summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/display/dc/dcn201/dcn201_hwseq.c
blob: fe22530242d2ecd126ba62cea0815266c262bce2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*
 * Copyright 2016 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include "dm_services.h"
#include "basics/dc_common.h"
#include "core_types.h"
#include "resource.h"
#include "dcn201_hwseq.h"
#include "dcn201_optc.h"
#include "dce/dce_hwseq.h"
#include "hubp.h"
#include "dchubbub.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "dccg.h"
#include "clk_mgr.h"
#include "reg_helper.h"

#define CTX \
	hws->ctx

#define REG(reg)\
	hws->regs->reg

#define DC_LOGGER \
	dc->ctx->logger

#undef FN
#define FN(reg_name, field_name) \
	hws->shifts->field_name, hws->masks->field_name

static bool patch_address_for_sbs_tb_stereo(
		struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
{
	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
	bool sec_split = pipe_ctx->top_pipe &&
		pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;

	if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
		(pipe_ctx->stream->timing.timing_3d_format ==
			TIMING_3D_FORMAT_SIDE_BY_SIDE ||
		pipe_ctx->stream->timing.timing_3d_format ==
			TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
		*addr = plane_state->address.grph_stereo.left_addr;
		plane_state->address.grph_stereo.left_addr =
			plane_state->address.grph_stereo.right_addr;
		return true;
	} else {
		if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
			plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
			plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
			plane_state->address.grph_stereo.right_addr =
			plane_state->address.grph_stereo.left_addr;
			plane_state->address.grph_stereo.right_meta_addr =
			plane_state->address.grph_stereo.left_meta_addr;
		}
	}
	return false;
}

static void gpu_addr_to_uma(struct dce_hwseq *hwseq,
		PHYSICAL_ADDRESS_LOC *addr)
{
	bool is_in_uma;

	if (hwseq->fb_base.quad_part <= addr->quad_part &&
			addr->quad_part < hwseq->fb_top.quad_part) {
		addr->quad_part -= hwseq->fb_base.quad_part;
		addr->quad_part += hwseq->fb_offset.quad_part;
		is_in_uma = true;
	} else if (hwseq->fb_offset.quad_part <= addr->quad_part &&
			addr->quad_part <= hwseq->uma_top.quad_part) {
		is_in_uma = true;
	} else if (addr->quad_part == 0) {
		is_in_uma = false;
	} else {
		is_in_uma = false;
	}
}

static void plane_address_in_gpu_space_to_uma(struct dce_hwseq *hwseq,
		struct dc_plane_address *addr)
{
	switch (addr->type) {
	case PLN_ADDR_TYPE_GRAPHICS:
		gpu_addr_to_uma(hwseq, &addr->grph.addr);
		gpu_addr_to_uma(hwseq, &addr->grph.meta_addr);
		break;
	case PLN_ADDR_TYPE_GRPH_STEREO:
		gpu_addr_to_uma(hwseq, &addr->grph_stereo.left_addr);
		gpu_addr_to_uma(hwseq, &addr->grph_stereo.left_meta_addr);
		gpu_addr_to_uma(hwseq, &addr->grph_stereo.right_addr);
		gpu_addr_to_uma(hwseq, &addr->grph_stereo.right_meta_addr);
		break;
	case PLN_ADDR_TYPE_VIDEO_PROGRESSIVE:
		gpu_addr_to_uma(hwseq, &addr->video_progressive.luma_addr);
		gpu_addr_to_uma(hwseq, &addr->video_progressive.luma_meta_addr);
		gpu_addr_to_uma(hwseq, &addr->video_progressive.chroma_addr);
		gpu_addr_to_uma(hwseq, &addr->video_progressive.chroma_meta_addr);
		break;
	default:
		BREAK_TO_DEBUGGER();
		break;
	}
}

void dcn201_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	bool addr_patched = false;
	PHYSICAL_ADDRESS_LOC addr;
	struct dc_plane_state *plane_state = pipe_ctx->plane_state;
	struct dce_hwseq *hws = dc->hwseq;
	struct dc_plane_address uma;

	if (plane_state == NULL)
		return;

	uma = plane_state->address;
	addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);

	plane_address_in_gpu_space_to_uma(hws, &uma);

	pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
			pipe_ctx->plane_res.hubp,
			&uma,
			plane_state->flip_immediate);

	plane_state->status.requested_address = plane_state->address;

	if (plane_state->flip_immediate)
		plane_state->status.current_address = plane_state->address;

	if (addr_patched)
		pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
}

/* Blank pixel data during initialization */
void dcn201_init_blank(
		struct dc *dc,
		struct timing_generator *tg)
{
	struct dce_hwseq *hws = dc->hwseq;
	enum dc_color_space color_space;
	struct tg_color black_color = {0};
	struct output_pixel_processor *opp = NULL;
	uint32_t num_opps, opp_id_src0, opp_id_src1;
	uint32_t otg_active_width, otg_active_height;

	/* program opp dpg blank color */
	color_space = COLOR_SPACE_SRGB;
	color_space_to_black_color(dc, color_space, &black_color);

	/* get the OTG active size */
	tg->funcs->get_otg_active_size(tg,
			&otg_active_width,
			&otg_active_height);

	/* get the OPTC source */
	tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
	ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
	opp = dc->res_pool->opps[opp_id_src0];

	opp->funcs->opp_set_disp_pattern_generator(
			opp,
			CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
			CONTROLLER_DP_COLOR_SPACE_UDEFINED,
			COLOR_DEPTH_UNDEFINED,
			&black_color,
			otg_active_width,
			otg_active_height,
			0);

	hws->funcs.wait_for_blank_complete(opp);
}

static void read_mmhub_vm_setup(struct dce_hwseq *hws)
{
	uint32_t fb_base = REG_READ(MC_VM_FB_LOCATION_BASE);
	uint32_t fb_top = REG_READ(MC_VM_FB_LOCATION_TOP);
	uint32_t fb_offset = REG_READ(MC_VM_FB_OFFSET);

	/* MC_VM_FB_LOCATION_TOP is in pages, actual top should add 1 */
	fb_top++;

	/* bit 23:0 in register map to bit 47:24 in address */
	hws->fb_base.low_part = fb_base;
	hws->fb_base.quad_part <<= 24;

	hws->fb_top.low_part  = fb_top;
	hws->fb_top.quad_part <<= 24;
	hws->fb_offset.low_part = fb_offset;
	hws->fb_offset.quad_part <<= 24;

	hws->uma_top.quad_part = hws->fb_top.quad_part
			- hws->fb_base.quad_part + hws->fb_offset.quad_part;
}

void dcn201_init_hw(struct dc *dc)
{
	int i, j;
	struct dce_hwseq *hws = dc->hwseq;
	struct resource_pool *res_pool = dc->res_pool;
	struct dc_state  *context = dc->current_state;

	if (res_pool->dccg->funcs->dccg_init)
		res_pool->dccg->funcs->dccg_init(res_pool->dccg);

	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);

	if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
		REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
		REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);

		hws->funcs.dccg_init(hws);

		REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
		REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
		REG_WRITE(REFCLK_CNTL, 0);
	} else {
		hws->funcs.bios_golden_init(dc);

		if (dc->ctx->dc_bios->fw_info_valid) {
			res_pool->ref_clocks.xtalin_clock_inKhz =
				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;

			if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
				if (res_pool->dccg && res_pool->hubbub) {
					(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
							dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
							&res_pool->ref_clocks.dccg_ref_clock_inKhz);

					(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
							res_pool->ref_clocks.dccg_ref_clock_inKhz,
							&res_pool->ref_clocks.dchub_ref_clock_inKhz);
				} else {
					res_pool->ref_clocks.dccg_ref_clock_inKhz =
							res_pool->ref_clocks.xtalin_clock_inKhz;
					res_pool->ref_clocks.dchub_ref_clock_inKhz =
							res_pool->ref_clocks.xtalin_clock_inKhz;
				}
			}
		} else
			ASSERT_CRITICAL(false);
		for (i = 0; i < dc->link_count; i++) {
			/* Power up AND update implementation according to the
			 * required signal (which may be different from the
			 * default signal on connector).
			 */
			struct dc_link *link = dc->links[i];

			link->link_enc->funcs->hw_init(link->link_enc);
		}
		if (hws->fb_offset.quad_part == 0)
			read_mmhub_vm_setup(hws);
	}

	/* Blank pixel data with OPP DPG */
	for (i = 0; i < res_pool->timing_generator_count; i++) {
		struct timing_generator *tg = res_pool->timing_generators[i];

		if (tg->funcs->is_tg_enabled(tg)) {
			dcn201_init_blank(dc, tg);
		}
	}

	for (i = 0; i < res_pool->timing_generator_count; i++) {
		struct timing_generator *tg = res_pool->timing_generators[i];

		if (tg->funcs->is_tg_enabled(tg))
			tg->funcs->lock(tg);
	}

	for (i = 0; i < res_pool->pipe_count; i++) {
		struct dpp *dpp = res_pool->dpps[i];

		dpp->funcs->dpp_reset(dpp);
	}

	/* Reset all MPCC muxes */
	res_pool->mpc->funcs->mpc_init(res_pool->mpc);

	/* initialize OPP mpc_tree parameter */
	for (i = 0; i < res_pool->res_cap->num_opp; i++) {
		res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
		res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
		for (j = 0; j < MAX_PIPES; j++)
			res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
	}

	for (i = 0; i < res_pool->timing_generator_count; i++) {
		struct timing_generator *tg = res_pool->timing_generators[i];
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
		struct hubp *hubp = res_pool->hubps[i];
		struct dpp *dpp = res_pool->dpps[i];

		pipe_ctx->stream_res.tg = tg;
		pipe_ctx->pipe_idx = i;

		pipe_ctx->plane_res.hubp = hubp;
		pipe_ctx->plane_res.dpp = dpp;
		pipe_ctx->plane_res.mpcc_inst = dpp->inst;
		hubp->mpcc_id = dpp->inst;
		hubp->opp_id = OPP_ID_INVALID;
		hubp->power_gated = false;
		pipe_ctx->stream_res.opp = NULL;

		hubp->funcs->hubp_init(hubp);

		res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
		pipe_ctx->stream_res.opp = res_pool->opps[i];
		/*To do: number of MPCC != number of opp*/
		hws->funcs.plane_atomic_disconnect(dc, pipe_ctx);
	}

	/* initialize DWB pointer to MCIF_WB */
	for (i = 0; i < res_pool->res_cap->num_dwb; i++)
		res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];

	for (i = 0; i < res_pool->timing_generator_count; i++) {
		struct timing_generator *tg = res_pool->timing_generators[i];

		if (tg->funcs->is_tg_enabled(tg))
			tg->funcs->unlock(tg);
	}

	for (i = 0; i < res_pool->pipe_count; i++) {
		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];

		dc->hwss.disable_plane(dc, pipe_ctx);

		pipe_ctx->stream_res.tg = NULL;
		pipe_ctx->plane_res.hubp = NULL;
	}

	for (i = 0; i < res_pool->timing_generator_count; i++) {
		struct timing_generator *tg = res_pool->timing_generators[i];

		tg->funcs->tg_init(tg);
	}

	/* end of FPGA. Below if real ASIC */
	if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
		return;

	for (i = 0; i < res_pool->audio_count; i++) {
		struct audio *audio = res_pool->audios[i];

		audio->funcs->hw_init(audio);
	}

	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
	REG_WRITE(DIO_MEM_PWR_CTRL, 0);

	if (!dc->debug.disable_clock_gate) {
		/* enable all DCN clock gating */
		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);

		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);

		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
	}
}

/* trigger HW to start disconnect plane from stream on the next vsync */
void dcn201_plane_atomic_disconnect(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	struct dce_hwseq *hws = dc->hwseq;
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	int dpp_id = pipe_ctx->plane_res.dpp->inst;
	struct mpc *mpc = dc->res_pool->mpc;
	struct mpc_tree *mpc_tree_params;
	struct mpcc *mpcc_to_remove = NULL;
	struct output_pixel_processor *opp = pipe_ctx->stream_res.opp;
	bool mpcc_removed = false;

	mpc_tree_params = &(opp->mpc_tree_params);

	/* check if this plane is being used by an MPCC in the secondary blending chain */
	if (mpc->funcs->get_mpcc_for_dpp_from_secondary)
		mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp_from_secondary(mpc_tree_params, dpp_id);

	/* remove MPCC from secondary if being used */
	if (mpcc_to_remove != NULL && mpc->funcs->remove_mpcc_from_secondary) {
		mpc->funcs->remove_mpcc_from_secondary(mpc, mpc_tree_params, mpcc_to_remove);
		mpcc_removed = true;
	}

	/* check if this MPCC is already being used for this plane (dpp) in the primary blending chain */
	mpcc_to_remove = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
	if (mpcc_to_remove != NULL) {
		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, mpcc_to_remove);
		mpcc_removed = true;
	}

	/*Already reset*/
	if (mpcc_removed == false)
		return;

	if (opp != NULL)
		opp->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;

	dc->optimized_required = true;

	if (hubp->funcs->hubp_disconnect)
		hubp->funcs->hubp_disconnect(hubp);

	if (dc->debug.sanity_checks)
		hws->funcs.verify_allow_pstate_change_high(dc);
}

void dcn201_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
	struct hubp *hubp = pipe_ctx->plane_res.hubp;
	struct mpcc_blnd_cfg blnd_cfg;
	bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
	int mpcc_id, dpp_id;
	struct mpcc *new_mpcc;
	struct mpcc *remove_mpcc = NULL;
	struct mpc *mpc = dc->res_pool->mpc;
	struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);

	if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
		get_hdr_visual_confirm_color(
				pipe_ctx, &blnd_cfg.black_color);
	} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
		get_surface_visual_confirm_color(
				pipe_ctx, &blnd_cfg.black_color);
	} else {
		color_space_to_black_color(
				dc, pipe_ctx->stream->output_color_space,
				&blnd_cfg.black_color);
	}

	if (per_pixel_alpha)
		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
	else
		blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;

	blnd_cfg.overlap_only = false;

	if (pipe_ctx->plane_state->global_alpha_value)
		blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
	else
		blnd_cfg.global_alpha = 0xff;

	blnd_cfg.global_gain = 0xff;
	blnd_cfg.background_color_bpc = 4;
	blnd_cfg.bottom_gain_mode = 0;
	blnd_cfg.top_gain = 0x1f000;
	blnd_cfg.bottom_inside_gain = 0x1f000;
	blnd_cfg.bottom_outside_gain = 0x1f000;
	/*the input to MPCC is RGB*/
	blnd_cfg.black_color.color_b_cb = 0;
	blnd_cfg.black_color.color_g_y = 0;
	blnd_cfg.black_color.color_r_cr = 0;

	/* DCN1.0 has output CM before MPC which seems to screw with
	 * pre-multiplied alpha. This is a w/a hopefully unnecessary for DCN2.
	 */
	blnd_cfg.pre_multiplied_alpha = per_pixel_alpha;

	/*
	 * TODO: remove hack
	 * Note: currently there is a bug in init_hw such that
	 * on resume from hibernate, BIOS sets up MPCC0, and
	 * we do mpcc_remove but the mpcc cannot go to idle
	 * after remove. This cause us to pick mpcc1 here,
	 * which causes a pstate hang for yet unknown reason.
	 */
	dpp_id = hubp->inst;
	mpcc_id = dpp_id;

	/* If there is no full update, don't need to touch MPC tree*/
	if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
		dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
		mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
		return;
	}

	/* check if this plane is being used by an MPCC in the secondary blending chain */
	if (mpc->funcs->get_mpcc_for_dpp_from_secondary)
		remove_mpcc = mpc->funcs->get_mpcc_for_dpp_from_secondary(mpc_tree_params, dpp_id);

	/* remove MPCC from secondary if being used */
	if (remove_mpcc != NULL && mpc->funcs->remove_mpcc_from_secondary)
		mpc->funcs->remove_mpcc_from_secondary(mpc, mpc_tree_params, remove_mpcc);

	/* check if this MPCC is already being used for this plane (dpp) in the primary blending chain */
	remove_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, dpp_id);
	/* remove MPCC if being used */

	if (remove_mpcc != NULL)
		mpc->funcs->remove_mpcc(mpc, mpc_tree_params, remove_mpcc);
	else
		if (dc->debug.sanity_checks)
			mpc->funcs->assert_mpcc_idle_before_connect(
					dc->res_pool->mpc, mpcc_id);

	/* Call MPC to insert new plane */
	dc->hwss.update_visual_confirm_color(dc, pipe_ctx, &blnd_cfg.black_color, mpcc_id);
	new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
			mpc_tree_params,
			&blnd_cfg,
			NULL,
			NULL,
			dpp_id,
			mpcc_id);

	ASSERT(new_mpcc != NULL);
	hubp->opp_id = pipe_ctx->stream_res.opp->inst;
	hubp->mpcc_id = mpcc_id;
}

void dcn201_pipe_control_lock(
	struct dc *dc,
	struct pipe_ctx *pipe,
	bool lock)
{
	struct dce_hwseq *hws = dc->hwseq;
	struct hubp *hubp = NULL;
	hubp = dc->res_pool->hubps[pipe->pipe_idx];
	/* use TG master update lock to lock everything on the TG
	 * therefore only top pipe need to lock
	 */
	if (pipe->top_pipe)
		return;

	if (dc->debug.sanity_checks)
		hws->funcs.verify_allow_pstate_change_high(dc);

	if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
		if (lock)
			pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
		else
			pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
	} else {
		if (lock)
			pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
		else
			pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
	}

	if (dc->debug.sanity_checks)
		hws->funcs.verify_allow_pstate_change_high(dc);
}

void dcn201_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
{
	struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;

	gpu_addr_to_uma(pipe_ctx->stream->ctx->dc->hwseq, &attributes->address);

	pipe_ctx->plane_res.hubp->funcs->set_cursor_attributes(
			pipe_ctx->plane_res.hubp, attributes);
	pipe_ctx->plane_res.dpp->funcs->set_cursor_attributes(
		pipe_ctx->plane_res.dpp, attributes);
}

void dcn201_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
{
	struct dc_dmdata_attributes attr = { 0 };
	struct hubp *hubp = pipe_ctx->plane_res.hubp;

	gpu_addr_to_uma(pipe_ctx->stream->ctx->dc->hwseq,
			&pipe_ctx->stream->dmdata_address);

	attr.dmdata_mode = DMDATA_HW_MODE;
	attr.dmdata_size =
		dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
	attr.address.quad_part =
			pipe_ctx->stream->dmdata_address.quad_part;
	attr.dmdata_dl_delta = 0;
	attr.dmdata_qos_mode = 0;
	attr.dmdata_qos_level = 0;
	attr.dmdata_repeat = 1; /* always repeat */
	attr.dmdata_updated = 1;
	attr.dmdata_sw_data = NULL;

	hubp->funcs->dmdata_set_attributes(hubp, &attr);
}

void dcn201_unblank_stream(struct pipe_ctx *pipe_ctx,
		struct dc_link_settings *link_settings)
{
	struct encoder_unblank_param params = { { 0 } };
	struct dc_stream_state *stream = pipe_ctx->stream;
	struct dc_link *link = stream->link;
	struct dce_hwseq *hws = link->dc->hwseq;

	/* only 3 items below are used by unblank */
	params.timing = pipe_ctx->stream->timing;

	params.link_settings.link_rate = link_settings->link_rate;

	if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
		/*check whether it is half the rate*/
		if (optc201_is_two_pixels_per_containter(&stream->timing))
			params.timing.pix_clk_100hz /= 2;

		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
	}

	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
		hws->funcs.edp_backlight_control(link, true);
	}
}