns from the main function, or one of the signals in 'handled_signals' * is raised. MAX_EXIT_HANDLERS handlers can be installed, each of which will * be called only once, even if a subsequent signal is raised. If the exit * handlers are called due to a signal, the signal will be re-raised with the * original signal disposition after all handlers returned. * * The handler will be passed the signal number if called due to a signal, or * 0 otherwise. */ int igt_install_exit_handler(igt_exit_handler_t fn) { int i; for (i = 0; i < exit_handler_count; i++) if (exit_handler_fn[i] == fn) return 0; if (exit_handler_count == MAX_EXIT_HANDLERS) return -1; exit_handler_fn[exit_handler_count] = fn; exit_handler_count++; if (exit_handler_count > 1) return 0; for (i = 0; i < ARRAY_SIZE(handled_signals); i++) { if (install_sig_handler(handled_signals[i], fatal_sig_handler)) goto err; } if (atexit(igt_atexit_handler)) goto err; return 0; err: restore_all_sig_handler(); exit_handler_count--; return -1; } void igt_disable_exit_handler(void) { sigset_t set; int i; if (exit_handler_disabled) return; sigemptyset(&set); for (i = 0; i < ARRAY_SIZE(handled_signals); i++) sigaddset(&set, handled_signals[i]); if (sigprocmask(SIG_BLOCK, &set, &saved_sig_mask)) { perror("sigprocmask"); return; } exit_handler_disabled = true; } void igt_enable_exit_handler(void) { if (!exit_handler_disabled) return; if (sigprocmask(SIG_SETMASK, &saved_sig_mask, NULL)) { perror("sigprocmask"); return; } exit_handler_disabled = false; } static signed long set_vt_mode(unsigned long mode) { int fd; unsigned long prev_mode; fd = open("/dev/tty0", O_RDONLY); if (fd < 0) return -errno; prev_mode = 0; if (drmIoctl(fd, KDGETMODE, &prev_mode)) goto err; if (drmIoctl(fd, KDSETMODE, (void *)mode)) goto err; close(fd); return prev_mode; err: close(fd); return -errno; } static unsigned long orig_vt_mode = -1UL; static void restore_vt_mode_at_exit(int sig) { if (orig_vt_mode != -1UL) set_vt_mode(orig_vt_mode); } /* * Set the VT to graphics mode and install an exit handler to restore the * original mode. */ int igt_set_vt_graphics_mode(void) { if (igt_install_exit_handler(restore_vt_mode_at_exit)) return -1; igt_disable_exit_handler(); orig_vt_mode = set_vt_mode(KD_GRAPHICS); if (orig_vt_mode < 0) orig_vt_mode = -1UL; igt_enable_exit_handler(); return orig_vt_mode < 0 ? -1 : 0; } int kmstest_get_connector_default_mode(int drm_fd, drmModeConnector *connector, drmModeModeInfo *mode) { drmModeRes *resources; int i; resources = drmModeGetResources(drm_fd); if (!resources) { perror("drmModeGetResources failed"); return -1; } if (!connector->count_modes) { fprintf(stderr, "no modes for connector %d\n", connector->connector_id); drmModeFreeResources(resources); return -1; } for (i = 0; i < connector->count_modes; i++) { if (i == 0 || connector->modes[i].type & DRM_MODE_TYPE_PREFERRED) { *mode = connector->modes[i]; if (mode->type & DRM_MODE_TYPE_PREFERRED) break; } } drmModeFreeResources(resources); return 0; } int kmstest_get_connector_config(int drm_fd, uint32_t connector_id, unsigned long crtc_idx_mask, struct kmstest_connector_config *config) { drmModeRes *resources; drmModeConnector *connector; drmModeEncoder *encoder; int i, j; resources = drmModeGetResources(drm_fd); if (!resources) { perror("drmModeGetResources failed"); goto err1; } /* First, find the connector & mode */ connector = drmModeGetConnector(drm_fd, connector_id); if (!connector) goto err2; if (connector->connection != DRM_MODE_CONNECTED) goto err3; if (!connector->count_modes) { fprintf(stderr, "connector %d has no modes\n", connector_id); goto err3; } if (connector->connector_id != connector_id) { fprintf(stderr, "connector id doesn't match (%d != %d)\n", connector->connector_id, connector_id); goto err3; } /* * Find given CRTC if crtc_id != 0 or else the first CRTC not in use. * In both cases find the first compatible encoder and skip the CRTC * if there is non such. */ encoder = NULL; /* suppress GCC warning */ for (i = 0; i < resources->count_crtcs; i++) { if (!resources->crtcs[i] || !(crtc_idx_mask & (1 << i))) continue; /* Now get a compatible encoder */ for (j = 0; j < connector->count_encoders; j++) { encoder = drmModeGetEncoder(drm_fd, connector->encoders[j]); if (!encoder) { fprintf(stderr, "could not get encoder %d: %s\n", resources->encoders[j], strerror(errno)); continue; } if (encoder->possible_crtcs & (1 << i)) goto found; drmModeFreeEncoder(encoder); } } goto err3; found: if (kmstest_get_connector_default_mode(drm_fd, connector, &config->default_mode) < 0) goto err4; config->connector = connector; config->encoder = encoder; config->crtc = drmModeGetCrtc(drm_fd, resources->crtcs[i]); config->crtc_idx = i; config->pipe = kmstest_get_pipe_from_crtc_id(drm_fd, config->crtc->crtc_id); drmModeFreeResources(resources); return 0; err4: drmModeFreeEncoder(encoder); err3: drmModeFreeConnector(connector); err2: drmModeFreeResources(resources); err1: return -1; } void kmstest_free_connector_config(struct kmstest_connector_config *config) { drmModeFreeCrtc(config->crtc); drmModeFreeEncoder(config->encoder); drmModeFreeConnector(config->connector); } #define PREFAULT_DEBUGFS "/sys/module/i915/parameters/prefault_disable" static void igt_prefault_control(bool enable) { const char *name = PREFAULT_DEBUGFS; int fd; char buf[2] = {'Y', 'N'}; int index; fd = open(name, O_RDWR); igt_require(fd >= 0); if (enable) index = 1; else index = 0; igt_require(write(fd, &buf[index], 1) == 1); close(fd); } static void enable_prefault_at_exit(int sig) { igt_enable_prefault(); } void igt_disable_prefault(void) { igt_install_exit_handler(enable_prefault_at_exit); igt_prefault_control(false); } void igt_enable_prefault(void) { igt_prefault_control(true); } void igt_system_suspend_autoresume(void) { int ret; /* FIXME: Simulation doesn't like suspend/resume, and not even a lighter * approach using /sys/power/pm_test to just test our driver's callbacks * seems to fare better. We need to investigate what's going on. */ igt_skip_on_simulation(); ret = system("rtcwake -s 30 -m mem"); igt_assert(ret == 0); }