// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Broadcom */ /** * DOC: VC4 HVS module. * * The Hardware Video Scaler (HVS) is the piece of hardware that does * translation, scaling, colorspace conversion, and compositing of * pixels stored in framebuffers into a FIFO of pixels going out to * the Pixel Valve (CRTC). It operates at the system clock rate (the * system audio clock gate, specifically), which is much higher than * the pixel clock rate. * * There is a single global HVS, with multiple output FIFOs that can * be consumed by the PVs. This file just manages the resources for * the HVS, while the vc4_crtc.c code actually drives HVS setup for * each CRTC. */ #include #include #include #include "vc4_drv.h" #include "vc4_regs.h" static const struct debugfs_reg32 hvs_regs[] = { VC4_REG32(SCALER_DISPCTRL), VC4_REG32(SCALER_DISPSTAT), VC4_REG32(SCALER_DISPID), VC4_REG32(SCALER_DISPECTRL), VC4_REG32(SCALER_DISPPROF), VC4_REG32(SCALER_DISPDITHER), VC4_REG32(SCALER_DISPEOLN), VC4_REG32(SCALER_DISPLIST0), VC4_REG32(SCALER_DISPLIST1), VC4_REG32(SCALER_DISPLIST2), VC4_REG32(SCALER_DISPLSTAT), VC4_REG32(SCALER_DISPLACT0), VC4_REG32(SCALER_DISPLACT1), VC4_REG32(SCALER_DISPLACT2), VC4_REG32(SCALER_DISPCTRL0), VC4_REG32(SCALER_DISPBKGND0), VC4_REG32(SCALER_DISPSTAT0), VC4_REG32(SCALER_DISPBASE0), VC4_REG32(SCALER_DISPCTRL1), VC4_REG32(SCALER_DISPBKGND1), VC4_REG32(SCALER_DISPSTAT1), VC4_REG32(SCALER_DISPBASE1), VC4_REG32(SCALER_DISPCTRL2), VC4_REG32(SCALER_DISPBKGND2), VC4_REG32(SCALER_DISPSTAT2), VC4_REG32(SCALER_DISPBASE2), VC4_REG32(SCALER_DISPALPHA2), VC4_REG32(SCALER_OLEDOFFS), VC4_REG32(SCALER_OLEDCOEF0), VC4_REG32(SCALER_OLEDCOEF1), VC4_REG32(SCALER_OLEDCOEF2), }; void vc4_hvs_dump_state(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev); int i; drm_print_regset32(&p, &vc4->hvs->regset); DRM_INFO("HVS ctx:\n"); for (i = 0; i < 64; i += 4) { DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D", readl((u32 __iomem *)vc4->hvs->dlist + i + 0), readl((u32 __iomem *)vc4->hvs->dlist + i + 1), readl((u32 __iomem *)vc4->hvs->dlist + i + 2), readl((u32 __iomem *)vc4->hvs->dlist + i + 3)); } } static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data) { struct drm_info_node *node = m->private; struct drm_device *dev = node->minor->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct drm_printer p = drm_seq_file_printer(m); drm_printf(&p, "%d\n", atomic_read(&vc4->underrun)); return 0; } /* The filter kernel is composed of dwords each containing 3 9-bit * signed integers packed next to each other. */ #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff) #define VC4_PPF_FILTER_WORD(c0, c1, c2) \ ((((c0) & 0x1ff) << 0) | \ (((c1) & 0x1ff) << 9) | \ (((c2) & 0x1ff) << 18)) /* The whole filter kernel is arranged as the coefficients 0-16 going * up, then a pad, then 17-31 going down and reversed within the * dwords. This means that a linear phase kernel (where it's * symmetrical at the boundary between 15 and 16) has the last 5 * dwords matching the first 5, but reversed. */ #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \ c9, c10, c11, c12, c13, c14, c15) \ {VC4_PPF_FILTER_WORD(c0, c1, c2), \ VC4_PPF_FILTER_WORD(c3, c4, c5), \ VC4_PPF_FILTER_WORD(c6, c7, c8), \ VC4_PPF_FILTER_WORD(c9, c10, c11), \ VC4_PPF_FILTER_WORD(c12, c13, c14), \ VC4_PPF_FILTER_WORD(c15, c15, 0)} #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1) /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali. * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf */ static const u32 mitchell_netravali_1_3_1_3_kernel[] = VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18, 50, 82, 119, 155, 187, 213, 227); static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs, struct drm_mm_node *space, const u32 *kernel) { int ret, i; u32 __iomem *dst_kernel; ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS); if (ret) { DRM_ERROR("Failed to allocate space for filter kernel: %d\n", ret); return ret; } dst_kernel = hvs->dlist + space->start; for (i = 0; i < VC4_KERNEL_DWORDS; i++) { if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS) writel(kernel[i], &dst_kernel[i]); else { writel(kernel[VC4_KERNEL_DWORDS - i - 1], &dst_kernel[i]); } } return 0; } void vc4_hvs_mask_underrun(struct drm_device *dev, int channel) { struct vc4_dev *vc4 = to_vc4_dev(dev); u32 dispctrl = HVS_READ(SCALER_DISPCTRL); dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel); HVS_WRITE(SCALER_DISPCTRL, dispctrl); } void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel) { struct vc4_dev *vc4 = to_vc4_dev(dev); u32 dispctrl = HVS_READ(SCALER_DISPCTRL); dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel); HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_EUFLOW(channel)); HVS_WRITE(SCALER_DISPCTRL, dispctrl); } static void vc4_hvs_report_underrun(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); atomic_inc(&vc4->underrun); DRM_DEV_ERROR(dev->dev, "HVS underrun\n"); } static irqreturn_t vc4_hvs_irq_handler(int irq, void *data) { struct drm_device *dev = data; struct vc4_dev *vc4 = to_vc4_dev(dev); irqreturn_t irqret = IRQ_NONE; int channel; u32 control; u32 status; status = HVS_READ(SCALER_DISPSTAT); control = HVS_READ(SCALER_DISPCTRL); for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) { /* Interrupt masking is not always honored, so check it here. */ if (status & SCALER_DISPSTAT_EUFLOW(channel) && control & SCALER_DISPCTRL_DSPEISLUR(channel)) { vc4_hvs_mask_underrun(dev, channel); vc4_hvs_report_underrun(dev); irqret = IRQ_HANDLED; } } /* Clear every per-channel interrupt flag. */ HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) | SCALER_DISPSTAT_IRQMASK(1) | SCALER_DISPSTAT_IRQMASK(2)); return irqret; } static int vc4_hvs_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = drm->dev_private; struct vc4_hvs *hvs = NULL; int ret; u32 dispctrl; hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL); if (!hvs) return -ENOMEM; hvs->pdev = pdev; hvs->regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(hvs->regs)) return PTR_ERR(hvs->regs); hvs->regset.base = hvs->regs; hvs->regset.regs = hvs_regs; hvs->regset.nregs = ARRAY_SIZE(hvs_regs); hvs->dlist = hvs->regs + SCALER_DLIST_START; spin_lock_init(&hvs->mm_lock); /* Set up the HVS display list memory manager. We never * overwrite the setup from the bootloader (just 128b out of * our 16K), since we don't want to scramble the screen when * transitioning from the firmware's boot setup to runtime. */ drm_mm_init(&hvs->dlist_mm, HVS_BOOTLOADER_DLIST_END, (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END); /* Set up the HVS LBM memory manager. We could have some more * complicated data structure that allowed reuse of LBM areas * between planes when they don't overlap on the screen, but * for now we just allocate globally. */ drm_mm_init(&hvs->lbm_mm, 0, 96 * 1024); /* Upload filter kernels. We only have the one for now, so we * keep it around for the lifetime of the driver. */ ret = vc4_hvs_upload_linear_kernel(hvs, &hvs->mitchell_netravali_filter, mitchell_netravali_1_3_1_3_kernel); if (ret) return ret; vc4->hvs = hvs; dispctrl = HVS_READ(SCALER_DISPCTRL); dispctrl |= SCALER_DISPCTRL_ENABLE; dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) | SCALER_DISPCTRL_DISPEIRQ(1) | SCALER_DISPCTRL_DISPEIRQ(2); /* Set DSP3 (PV1) to use HVS channel 2, which would otherwise * be unused. */ dispctrl &= ~SCALER_DISPCTRL_DSP3_MUX_MASK; dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ | SCALER_DISPCTRL_SLVWREIRQ | SCALER_DISPCTRL_SLVRDEIRQ | SCALER_DISPCTRL_DSPEIEOF(0) | SCALER_DISPCTRL_DSPEIEOF(1) | SCALER_DISPCTRL_DSPEIEOF(2) | SCALER_DISPCTRL_DSPEIEOLN(0) | SCALER_DISPCTRL_DSPEIEOLN(1) | SCALER_DISPCTRL_DSPEIEOLN(2) | SCALER_DISPCTRL_DSPEISLUR(0) | SCALER_DISPCTRL_DSPEISLUR(1) | SCALER_DISPCTRL_DSPEISLUR(2) | SCALER_DISPCTRL_SCLEIRQ); dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); HVS_WRITE(SCALER_DISPCTRL, dispctrl); ret = devm_request_irq(dev, platform_get_irq(pdev, 0), vc4_hvs_irq_handler, 0, "vc4 hvs", drm); if (ret) return ret; vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset); vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun, NULL); return 0; } static void vc4_hvs_unbind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = drm->dev_private; if (vc4->hvs->mitchell_netravali_filter.allocated) drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter); drm_mm_takedown(&vc4->hvs->dlist_mm); drm_mm_takedown(&vc4->hvs->lbm_mm); vc4->hvs = NULL; } static const struct component_ops vc4_hvs_ops = { .bind = vc4_hvs_bind, .unbind = vc4_hvs_unbind, }; static int vc4_hvs_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_hvs_ops); } static int vc4_hvs_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_hvs_ops); return 0; } static const struct of_device_id vc4_hvs_dt_match[] = { { .compatible = "brcm,bcm2835-hvs" }, {} }; struct platform_driver vc4_hvs_driver = { .probe = vc4_hvs_dev_probe, .remove = vc4_hvs_dev_remove, .driver = { .name = "vc4_hvs", .of_match_table = vc4_hvs_dt_match, }, };