/* * Copyright (c) 2016, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include "dsi_pll.h" #include "dsi.xml.h" /* * DSI PLL 14nm - clock diagram (eg: DSI0): * * dsi0n1_postdiv_clk * | * | * +----+ | +----+ * dsi0vco_clk ---| n1 |--o--| /8 |-- dsi0pllbyte * +----+ | +----+ * | dsi0n1_postdivby2_clk * | +----+ | * o---| /2 |--o--|\ * | +----+ | \ +----+ * | | |--| n2 |-- dsi0pll * o--------------| / +----+ * |/ */ #define POLL_MAX_READS 15 #define POLL_TIMEOUT_US 1000 #define NUM_PROVIDED_CLKS 2 #define VCO_REF_CLK_RATE 19200000 #define VCO_MIN_RATE 1300000000UL #define VCO_MAX_RATE 2600000000UL #define DSI_BYTE_PLL_CLK 0 #define DSI_PIXEL_PLL_CLK 1 #define DSI_PLL_DEFAULT_VCO_POSTDIV 1 struct dsi_pll_input { u32 fref; /* reference clk */ u32 fdata; /* bit clock rate */ u32 dsiclk_sel; /* Mux configuration (see diagram) */ u32 ssc_en; /* SSC enable/disable */ u32 ldo_en; /* fixed params */ u32 refclk_dbler_en; u32 vco_measure_time; u32 kvco_measure_time; u32 bandgap_timer; u32 pll_wakeup_timer; u32 plllock_cnt; u32 plllock_rng; u32 ssc_center; u32 ssc_adj_period; u32 ssc_spread; u32 ssc_freq; u32 pll_ie_trim; u32 pll_ip_trim; u32 pll_iptat_trim; u32 pll_cpcset_cur; u32 pll_cpmset_cur; u32 pll_icpmset; u32 pll_icpcset; u32 pll_icpmset_p; u32 pll_icpmset_m; u32 pll_icpcset_p; u32 pll_icpcset_m; u32 pll_lpf_res1; u32 pll_lpf_cap1; u32 pll_lpf_cap2; u32 pll_c3ctrl; u32 pll_r3ctrl; }; struct dsi_pll_output { u32 pll_txclk_en; u32 dec_start; u32 div_frac_start; u32 ssc_period; u32 ssc_step_size; u32 plllock_cmp; u32 pll_vco_div_ref; u32 pll_vco_count; u32 pll_kvco_div_ref; u32 pll_kvco_count; u32 pll_misc1; u32 pll_lpf2_postdiv; u32 pll_resetsm_cntrl; u32 pll_resetsm_cntrl2; u32 pll_resetsm_cntrl5; u32 pll_kvco_code; u32 cmn_clk_cfg0; u32 cmn_clk_cfg1; u32 cmn_ldo_cntrl; u32 pll_postdiv; u32 fcvo; }; struct pll_14nm_cached_state { unsigned long vco_rate; u8 n2postdiv; u8 n1postdiv; }; struct dsi_pll_14nm { struct msm_dsi_pll base; int id; struct platform_device *pdev; void __iomem *phy_cmn_mmio; void __iomem *mmio; int vco_delay; struct dsi_pll_input in; struct dsi_pll_output out; /* protects REG_DSI_14nm_PHY_CMN_CLK_CFG0 register */ spinlock_t postdiv_lock; u64 vco_current_rate; u64 vco_ref_clk_rate; /* private clocks: */ struct clk_hw *hws[NUM_DSI_CLOCKS_MAX]; u32 num_hws; /* clock-provider: */ struct clk_hw_onecell_data *hw_data; struct pll_14nm_cached_state cached_state; enum msm_dsi_phy_usecase uc; struct dsi_pll_14nm *slave; }; #define to_pll_14nm(x) container_of(x, struct dsi_pll_14nm, base) /* * Private struct for N1/N2 post-divider clocks. These clocks are similar to * the generic clk_divider class of clocks. The only difference is that it * also sets the slave DSI PLL's post-dividers if in Dual DSI mode */ struct dsi_pll_14nm_postdiv { struct clk_hw hw; /* divider params */ u8 shift; u8 width; u8 flags; /* same flags as used by clk_divider struct */ struct dsi_pll_14nm *pll; }; #define to_pll_14nm_postdiv(_hw) container_of(_hw, struct dsi_pll_14nm_postdiv, hw) /* * Global list of private DSI PLL struct pointers. We need this for Dual DSI * mode, where the master PLL's clk_ops needs access the slave's private data */ static struct dsi_pll_14nm *pll_14nm_list[DSI_MAX]; static bool pll_14nm_poll_for_ready(struct dsi_pll_14nm *pll_14nm, u32 nb_tries, u32 timeout_us) { bool pll_locked = false; void __iomem *base = pll_14nm->mmio; u32 tries, val; tries = nb_tries; while (tries--) { val = pll_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS); pll_locked = !!(val & BIT(5)); if (pll_locked) break; udelay(timeout_us); } if (!pll_locked) { tries = nb_tries; while (tries--) { val = pll_read(base + REG_DSI_14nm_PHY_PLL_RESET_SM_READY_STATUS); pll_locked = !!(val & BIT(0)); if (pll_locked) break; udelay(timeout_us); } } DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* "); return pll_locked; } static void dsi_pll_14nm_input_init(struct dsi_pll_14nm *pll) { pll->in.fref = pll->vco_ref_clk_rate; pll->in.fdata = 0; pll->in.dsiclk_sel = 1; /* Use the /2 path in Mux */ pll->in.ldo_en = 0; /* disabled for now */ /* fixed input */ pll->in.refclk_dbler_en = 0; pll->in.vco_measure_time = 5; pll->in.kvco_measure_time = 5; pll->in.bandgap_timer = 4; pll->in.pll_wakeup_timer = 5; pll->in.plllock_cnt = 1; pll->in.plllock_rng = 0; /* * SSC is enabled by default. We might need DT props for configuring * some SSC params like PPM and center/down spread etc. */ pll->in.ssc_en = 1; pll->in.ssc_center = 0; /* down spread by default */ pll->in.ssc_spread = 5; /* PPM / 1000 */ pll->in.ssc_freq = 31500; /* default recommended */ pll->in.ssc_adj_period = 37; pll->in.pll_ie_trim = 4; pll->in.pll_ip_trim = 4; pll->in.pll_cpcset_cur = 1; pll->in.pll_cpmset_cur = 1; pll->in.pll_icpmset = 4; pll->in.pll_icpcset = 4; pll->in.pll_icpmset_p = 0; pll->in.pll_icpmset_m = 0; pll->in.pll_icpcset_p = 0; pll->in.pll_icpcset_m = 0; pll->in.pll_lpf_res1 = 3; pll->in.pll_lpf_cap1 = 11; pll->in.pll_lpf_cap2 = 1; pll->in.pll_iptat_trim = 7; pll->in.pll_c3ctrl = 2; pll->in.pll_r3ctrl = 1; } #define CEIL(x, y) (((x) + ((y) - 1)) / (y)) static void pll_14nm_ssc_calc(struct dsi_pll_14nm *pll) { u32 period, ssc_period; u32 ref, rem; u64 step_size; DBG("vco=%lld ref=%lld", pll->vco_current_rate, pll->vco_ref_clk_rate); ssc_period = pll->in.ssc_freq / 500; period = (u32)pll->vco_ref_clk_rate / 1000; ssc_period = CEIL(period, ssc_period); ssc_period -= 1; pll->out.ssc_period = ssc_period; DBG("ssc freq=%d spread=%d period=%d", pll->in.ssc_freq, pll->in.ssc_spread, pll->out.ssc_period); step_size = (u32)pll->vco_current_rate; ref = pll->vco_ref_clk_rate; ref /= 1000; step_size = div_u64(step_size, ref); step_size <<= 20; step_size = div_u64(step_size, 1000); step_size *= pll->in.ssc_spread; step_size = div_u64(step_size, 1000); step_size *= (pll->in.ssc_adj_period + 1); rem = 0; step_size = div_u64_rem(step_size, ssc_period + 1, &rem); if (rem) step_size++; DBG("step_size=%lld", step_size); step_size &= 0x0ffff; /* take lower 16 bits */ pll->out.ssc_step_size = step_size; } static void pll_14nm_dec_frac_calc(struct dsi_pll_14nm *pll) { struct dsi_pll_input *pin = &pll->in; struct dsi_pll_output *pout = &pll->out; u64 multiplier = BIT(20); u64 dec_start_multiple, dec_start, pll_comp_val; u32 duration, div_frac_start; u64 vco_clk_rate = pll->vco_current_rate; u64 fref = pll->vco_ref_clk_rate; DBG("vco_clk_rate=%lld ref_clk_rate=%lld", vco_clk_rate, fref); dec_start_multiple = div_u64(vco_clk_rate * multiplier, fref); div_u64_rem(dec_start_multiple, multiplier, &div_frac_start); dec_start = div_u64(dec_start_multiple, multiplier); pout->dec_start = (u32)dec_start; pout->div_frac_start = div_frac_start; if (pin->plllock_cnt == 0) duration = 1024; else if (pin->plllock_cnt == 1) duration = 256; else if (pin->plllock_cnt == 2) duration = 128; else duration = 32; pll_comp_val = duration * dec_start_multiple; pll_comp_val = div_u64(pll_comp_val, multiplier); do_div(pll_comp_val, 10); pout->plllock_cmp = (u32)pll_comp_val; pout->pll_txclk_en = 1; pout->cmn_ldo_cntrl = 0x3c; } static u32 pll_14nm_kvco_slop(u32 vrate) { u32 slop = 0; if (vrate > VCO_MIN_RATE && vrate <= 1800000000UL) slop = 600; else if (vrate > 1800000000UL && vrate < 2300000000UL) slop = 400; else if (vrate > 2300000000UL && vrate < VCO_MAX_RATE) slop = 280; return slop; } static void pll_14nm_calc_vco_count(struct dsi_pll_14nm *pll) { struct dsi_pll_input *pin = &pll->in; struct dsi_pll_output *pout = &pll->out; u64 vco_clk_rate = pll->vco_current_rate; u64 fref = pll->vco_ref_clk_rate; u64 data; u32 cnt; data = fref * pin->vco_measure_time; do_div(data, 1000000); data &= 0x03ff; /* 10 bits */ data -= 2; pout->pll_vco_div_ref = data; data = div_u64(vco_clk_rate, 1000000); /* unit is Mhz */ data *= pin->vco_measure_time; do_div(data, 10); pout->pll_vco_count = data; data = fref * pin->kvco_measure_time; do_div(data, 1000000); data &= 0x03ff; /* 10 bits */ data -= 1; pout->pll_kvco_div_ref = data; cnt = pll_14nm_kvco_slop(vco_clk_rate); cnt *= 2; cnt /= 100; cnt *= pin->kvco_measure_time; pout->pll_kvco_count = cnt; pout->pll_misc1 = 16; pout->pll_resetsm_cntrl = 48; pout->pll_resetsm_cntrl2 = pin->bandgap_timer << 3; pout->pll_resetsm_cntrl5 = pin->pll_wakeup_timer; pout->pll_kvco_code = 0; } static void pll_db_commit_ssc(struct dsi_pll_14nm *pll) { void __iomem *base = pll->mmio; struct dsi_pll_input *pin = &pll->in; struct dsi_pll_output *pout = &pll->out; u8 data; data = pin->ssc_adj_period; data &= 0x0ff; pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER1, data); data = (pin->ssc_adj_period >> 8); data &= 0x03; pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_ADJ_PER2, data); data = pout->ssc_period; data &= 0x0ff; pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER1, data); data = (pout->ssc_period >> 8); data &= 0x0ff; pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_PER2, data); data = pout->ssc_step_size; data &= 0x0ff; pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE1, data); data = (pout->ssc_step_size >> 8); data &= 0x0ff; pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_STEP_SIZE2, data); data = (pin->ssc_center & 0x01); data <<= 1; data |= 0x01; /* enable */ pll_write(base + REG_DSI_14nm_PHY_PLL_SSC_EN_CENTER, data); wmb(); /* make sure register committed */ } static void pll_db_commit_common(struct dsi_pll_14nm *pll, struct dsi_pll_input *pin, struct dsi_pll_output *pout) { void __iomem *base = pll->mmio; u8 data; /* confgiure the non frequency dependent pll registers */ data = 0; pll_write(base + REG_DSI_14nm_PHY_PLL_SYSCLK_EN_RESET, data); data = pout->pll_txclk_en; pll_write(base + REG_DSI_14nm_PHY_PLL_TXCLK_EN, data); data = pout->pll_resetsm_cntrl; pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL, data); data = pout->pll_resetsm_cntrl2; pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL2, data); data = pout->pll_resetsm_cntrl5; pll_write(base + REG_DSI_14nm_PHY_PLL_RESETSM_CNTRL5, data); data = pout->pll_vco_div_ref & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF1, data); data = (pout->pll_vco_div_ref >> 8) & 0x3; pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_DIV_REF2, data); data = pout->pll_kvco_div_ref & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF1, data); data = (pout->pll_kvco_div_ref >> 8) & 0x3; pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_DIV_REF2, data); data = pout->pll_misc1; pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_MISC1, data); data = pin->pll_ie_trim; pll_write(base + REG_DSI_14nm_PHY_PLL_IE_TRIM, data); data = pin->pll_ip_trim; pll_write(base + REG_DSI_14nm_PHY_PLL_IP_TRIM, data); data = pin->pll_cpmset_cur << 3 | pin->pll_cpcset_cur; pll_write(base + REG_DSI_14nm_PHY_PLL_CP_SET_CUR, data); data = pin->pll_icpcset_p << 3 | pin->pll_icpcset_m; pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPCSET, data); data = pin->pll_icpmset_p << 3 | pin->pll_icpcset_m; pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICPMSET, data); data = pin->pll_icpmset << 3 | pin->pll_icpcset; pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_ICP_SET, data); data = pin->pll_lpf_cap2 << 4 | pin->pll_lpf_cap1; pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF1, data); data = pin->pll_iptat_trim; pll_write(base + REG_DSI_14nm_PHY_PLL_IPTAT_TRIM, data); data = pin->pll_c3ctrl | pin->pll_r3ctrl << 4; pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_CRCTRL, data); } static void pll_14nm_software_reset(struct dsi_pll_14nm *pll_14nm) { void __iomem *cmn_base = pll_14nm->phy_cmn_mmio; /* de assert pll start and apply pll sw reset */ /* stop pll */ pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0); /* pll sw reset */ pll_write_udelay(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0x20, 10); wmb(); /* make sure register committed */ pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_1, 0); wmb(); /* make sure register committed */ } static void pll_db_commit_14nm(struct dsi_pll_14nm *pll, struct dsi_pll_input *pin, struct dsi_pll_output *pout) { void __iomem *base = pll->mmio; void __iomem *cmn_base = pll->phy_cmn_mmio; u8 data; DBG("DSI%d PLL", pll->id); data = pout->cmn_ldo_cntrl; pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_LDO_CNTRL, data); pll_db_commit_common(pll, pin, pout); pll_14nm_software_reset(pll); data = pin->dsiclk_sel; /* set dsiclk_sel = 1 */ pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG1, data); data = 0xff; /* data, clk, pll normal operation */ pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CTRL_0, data); /* configure the frequency dependent pll registers */ data = pout->dec_start; pll_write(base + REG_DSI_14nm_PHY_PLL_DEC_START, data); data = pout->div_frac_start & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1, data); data = (pout->div_frac_start >> 8) & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2, data); data = (pout->div_frac_start >> 16) & 0xf; pll_write(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3, data); data = pout->plllock_cmp & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP1, data); data = (pout->plllock_cmp >> 8) & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP2, data); data = (pout->plllock_cmp >> 16) & 0x3; pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP3, data); data = pin->plllock_cnt << 1 | pin->plllock_rng << 3; pll_write(base + REG_DSI_14nm_PHY_PLL_PLLLOCK_CMP_EN, data); data = pout->pll_vco_count & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT1, data); data = (pout->pll_vco_count >> 8) & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_VCO_COUNT2, data); data = pout->pll_kvco_count & 0xff; pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT1, data); data = (pout->pll_kvco_count >> 8) & 0x3; pll_write(base + REG_DSI_14nm_PHY_PLL_KVCO_COUNT2, data); data = (pout->pll_postdiv - 1) << 4 | pin->pll_lpf_res1; pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_LPF2_POSTDIV, data); if (pin->ssc_en) pll_db_commit_ssc(pll); wmb(); /* make sure register committed */ } /* * VCO clock Callbacks */ static int dsi_pll_14nm_vco_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); struct dsi_pll_input *pin = &pll_14nm->in; struct dsi_pll_output *pout = &pll_14nm->out; DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_14nm->id, rate, parent_rate); pll_14nm->vco_current_rate = rate; pll_14nm->vco_ref_clk_rate = VCO_REF_CLK_RATE; dsi_pll_14nm_input_init(pll_14nm); /* * This configures the post divider internal to the VCO. It's * fixed to divide by 1 for now. * * tx_band = pll_postdiv. * 0: divided by 1 * 1: divided by 2 * 2: divided by 4 * 3: divided by 8 */ pout->pll_postdiv = DSI_PLL_DEFAULT_VCO_POSTDIV; pll_14nm_dec_frac_calc(pll_14nm); if (pin->ssc_en) pll_14nm_ssc_calc(pll_14nm); pll_14nm_calc_vco_count(pll_14nm); /* commit the slave DSI PLL registers if we're master. Note that we * don't lock the slave PLL. We just ensure that the PLL/PHY registers * of the master and slave are identical */ if (pll_14nm->uc == MSM_DSI_PHY_MASTER) { struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; pll_db_commit_14nm(pll_14nm_slave, pin, pout); } pll_db_commit_14nm(pll_14nm, pin, pout); return 0; } static unsigned long dsi_pll_14nm_vco_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); void __iomem *base = pll_14nm->mmio; u64 vco_rate, multiplier = BIT(20); u32 div_frac_start; u32 dec_start; u64 ref_clk = parent_rate; dec_start = pll_read(base + REG_DSI_14nm_PHY_PLL_DEC_START); dec_start &= 0x0ff; DBG("dec_start = %x", dec_start); div_frac_start = (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START3) & 0xf) << 16; div_frac_start |= (pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START2) & 0xff) << 8; div_frac_start |= pll_read(base + REG_DSI_14nm_PHY_PLL_DIV_FRAC_START1) & 0xff; DBG("div_frac_start = %x", div_frac_start); vco_rate = ref_clk * dec_start; vco_rate += ((ref_clk * div_frac_start) / multiplier); /* * Recalculating the rate from dec_start and frac_start doesn't end up * the rate we originally set. Convert the freq to KHz, round it up and * convert it back to MHz. */ vco_rate = DIV_ROUND_UP_ULL(vco_rate, 1000) * 1000; DBG("returning vco rate = %lu", (unsigned long)vco_rate); return (unsigned long)vco_rate; } static const struct clk_ops clk_ops_dsi_pll_14nm_vco = { .round_rate = msm_dsi_pll_helper_clk_round_rate, .set_rate = dsi_pll_14nm_vco_set_rate, .recalc_rate = dsi_pll_14nm_vco_recalc_rate, .prepare = msm_dsi_pll_helper_clk_prepare, .unprepare = msm_dsi_pll_helper_clk_unprepare, }; /* * N1 and N2 post-divider clock callbacks */ #define div_mask(width) ((1 << (width)) - 1) static unsigned long dsi_pll_14nm_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); struct dsi_pll_14nm *pll_14nm = postdiv->pll; void __iomem *base = pll_14nm->phy_cmn_mmio; u8 shift = postdiv->shift; u8 width = postdiv->width; u32 val; DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, parent_rate); val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0) >> shift; val &= div_mask(width); return divider_recalc_rate(hw, parent_rate, val, NULL, postdiv->flags, width); } static long dsi_pll_14nm_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); struct dsi_pll_14nm *pll_14nm = postdiv->pll; DBG("DSI%d PLL parent rate=%lu", pll_14nm->id, rate); return divider_round_rate(hw, rate, prate, NULL, postdiv->width, postdiv->flags); } static int dsi_pll_14nm_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct dsi_pll_14nm_postdiv *postdiv = to_pll_14nm_postdiv(hw); struct dsi_pll_14nm *pll_14nm = postdiv->pll; void __iomem *base = pll_14nm->phy_cmn_mmio; spinlock_t *lock = &pll_14nm->postdiv_lock; u8 shift = postdiv->shift; u8 width = postdiv->width; unsigned int value; unsigned long flags = 0; u32 val; DBG("DSI%d PLL parent rate=%lu parent rate %lu", pll_14nm->id, rate, parent_rate); value = divider_get_val(rate, parent_rate, NULL, postdiv->width, postdiv->flags); spin_lock_irqsave(lock, flags); val = pll_read(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0); val &= ~(div_mask(width) << shift); val |= value << shift; pll_write(base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val); /* If we're master in dual DSI mode, then the slave PLL's post-dividers * follow the master's post dividers */ if (pll_14nm->uc == MSM_DSI_PHY_MASTER) { struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio; pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, val); } spin_unlock_irqrestore(lock, flags); return 0; } static const struct clk_ops clk_ops_dsi_pll_14nm_postdiv = { .recalc_rate = dsi_pll_14nm_postdiv_recalc_rate, .round_rate = dsi_pll_14nm_postdiv_round_rate, .set_rate = dsi_pll_14nm_postdiv_set_rate, }; /* * PLL Callbacks */ static int dsi_pll_14nm_enable_seq(struct msm_dsi_pll *pll) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); void __iomem *base = pll_14nm->mmio; void __iomem *cmn_base = pll_14nm->phy_cmn_mmio; bool locked; DBG(""); pll_write(base + REG_DSI_14nm_PHY_PLL_VREF_CFG1, 0x10); pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 1); locked = pll_14nm_poll_for_ready(pll_14nm, POLL_MAX_READS, POLL_TIMEOUT_US); if (unlikely(!locked)) DRM_DEV_ERROR(&pll_14nm->pdev->dev, "DSI PLL lock failed\n"); else DBG("DSI PLL lock success"); return locked ? 0 : -EINVAL; } static void dsi_pll_14nm_disable_seq(struct msm_dsi_pll *pll) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); void __iomem *cmn_base = pll_14nm->phy_cmn_mmio; DBG(""); pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_PLL_CNTRL, 0); } static void dsi_pll_14nm_save_state(struct msm_dsi_pll *pll) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state; void __iomem *cmn_base = pll_14nm->phy_cmn_mmio; u32 data; data = pll_read(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0); cached_state->n1postdiv = data & 0xf; cached_state->n2postdiv = (data >> 4) & 0xf; DBG("DSI%d PLL save state %x %x", pll_14nm->id, cached_state->n1postdiv, cached_state->n2postdiv); cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw); } static int dsi_pll_14nm_restore_state(struct msm_dsi_pll *pll) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); struct pll_14nm_cached_state *cached_state = &pll_14nm->cached_state; void __iomem *cmn_base = pll_14nm->phy_cmn_mmio; u32 data; int ret; ret = dsi_pll_14nm_vco_set_rate(&pll->clk_hw, cached_state->vco_rate, 0); if (ret) { DRM_DEV_ERROR(&pll_14nm->pdev->dev, "restore vco rate failed. ret=%d\n", ret); return ret; } data = cached_state->n1postdiv | (cached_state->n2postdiv << 4); DBG("DSI%d PLL restore state %x %x", pll_14nm->id, cached_state->n1postdiv, cached_state->n2postdiv); pll_write(cmn_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data); /* also restore post-dividers for slave DSI PLL */ if (pll_14nm->uc == MSM_DSI_PHY_MASTER) { struct dsi_pll_14nm *pll_14nm_slave = pll_14nm->slave; void __iomem *slave_base = pll_14nm_slave->phy_cmn_mmio; pll_write(slave_base + REG_DSI_14nm_PHY_CMN_CLK_CFG0, data); } return 0; } static int dsi_pll_14nm_set_usecase(struct msm_dsi_pll *pll, enum msm_dsi_phy_usecase uc) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); void __iomem *base = pll_14nm->mmio; u32 clkbuflr_en, bandgap = 0; switch (uc) { case MSM_DSI_PHY_STANDALONE: clkbuflr_en = 0x1; break; case MSM_DSI_PHY_MASTER: clkbuflr_en = 0x3; pll_14nm->slave = pll_14nm_list[(pll_14nm->id + 1) % DSI_MAX]; break; case MSM_DSI_PHY_SLAVE: clkbuflr_en = 0x0; bandgap = 0x3; break; default: return -EINVAL; } pll_write(base + REG_DSI_14nm_PHY_PLL_CLKBUFLR_EN, clkbuflr_en); if (bandgap) pll_write(base + REG_DSI_14nm_PHY_PLL_PLL_BANDGAP, bandgap); pll_14nm->uc = uc; return 0; } static int dsi_pll_14nm_get_provider(struct msm_dsi_pll *pll, struct clk **byte_clk_provider, struct clk **pixel_clk_provider) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); struct clk_hw_onecell_data *hw_data = pll_14nm->hw_data; if (byte_clk_provider) *byte_clk_provider = hw_data->hws[DSI_BYTE_PLL_CLK]->clk; if (pixel_clk_provider) *pixel_clk_provider = hw_data->hws[DSI_PIXEL_PLL_CLK]->clk; return 0; } static void dsi_pll_14nm_destroy(struct msm_dsi_pll *pll) { struct dsi_pll_14nm *pll_14nm = to_pll_14nm(pll); struct platform_device *pdev = pll_14nm->pdev; int num_hws = pll_14nm->num_hws; of_clk_del_provider(pdev->dev.of_node); while (num_hws--) clk_hw_unregister(pll_14nm->hws[num_hws]); } static struct clk_hw *pll_14nm_postdiv_register(struct dsi_pll_14nm *pll_14nm, const char *name, const char *parent_name, unsigned long flags, u8 shift) { struct dsi_pll_14nm_postdiv *pll_postdiv; struct device *dev = &pll_14nm->pdev->dev; struct clk_init_data postdiv_init = { .parent_names = (const char *[]) { parent_name }, .num_parents = 1, .name = name, .flags = flags, .ops = &clk_ops_dsi_pll_14nm_postdiv, }; int ret; pll_postdiv = devm_kzalloc(dev, sizeof(*pll_postdiv), GFP_KERNEL); if (!pll_postdiv) return ERR_PTR(-ENOMEM); pll_postdiv->pll = pll_14nm; pll_postdiv->shift = shift; /* both N1 and N2 postdividers are 4 bits wide */ pll_postdiv->width = 4; /* range of each divider is from 1 to 15 */ pll_postdiv->flags = CLK_DIVIDER_ONE_BASED; pll_postdiv->hw.init = &postdiv_init; ret = clk_hw_register(dev, &pll_postdiv->hw); if (ret) return ERR_PTR(ret); return &pll_postdiv->hw; } static int pll_14nm_register(struct dsi_pll_14nm *pll_14nm) { char clk_name[32], parent[32], vco_name[32]; struct clk_init_data vco_init = { .parent_names = (const char *[]){ "xo" }, .num_parents = 1, .name = vco_name, .flags = CLK_IGNORE_UNUSED, .ops = &clk_ops_dsi_pll_14nm_vco, }; struct device *dev = &pll_14nm->pdev->dev; struct clk_hw **hws = pll_14nm->hws; struct clk_hw_onecell_data *hw_data; struct clk_hw *hw; int num = 0; int ret; DBG("DSI%d", pll_14nm->id); hw_data = devm_kzalloc(dev, sizeof(*hw_data) + NUM_PROVIDED_CLKS * sizeof(struct clk_hw *), GFP_KERNEL); if (!hw_data) return -ENOMEM; snprintf(vco_name, 32, "dsi%dvco_clk", pll_14nm->id); pll_14nm->base.clk_hw.init = &vco_init; ret = clk_hw_register(dev, &pll_14nm->base.clk_hw); if (ret) return ret; hws[num++] = &pll_14nm->base.clk_hw; snprintf(clk_name, 32, "dsi%dn1_postdiv_clk", pll_14nm->id); snprintf(parent, 32, "dsi%dvco_clk", pll_14nm->id); /* N1 postdiv, bits 0-3 in REG_DSI_14nm_PHY_CMN_CLK_CFG0 */ hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, CLK_SET_RATE_PARENT, 0); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; snprintf(clk_name, 32, "dsi%dpllbyte", pll_14nm->id); snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id); /* DSI Byte clock = VCO_CLK / N1 / 8 */ hw = clk_hw_register_fixed_factor(dev, clk_name, parent, CLK_SET_RATE_PARENT, 1, 8); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; hw_data->hws[DSI_BYTE_PLL_CLK] = hw; snprintf(clk_name, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id); snprintf(parent, 32, "dsi%dn1_postdiv_clk", pll_14nm->id); /* * Skip the mux for now, force DSICLK_SEL to 1, Add a /2 divider * on the way. Don't let it set parent. */ hw = clk_hw_register_fixed_factor(dev, clk_name, parent, 0, 1, 2); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; snprintf(clk_name, 32, "dsi%dpll", pll_14nm->id); snprintf(parent, 32, "dsi%dn1_postdivby2_clk", pll_14nm->id); /* DSI pixel clock = VCO_CLK / N1 / 2 / N2 * This is the output of N2 post-divider, bits 4-7 in * REG_DSI_14nm_PHY_CMN_CLK_CFG0. Don't let it set parent. */ hw = pll_14nm_postdiv_register(pll_14nm, clk_name, parent, 0, 4); if (IS_ERR(hw)) return PTR_ERR(hw); hws[num++] = hw; hw_data->hws[DSI_PIXEL_PLL_CLK] = hw; pll_14nm->num_hws = num; hw_data->num = NUM_PROVIDED_CLKS; pll_14nm->hw_data = hw_data; ret = of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, pll_14nm->hw_data); if (ret) { DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret); return ret; } return 0; } struct msm_dsi_pll *msm_dsi_pll_14nm_init(struct platform_device *pdev, int id) { struct dsi_pll_14nm *pll_14nm; struct msm_dsi_pll *pll; int ret; if (!pdev) return ERR_PTR(-ENODEV); pll_14nm = devm_kzalloc(&pdev->dev, sizeof(*pll_14nm), GFP_KERNEL); if (!pll_14nm) return ERR_PTR(-ENOMEM); DBG("PLL%d", id); pll_14nm->pdev = pdev; pll_14nm->id = id; pll_14nm_list[id] = pll_14nm; pll_14nm->phy_cmn_mmio = msm_ioremap(pdev, "dsi_phy", "DSI_PHY"); if (IS_ERR_OR_NULL(pll_14nm->phy_cmn_mmio)) { DRM_DEV_ERROR(&pdev->dev, "failed to map CMN PHY base\n"); return ERR_PTR(-ENOMEM); } pll_14nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL"); if (IS_ERR_OR_NULL(pll_14nm->mmio)) { DRM_DEV_ERROR(&pdev->dev, "failed to map PLL base\n"); return ERR_PTR(-ENOMEM); } spin_lock_init(&pll_14nm->postdiv_lock); pll = &pll_14nm->base; pll->min_rate = VCO_MIN_RATE; pll->max_rate = VCO_MAX_RATE; pll->get_provider = dsi_pll_14nm_get_provider; pll->destroy = dsi_pll_14nm_destroy; pll->disable_seq = dsi_pll_14nm_disable_seq; pll->save_state = dsi_pll_14nm_save_state; pll->restore_state = dsi_pll_14nm_restore_state; pll->set_usecase = dsi_pll_14nm_set_usecase; pll_14nm->vco_delay = 1; pll->en_seq_cnt = 1; pll->enable_seqs[0] = dsi_pll_14nm_enable_seq; ret = pll_14nm_register(pll_14nm); if (ret) { DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); return ERR_PTR(ret); } return pll; }