/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eugeni Dodonov * */ #include #include #include #include #include #include "display/intel_atomic.h" #include "display/intel_display_types.h" #include "display/intel_fbc.h" #include "display/intel_sprite.h" #include "gt/intel_llc.h" #include "i915_drv.h" #include "i915_fixed.h" #include "i915_irq.h" #include "i915_trace.h" #include "display/intel_bw.h" #include "intel_pm.h" #include "intel_sideband.h" #include "../../../platform/x86/intel_ips.h" /* Stores plane specific WM parameters */ struct skl_wm_params { bool x_tiled, y_tiled; bool rc_surface; bool is_planar; u32 width; u8 cpp; u32 plane_pixel_rate; u32 y_min_scanlines; u32 plane_bytes_per_line; uint_fixed_16_16_t plane_blocks_per_line; uint_fixed_16_16_t y_tile_minimum; u32 linetime_us; u32 dbuf_block_size; }; /* used in computing the new watermarks state */ struct intel_wm_config { unsigned int num_pipes_active; bool sprites_enabled; bool sprites_scaled; }; static void gen9_init_clock_gating(struct drm_i915_private *dev_priv) { if (HAS_LLC(dev_priv)) { /* * WaCompressedResourceDisplayNewHashMode:skl,kbl * Display WA #0390: skl,kbl * * Must match Sampler, Pixel Back End, and Media. See * WaCompressedResourceSamplerPbeMediaNewHashMode. */ I915_WRITE(CHICKEN_PAR1_1, I915_READ(CHICKEN_PAR1_1) | SKL_DE_COMPRESSED_HASH_MODE); } /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */ I915_WRITE(CHICKEN_PAR1_1, I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP); /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */ I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */ /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */ I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS | DISP_FBC_MEMORY_WAKE); /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */ I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | ILK_DPFC_DISABLE_DUMMY0); if (IS_SKYLAKE(dev_priv)) { /* WaDisableDopClockGating */ I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL) & ~GEN7_DOP_CLOCK_GATE_ENABLE); } } static void bxt_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* WaDisableSDEUnitClockGating:bxt */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* * FIXME: * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only. */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ); /* * Wa: Backlight PWM may stop in the asserted state, causing backlight * to stay fully on. */ I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | PWM1_GATING_DIS | PWM2_GATING_DIS); /* * Lower the display internal timeout. * This is needed to avoid any hard hangs when DSI port PLL * is off and a MMIO access is attempted by any privilege * application, using batch buffers or any other means. */ I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950)); } static void glk_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* * WaDisablePWMClockGating:glk * Backlight PWM may stop in the asserted state, causing backlight * to stay fully on. */ I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) | PWM1_GATING_DIS | PWM2_GATING_DIS); } static void pnv_get_mem_freq(struct drm_i915_private *dev_priv) { u32 tmp; tmp = I915_READ(CLKCFG); switch (tmp & CLKCFG_FSB_MASK) { case CLKCFG_FSB_533: dev_priv->fsb_freq = 533; /* 133*4 */ break; case CLKCFG_FSB_800: dev_priv->fsb_freq = 800; /* 200*4 */ break; case CLKCFG_FSB_667: dev_priv->fsb_freq = 667; /* 167*4 */ break; case CLKCFG_FSB_400: dev_priv->fsb_freq = 400; /* 100*4 */ break; } switch (tmp & CLKCFG_MEM_MASK) { case CLKCFG_MEM_533: dev_priv->mem_freq = 533; break; case CLKCFG_MEM_667: dev_priv->mem_freq = 667; break; case CLKCFG_MEM_800: dev_priv->mem_freq = 800; break; } /* detect pineview DDR3 setting */ tmp = I915_READ(CSHRDDR3CTL); dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0; } static void ilk_get_mem_freq(struct drm_i915_private *dev_priv) { u16 ddrpll, csipll; ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1); csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0); switch (ddrpll & 0xff) { case 0xc: dev_priv->mem_freq = 800; break; case 0x10: dev_priv->mem_freq = 1066; break; case 0x14: dev_priv->mem_freq = 1333; break; case 0x18: dev_priv->mem_freq = 1600; break; default: drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n", ddrpll & 0xff); dev_priv->mem_freq = 0; break; } switch (csipll & 0x3ff) { case 0x00c: dev_priv->fsb_freq = 3200; break; case 0x00e: dev_priv->fsb_freq = 3733; break; case 0x010: dev_priv->fsb_freq = 4266; break; case 0x012: dev_priv->fsb_freq = 4800; break; case 0x014: dev_priv->fsb_freq = 5333; break; case 0x016: dev_priv->fsb_freq = 5866; break; case 0x018: dev_priv->fsb_freq = 6400; break; default: drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n", csipll & 0x3ff); dev_priv->fsb_freq = 0; break; } } static const struct cxsr_latency cxsr_latency_table[] = { {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */ {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */ {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */ {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */ {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */ {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */ {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */ {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */ {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */ {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */ {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */ {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */ {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */ {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */ {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */ {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */ {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */ {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */ {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */ {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */ {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */ {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */ {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */ {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */ {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */ {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */ {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */ {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */ {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */ {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */ }; static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop, bool is_ddr3, int fsb, int mem) { const struct cxsr_latency *latency; int i; if (fsb == 0 || mem == 0) return NULL; for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) { latency = &cxsr_latency_table[i]; if (is_desktop == latency->is_desktop && is_ddr3 == latency->is_ddr3 && fsb == latency->fsb_freq && mem == latency->mem_freq) return latency; } DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n"); return NULL; } static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable) { u32 val; vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); if (enable) val &= ~FORCE_DDR_HIGH_FREQ; else val |= FORCE_DDR_HIGH_FREQ; val &= ~FORCE_DDR_LOW_FREQ; val |= FORCE_DDR_FREQ_REQ_ACK; vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) drm_err(&dev_priv->drm, "timed out waiting for Punit DDR DVFS request\n"); vlv_punit_put(dev_priv); } static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable) { u32 val; vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); if (enable) val |= DSP_MAXFIFO_PM5_ENABLE; else val &= ~DSP_MAXFIFO_PM5_ENABLE; vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val); vlv_punit_put(dev_priv); } #define FW_WM(value, plane) \ (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK) static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) { bool was_enabled; u32 val; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0); POSTING_READ(FW_BLC_SELF_VLV); } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) { was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0); POSTING_READ(FW_BLC_SELF); } else if (IS_PINEVIEW(dev_priv)) { val = I915_READ(DSPFW3); was_enabled = val & PINEVIEW_SELF_REFRESH_EN; if (enable) val |= PINEVIEW_SELF_REFRESH_EN; else val &= ~PINEVIEW_SELF_REFRESH_EN; I915_WRITE(DSPFW3, val); POSTING_READ(DSPFW3); } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) { was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) : _MASKED_BIT_DISABLE(FW_BLC_SELF_EN); I915_WRITE(FW_BLC_SELF, val); POSTING_READ(FW_BLC_SELF); } else if (IS_I915GM(dev_priv)) { /* * FIXME can't find a bit like this for 915G, and * and yet it does have the related watermark in * FW_BLC_SELF. What's going on? */ was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) : _MASKED_BIT_DISABLE(INSTPM_SELF_EN); I915_WRITE(INSTPM, val); POSTING_READ(INSTPM); } else { return false; } trace_intel_memory_cxsr(dev_priv, was_enabled, enable); drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n", enableddisabled(enable), enableddisabled(was_enabled)); return was_enabled; } /** * intel_set_memory_cxsr - Configure CxSR state * @dev_priv: i915 device * @enable: Allow vs. disallow CxSR * * Allow or disallow the system to enter a special CxSR * (C-state self refresh) state. What typically happens in CxSR mode * is that several display FIFOs may get combined into a single larger * FIFO for a particular plane (so called max FIFO mode) to allow the * system to defer memory fetches longer, and the memory will enter * self refresh. * * Note that enabling CxSR does not guarantee that the system enter * this special mode, nor does it guarantee that the system stays * in that mode once entered. So this just allows/disallows the system * to autonomously utilize the CxSR mode. Other factors such as core * C-states will affect when/if the system actually enters/exits the * CxSR mode. * * Note that on VLV/CHV this actually only controls the max FIFO mode, * and the system is free to enter/exit memory self refresh at any time * even when the use of CxSR has been disallowed. * * While the system is actually in the CxSR/max FIFO mode, some plane * control registers will not get latched on vblank. Thus in order to * guarantee the system will respond to changes in the plane registers * we must always disallow CxSR prior to making changes to those registers. * Unfortunately the system will re-evaluate the CxSR conditions at * frame start which happens after vblank start (which is when the plane * registers would get latched), so we can't proceed with the plane update * during the same frame where we disallowed CxSR. * * Certain platforms also have a deeper HPLL SR mode. Fortunately the * HPLL SR mode depends on CxSR itself, so we don't have to hand hold * the hardware w.r.t. HPLL SR when writing to plane registers. * Disallowing just CxSR is sufficient. */ bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable) { bool ret; mutex_lock(&dev_priv->wm.wm_mutex); ret = _intel_set_memory_cxsr(dev_priv, enable); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) dev_priv->wm.vlv.cxsr = enable; else if (IS_G4X(dev_priv)) dev_priv->wm.g4x.cxsr = enable; mutex_unlock(&dev_priv->wm.wm_mutex); return ret; } /* * Latency for FIFO fetches is dependent on several factors: * - memory configuration (speed, channels) * - chipset * - current MCH state * It can be fairly high in some situations, so here we assume a fairly * pessimal value. It's a tradeoff between extra memory fetches (if we * set this value too high, the FIFO will fetch frequently to stay full) * and power consumption (set it too low to save power and we might see * FIFO underruns and display "flicker"). * * A value of 5us seems to be a good balance; safe for very low end * platforms but not overly aggressive on lower latency configs. */ static const int pessimal_latency_ns = 5000; #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \ ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8)) static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum pipe pipe = crtc->pipe; int sprite0_start, sprite1_start; u32 dsparb, dsparb2, dsparb3; switch (pipe) { case PIPE_A: dsparb = I915_READ(DSPARB); dsparb2 = I915_READ(DSPARB2); sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0); sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4); break; case PIPE_B: dsparb = I915_READ(DSPARB); dsparb2 = I915_READ(DSPARB2); sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8); sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12); break; case PIPE_C: dsparb2 = I915_READ(DSPARB2); dsparb3 = I915_READ(DSPARB3); sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16); sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20); break; default: MISSING_CASE(pipe); return; } fifo_state->plane[PLANE_PRIMARY] = sprite0_start; fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start; fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start; fifo_state->plane[PLANE_CURSOR] = 63; } static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane) { u32 dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; if (i9xx_plane == PLANE_B) size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size; drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", dsparb, plane_name(i9xx_plane), size); return size; } static int i830_get_fifo_size(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane) { u32 dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x1ff; if (i9xx_plane == PLANE_B) size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size; size >>= 1; /* Convert to cachelines */ drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", dsparb, plane_name(i9xx_plane), size); return size; } static int i845_get_fifo_size(struct drm_i915_private *dev_priv, enum i9xx_plane_id i9xx_plane) { u32 dsparb = I915_READ(DSPARB); int size; size = dsparb & 0x7f; size >>= 2; /* Convert to cachelines */ drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n", dsparb, plane_name(i9xx_plane), size); return size; } /* Pineview has different values for various configs */ static const struct intel_watermark_params pnv_display_wm = { .fifo_size = PINEVIEW_DISPLAY_FIFO, .max_wm = PINEVIEW_MAX_WM, .default_wm = PINEVIEW_DFT_WM, .guard_size = PINEVIEW_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pnv_display_hplloff_wm = { .fifo_size = PINEVIEW_DISPLAY_FIFO, .max_wm = PINEVIEW_MAX_WM, .default_wm = PINEVIEW_DFT_HPLLOFF_WM, .guard_size = PINEVIEW_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pnv_cursor_wm = { .fifo_size = PINEVIEW_CURSOR_FIFO, .max_wm = PINEVIEW_CURSOR_MAX_WM, .default_wm = PINEVIEW_CURSOR_DFT_WM, .guard_size = PINEVIEW_CURSOR_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params pnv_cursor_hplloff_wm = { .fifo_size = PINEVIEW_CURSOR_FIFO, .max_wm = PINEVIEW_CURSOR_MAX_WM, .default_wm = PINEVIEW_CURSOR_DFT_WM, .guard_size = PINEVIEW_CURSOR_GUARD_WM, .cacheline_size = PINEVIEW_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i965_cursor_wm_info = { .fifo_size = I965_CURSOR_FIFO, .max_wm = I965_CURSOR_MAX_WM, .default_wm = I965_CURSOR_DFT_WM, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i945_wm_info = { .fifo_size = I945_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i915_wm_info = { .fifo_size = I915_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I915_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i830_a_wm_info = { .fifo_size = I855GM_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i830_bc_wm_info = { .fifo_size = I855GM_FIFO_SIZE, .max_wm = I915_MAX_WM/2, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; static const struct intel_watermark_params i845_wm_info = { .fifo_size = I830_FIFO_SIZE, .max_wm = I915_MAX_WM, .default_wm = 1, .guard_size = 2, .cacheline_size = I830_FIFO_LINE_SIZE, }; /** * intel_wm_method1 - Method 1 / "small buffer" watermark formula * @pixel_rate: Pipe pixel rate in kHz * @cpp: Plane bytes per pixel * @latency: Memory wakeup latency in 0.1us units * * Compute the watermark using the method 1 or "small buffer" * formula. The caller may additonally add extra cachelines * to account for TLB misses and clock crossings. * * This method is concerned with the short term drain rate * of the FIFO, ie. it does not account for blanking periods * which would effectively reduce the average drain rate across * a longer period. The name "small" refers to the fact the * FIFO is relatively small compared to the amount of data * fetched. * * The FIFO level vs. time graph might look something like: * * |\ |\ * | \ | \ * __---__---__ (- plane active, _ blanking) * -> time * * or perhaps like this: * * |\|\ |\|\ * __----__----__ (- plane active, _ blanking) * -> time * * Returns: * The watermark in bytes */ static unsigned int intel_wm_method1(unsigned int pixel_rate, unsigned int cpp, unsigned int latency) { u64 ret; ret = mul_u32_u32(pixel_rate, cpp * latency); ret = DIV_ROUND_UP_ULL(ret, 10000); return ret; } /** * intel_wm_method2 - Method 2 / "large buffer" watermark formula * @pixel_rate: Pipe pixel rate in kHz * @htotal: Pipe horizontal total * @width: Plane width in pixels * @cpp: Plane bytes per pixel * @latency: Memory wakeup latency in 0.1us units * * Compute the watermark using the method 2 or "large buffer" * formula. The caller may additonally add extra cachelines * to account for TLB misses and clock crossings. * * This method is concerned with the long term drain rate * of the FIFO, ie. it does account for blanking periods * which effectively reduce the average drain rate across * a longer period. The name "large" refers to the fact the * FIFO is relatively large compared to the amount of data * fetched. * * The FIFO level vs. time graph might look something like: * * |\___ |\___ * | \___ | \___ * | \ | \ * __ --__--__--__--__--__--__ (- plane active, _ blanking) * -> time * * Returns: * The watermark in bytes */ static unsigned int intel_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; /* * FIXME remove once all users are computing * watermarks in the correct place. */ if (WARN_ON_ONCE(htotal == 0)) htotal = 1; ret = (latency * pixel_rate) / (htotal * 10000); ret = (ret + 1) * width * cpp; return ret; } /** * intel_calculate_wm - calculate watermark level * @pixel_rate: pixel clock * @wm: chip FIFO params * @fifo_size: size of the FIFO buffer * @cpp: bytes per pixel * @latency_ns: memory latency for the platform * * Calculate the watermark level (the level at which the display plane will * start fetching from memory again). Each chip has a different display * FIFO size and allocation, so the caller needs to figure that out and pass * in the correct intel_watermark_params structure. * * As the pixel clock runs, the FIFO will be drained at a rate that depends * on the pixel size. When it reaches the watermark level, it'll start * fetching FIFO line sized based chunks from memory until the FIFO fills * past the watermark point. If the FIFO drains completely, a FIFO underrun * will occur, and a display engine hang could result. */ static unsigned int intel_calculate_wm(int pixel_rate, const struct intel_watermark_params *wm, int fifo_size, int cpp, unsigned int latency_ns) { int entries, wm_size; /* * Note: we need to make sure we don't overflow for various clock & * latency values. * clocks go from a few thousand to several hundred thousand. * latency is usually a few thousand */ entries = intel_wm_method1(pixel_rate, cpp, latency_ns / 100); entries = DIV_ROUND_UP(entries, wm->cacheline_size) + wm->guard_size; DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries); wm_size = fifo_size - entries; DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size); /* Don't promote wm_size to unsigned... */ if (wm_size > wm->max_wm) wm_size = wm->max_wm; if (wm_size <= 0) wm_size = wm->default_wm; /* * Bspec seems to indicate that the value shouldn't be lower than * 'burst size + 1'. Certainly 830 is quite unhappy with low values. * Lets go for 8 which is the burst size since certain platforms * already use a hardcoded 8 (which is what the spec says should be * done). */ if (wm_size <= 8) wm_size = 8; return wm_size; } static bool is_disabling(int old, int new, int threshold) { return old >= threshold && new < threshold; } static bool is_enabling(int old, int new, int threshold) { return old < threshold && new >= threshold; } static int intel_wm_num_levels(struct drm_i915_private *dev_priv) { return dev_priv->wm.max_level + 1; } static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); /* FIXME check the 'enable' instead */ if (!crtc_state->hw.active) return false; /* * Treat cursor with fb as always visible since cursor updates * can happen faster than the vrefresh rate, and the current * watermark code doesn't handle that correctly. Cursor updates * which set/clear the fb or change the cursor size are going * to get throttled by intel_legacy_cursor_update() to work * around this problem with the watermark code. */ if (plane->id == PLANE_CURSOR) return plane_state->hw.fb != NULL; else return plane_state->uapi.visible; } static bool intel_crtc_active(struct intel_crtc *crtc) { /* Be paranoid as we can arrive here with only partial * state retrieved from the hardware during setup. * * We can ditch the adjusted_mode.crtc_clock check as soon * as Haswell has gained clock readout/fastboot support. * * We can ditch the crtc->primary->state->fb check as soon as we can * properly reconstruct framebuffers. * * FIXME: The intel_crtc->active here should be switched to * crtc->state->active once we have proper CRTC states wired up * for atomic. */ return crtc->active && crtc->base.primary->state->fb && crtc->config->hw.adjusted_mode.crtc_clock; } static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc, *enabled = NULL; for_each_intel_crtc(&dev_priv->drm, crtc) { if (intel_crtc_active(crtc)) { if (enabled) return NULL; enabled = crtc; } } return enabled; } static void pnv_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); struct intel_crtc *crtc; const struct cxsr_latency *latency; u32 reg; unsigned int wm; latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq); if (!latency) { drm_dbg_kms(&dev_priv->drm, "Unknown FSB/MEM found, disable CxSR\n"); intel_set_memory_cxsr(dev_priv, false); return; } crtc = single_enabled_crtc(dev_priv); if (crtc) { const struct drm_display_mode *adjusted_mode = &crtc->config->hw.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp = fb->format->cpp[0]; int clock = adjusted_mode->crtc_clock; /* Display SR */ wm = intel_calculate_wm(clock, &pnv_display_wm, pnv_display_wm.fifo_size, cpp, latency->display_sr); reg = I915_READ(DSPFW1); reg &= ~DSPFW_SR_MASK; reg |= FW_WM(wm, SR); I915_WRITE(DSPFW1, reg); drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg); /* cursor SR */ wm = intel_calculate_wm(clock, &pnv_cursor_wm, pnv_display_wm.fifo_size, 4, latency->cursor_sr); reg = I915_READ(DSPFW3); reg &= ~DSPFW_CURSOR_SR_MASK; reg |= FW_WM(wm, CURSOR_SR); I915_WRITE(DSPFW3, reg); /* Display HPLL off SR */ wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm, pnv_display_hplloff_wm.fifo_size, cpp, latency->display_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_SR_MASK; reg |= FW_WM(wm, HPLL_SR); I915_WRITE(DSPFW3, reg); /* cursor HPLL off SR */ wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm, pnv_display_hplloff_wm.fifo_size, 4, latency->cursor_hpll_disable); reg = I915_READ(DSPFW3); reg &= ~DSPFW_HPLL_CURSOR_MASK; reg |= FW_WM(wm, HPLL_CURSOR); I915_WRITE(DSPFW3, reg); drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg); intel_set_memory_cxsr(dev_priv, true); } else { intel_set_memory_cxsr(dev_priv, false); } } /* * Documentation says: * "If the line size is small, the TLB fetches can get in the way of the * data fetches, causing some lag in the pixel data return which is not * accounted for in the above formulas. The following adjustment only * needs to be applied if eight whole lines fit in the buffer at once. * The WM is adjusted upwards by the difference between the FIFO size * and the size of 8 whole lines. This adjustment is always performed * in the actual pixel depth regardless of whether FBC is enabled or not." */ static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp) { int tlb_miss = fifo_size * 64 - width * cpp * 8; return max(0, tlb_miss); } static void g4x_write_wm_values(struct drm_i915_private *dev_priv, const struct g4x_wm_values *wm) { enum pipe pipe; for_each_pipe(dev_priv, pipe) trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); I915_WRITE(DSPFW1, FW_WM(wm->sr.plane, SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); I915_WRITE(DSPFW2, (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) | FW_WM(wm->sr.fbc, FBC_SR) | FW_WM(wm->hpll.fbc, FBC_HPLL_SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); I915_WRITE(DSPFW3, (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) | FW_WM(wm->sr.cursor, CURSOR_SR) | FW_WM(wm->hpll.cursor, HPLL_CURSOR) | FW_WM(wm->hpll.plane, HPLL_SR)); POSTING_READ(DSPFW1); } #define FW_WM_VLV(value, plane) \ (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV) static void vlv_write_wm_values(struct drm_i915_private *dev_priv, const struct vlv_wm_values *wm) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm); I915_WRITE(VLV_DDL(pipe), (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) | (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) | (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) | (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT)); } /* * Zero the (unused) WM1 watermarks, and also clear all the * high order bits so that there are no out of bounds values * present in the registers during the reprogramming. */ I915_WRITE(DSPHOWM, 0); I915_WRITE(DSPHOWM1, 0); I915_WRITE(DSPFW4, 0); I915_WRITE(DSPFW5, 0); I915_WRITE(DSPFW6, 0); I915_WRITE(DSPFW1, FW_WM(wm->sr.plane, SR) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) | FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA)); I915_WRITE(DSPFW2, FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) | FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA)); I915_WRITE(DSPFW3, FW_WM(wm->sr.cursor, CURSOR_SR)); if (IS_CHERRYVIEW(dev_priv)) { I915_WRITE(DSPFW7_CHV, FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); I915_WRITE(DSPFW8_CHV, FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) | FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE)); I915_WRITE(DSPFW9_CHV, FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC)); I915_WRITE(DSPHOWM, FW_WM(wm->sr.plane >> 9, SR_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) | FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); } else { I915_WRITE(DSPFW7, FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) | FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC)); I915_WRITE(DSPHOWM, FW_WM(wm->sr.plane >> 9, SR_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) | FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) | FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI)); } POSTING_READ(DSPFW1); } #undef FW_WM_VLV static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv) { /* all latencies in usec */ dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5; dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12; dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35; dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL; } static int g4x_plane_fifo_size(enum plane_id plane_id, int level) { /* * DSPCNTR[13] supposedly controls whether the * primary plane can use the FIFO space otherwise * reserved for the sprite plane. It's not 100% clear * what the actual FIFO size is, but it looks like we * can happily set both primary and sprite watermarks * up to 127 cachelines. So that would seem to mean * that either DSPCNTR[13] doesn't do anything, or that * the total FIFO is >= 256 cachelines in size. Either * way, we don't seem to have to worry about this * repartitioning as the maximum watermark value the * register can hold for each plane is lower than the * minimum FIFO size. */ switch (plane_id) { case PLANE_CURSOR: return 63; case PLANE_PRIMARY: return level == G4X_WM_LEVEL_NORMAL ? 127 : 511; case PLANE_SPRITE0: return level == G4X_WM_LEVEL_NORMAL ? 127 : 0; default: MISSING_CASE(plane_id); return 0; } } static int g4x_fbc_fifo_size(int level) { switch (level) { case G4X_WM_LEVEL_SR: return 7; case G4X_WM_LEVEL_HPLL: return 15; default: MISSING_CASE(level); return 0; } } static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int level) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; unsigned int latency = dev_priv->wm.pri_latency[level] * 10; unsigned int clock, htotal, cpp, width, wm; if (latency == 0) return USHRT_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; /* * Not 100% sure which way ELK should go here as the * spec only says CL/CTG should assume 32bpp and BW * doesn't need to. But as these things followed the * mobile vs. desktop lines on gen3 as well, let's * assume ELK doesn't need this. * * The spec also fails to list such a restriction for * the HPLL watermark, which seems a little strange. * Let's use 32bpp for the HPLL watermark as well. */ if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY && level != G4X_WM_LEVEL_NORMAL) cpp = max(cpp, 4u); clock = adjusted_mode->crtc_clock; htotal = adjusted_mode->crtc_htotal; width = drm_rect_width(&plane_state->uapi.dst); if (plane->id == PLANE_CURSOR) { wm = intel_wm_method2(clock, htotal, width, cpp, latency); } else if (plane->id == PLANE_PRIMARY && level == G4X_WM_LEVEL_NORMAL) { wm = intel_wm_method1(clock, cpp, latency); } else { unsigned int small, large; small = intel_wm_method1(clock, cpp, latency); large = intel_wm_method2(clock, htotal, width, cpp, latency); wm = min(small, large); } wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level), width, cpp); wm = DIV_ROUND_UP(wm, 64) + 2; return min_t(unsigned int, wm, USHRT_MAX); } static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state, int level, enum plane_id plane_id, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); bool dirty = false; for (; level < intel_wm_num_levels(dev_priv); level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; dirty |= raw->plane[plane_id] != value; raw->plane[plane_id] = value; } return dirty; } static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state, int level, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); bool dirty = false; /* NORMAL level doesn't have an FBC watermark */ level = max(level, G4X_WM_LEVEL_SR); for (; level < intel_wm_num_levels(dev_priv); level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; dirty |= raw->fbc != value; raw->fbc = value; } return dirty; } static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 pri_val); static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); enum plane_id plane_id = plane->id; bool dirty = false; int level; if (!intel_wm_plane_visible(crtc_state, plane_state)) { dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0); if (plane_id == PLANE_PRIMARY) dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0); goto out; } for (level = 0; level < num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; int wm, max_wm; wm = g4x_compute_wm(crtc_state, plane_state, level); max_wm = g4x_plane_fifo_size(plane_id, level); if (wm > max_wm) break; dirty |= raw->plane[plane_id] != wm; raw->plane[plane_id] = wm; if (plane_id != PLANE_PRIMARY || level == G4X_WM_LEVEL_NORMAL) continue; wm = ilk_compute_fbc_wm(crtc_state, plane_state, raw->plane[plane_id]); max_wm = g4x_fbc_fifo_size(level); /* * FBC wm is not mandatory as we * can always just disable its use. */ if (wm > max_wm) wm = USHRT_MAX; dirty |= raw->fbc != wm; raw->fbc = wm; } /* mark watermarks as invalid */ dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); if (plane_id == PLANE_PRIMARY) dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); out: if (dirty) { drm_dbg_kms(&dev_priv->drm, "%s watermarks: normal=%d, SR=%d, HPLL=%d\n", plane->base.name, crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id], crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id], crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]); if (plane_id == PLANE_PRIMARY) drm_dbg_kms(&dev_priv->drm, "FBC watermarks: SR=%d, HPLL=%d\n", crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc, crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc); } return dirty; } static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, enum plane_id plane_id, int level) { const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level); } static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (level > dev_priv->wm.max_level) return false; return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); } /* mark all levels starting from 'level' as invalid */ static void g4x_invalidate_wms(struct intel_crtc *crtc, struct g4x_wm_state *wm_state, int level) { if (level <= G4X_WM_LEVEL_NORMAL) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm.plane[plane_id] = USHRT_MAX; } if (level <= G4X_WM_LEVEL_SR) { wm_state->cxsr = false; wm_state->sr.cursor = USHRT_MAX; wm_state->sr.plane = USHRT_MAX; wm_state->sr.fbc = USHRT_MAX; } if (level <= G4X_WM_LEVEL_HPLL) { wm_state->hpll_en = false; wm_state->hpll.cursor = USHRT_MAX; wm_state->hpll.plane = USHRT_MAX; wm_state->hpll.fbc = USHRT_MAX; } } static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; int num_active_planes = hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); const struct g4x_pipe_wm *raw; const struct intel_plane_state *old_plane_state; const struct intel_plane_state *new_plane_state; struct intel_plane *plane; enum plane_id plane_id; int i, level; unsigned int dirty = 0; for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { if (new_plane_state->hw.crtc != &crtc->base && old_plane_state->hw.crtc != &crtc->base) continue; if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state)) dirty |= BIT(plane->id); } if (!dirty) return 0; level = G4X_WM_LEVEL_NORMAL; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm.plane[plane_id] = raw->plane[plane_id]; level = G4X_WM_LEVEL_SR; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; wm_state->sr.plane = raw->plane[PLANE_PRIMARY]; wm_state->sr.cursor = raw->plane[PLANE_CURSOR]; wm_state->sr.fbc = raw->fbc; wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY); level = G4X_WM_LEVEL_HPLL; if (!g4x_raw_crtc_wm_is_valid(crtc_state, level)) goto out; raw = &crtc_state->wm.g4x.raw[level]; wm_state->hpll.plane = raw->plane[PLANE_PRIMARY]; wm_state->hpll.cursor = raw->plane[PLANE_CURSOR]; wm_state->hpll.fbc = raw->fbc; wm_state->hpll_en = wm_state->cxsr; level++; out: if (level == G4X_WM_LEVEL_NORMAL) return -EINVAL; /* invalidate the higher levels */ g4x_invalidate_wms(crtc, wm_state, level); /* * Determine if the FBC watermark(s) can be used. IF * this isn't the case we prefer to disable the FBC ( watermark(s) rather than disable the SR/HPLL * level(s) entirely. */ wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL; if (level >= G4X_WM_LEVEL_SR && wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR)) wm_state->fbc_en = false; else if (level >= G4X_WM_LEVEL_HPLL && wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL)) wm_state->fbc_en = false; return 0; } static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate; const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal; struct intel_atomic_state *intel_state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(intel_state, crtc); const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal; enum plane_id plane_id; if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) { *intermediate = *optimal; intermediate->cxsr = false; intermediate->hpll_en = false; goto out; } intermediate->cxsr = optimal->cxsr && active->cxsr && !new_crtc_state->disable_cxsr; intermediate->hpll_en = optimal->hpll_en && active->hpll_en && !new_crtc_state->disable_cxsr; intermediate->fbc_en = optimal->fbc_en && active->fbc_en; for_each_plane_id_on_crtc(crtc, plane_id) { intermediate->wm.plane[plane_id] = max(optimal->wm.plane[plane_id], active->wm.plane[plane_id]); WARN_ON(intermediate->wm.plane[plane_id] > g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL)); } intermediate->sr.plane = max(optimal->sr.plane, active->sr.plane); intermediate->sr.cursor = max(optimal->sr.cursor, active->sr.cursor); intermediate->sr.fbc = max(optimal->sr.fbc, active->sr.fbc); intermediate->hpll.plane = max(optimal->hpll.plane, active->hpll.plane); intermediate->hpll.cursor = max(optimal->hpll.cursor, active->hpll.cursor); intermediate->hpll.fbc = max(optimal->hpll.fbc, active->hpll.fbc); WARN_ON((intermediate->sr.plane > g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) || intermediate->sr.cursor > g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) && intermediate->cxsr); WARN_ON((intermediate->sr.plane > g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) || intermediate->sr.cursor > g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) && intermediate->hpll_en); WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) && intermediate->fbc_en && intermediate->cxsr); WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) && intermediate->fbc_en && intermediate->hpll_en); out: /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) new_crtc_state->wm.need_postvbl_update = true; return 0; } static void g4x_merge_wm(struct drm_i915_private *dev_priv, struct g4x_wm_values *wm) { struct intel_crtc *crtc; int num_active_pipes = 0; wm->cxsr = true; wm->hpll_en = true; wm->fbc_en = true; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; if (!crtc->active) continue; if (!wm_state->cxsr) wm->cxsr = false; if (!wm_state->hpll_en) wm->hpll_en = false; if (!wm_state->fbc_en) wm->fbc_en = false; num_active_pipes++; } if (num_active_pipes != 1) { wm->cxsr = false; wm->hpll_en = false; wm->fbc_en = false; } for_each_intel_crtc(&dev_priv->drm, crtc) { const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x; enum pipe pipe = crtc->pipe; wm->pipe[pipe] = wm_state->wm; if (crtc->active && wm->cxsr) wm->sr = wm_state->sr; if (crtc->active && wm->hpll_en) wm->hpll = wm_state->hpll; } } static void g4x_program_watermarks(struct drm_i915_private *dev_priv) { struct g4x_wm_values *old_wm = &dev_priv->wm.g4x; struct g4x_wm_values new_wm = {}; g4x_merge_wm(dev_priv, &new_wm); if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) return; if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, false); g4x_write_wm_values(dev_priv, &new_wm); if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, true); *old_wm = new_wm; } static void g4x_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate; g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void g4x_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } /* latency must be in 0.1us units. */ static unsigned int vlv_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); ret = DIV_ROUND_UP(ret, 64); return ret; } static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv) { /* all latencies in usec */ dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3; dev_priv->wm.max_level = VLV_WM_LEVEL_PM2; if (IS_CHERRYVIEW(dev_priv)) { dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12; dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33; dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS; } } static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int level) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; unsigned int clock, htotal, cpp, width, wm; if (dev_priv->wm.pri_latency[level] == 0) return USHRT_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; clock = adjusted_mode->crtc_clock; htotal = adjusted_mode->crtc_htotal; width = crtc_state->pipe_src_w; if (plane->id == PLANE_CURSOR) { /* * FIXME the formula gives values that are * too big for the cursor FIFO, and hence we * would never be able to use cursors. For * now just hardcode the watermark. */ wm = 63; } else { wm = vlv_wm_method2(clock, htotal, width, cpp, dev_priv->wm.pri_latency[level] * 10); } return min_t(unsigned int, wm, USHRT_MAX); } static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes) { return (active_planes & (BIT(PLANE_SPRITE0) | BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1); } static int vlv_compute_fifo(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2]; struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR); int num_active_planes = hweight8(active_planes); const int fifo_size = 511; int fifo_extra, fifo_left = fifo_size; int sprite0_fifo_extra = 0; unsigned int total_rate; enum plane_id plane_id; /* * When enabling sprite0 after sprite1 has already been enabled * we tend to get an underrun unless sprite0 already has some * FIFO space allcoated. Hence we always allocate at least one * cacheline for sprite0 whenever sprite1 is enabled. * * All other plane enable sequences appear immune to this problem. */ if (vlv_need_sprite0_fifo_workaround(active_planes)) sprite0_fifo_extra = 1; total_rate = raw->plane[PLANE_PRIMARY] + raw->plane[PLANE_SPRITE0] + raw->plane[PLANE_SPRITE1] + sprite0_fifo_extra; if (total_rate > fifo_size) return -EINVAL; if (total_rate == 0) total_rate = 1; for_each_plane_id_on_crtc(crtc, plane_id) { unsigned int rate; if ((active_planes & BIT(plane_id)) == 0) { fifo_state->plane[plane_id] = 0; continue; } rate = raw->plane[plane_id]; fifo_state->plane[plane_id] = fifo_size * rate / total_rate; fifo_left -= fifo_state->plane[plane_id]; } fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra; fifo_left -= sprite0_fifo_extra; fifo_state->plane[PLANE_CURSOR] = 63; fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1); /* spread the remainder evenly */ for_each_plane_id_on_crtc(crtc, plane_id) { int plane_extra; if (fifo_left == 0) break; if ((active_planes & BIT(plane_id)) == 0) continue; plane_extra = min(fifo_extra, fifo_left); fifo_state->plane[plane_id] += plane_extra; fifo_left -= plane_extra; } WARN_ON(active_planes != 0 && fifo_left != 0); /* give it all to the first plane if none are active */ if (active_planes == 0) { WARN_ON(fifo_left != fifo_size); fifo_state->plane[PLANE_PRIMARY] = fifo_left; } return 0; } /* mark all levels starting from 'level' as invalid */ static void vlv_invalidate_wms(struct intel_crtc *crtc, struct vlv_wm_state *wm_state, int level) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); for (; level < intel_wm_num_levels(dev_priv); level++) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) wm_state->wm[level].plane[plane_id] = USHRT_MAX; wm_state->sr[level].cursor = USHRT_MAX; wm_state->sr[level].plane = USHRT_MAX; } } static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size) { if (wm > fifo_size) return USHRT_MAX; else return fifo_size - wm; } /* * Starting from 'level' set all higher * levels to 'value' in the "raw" watermarks. */ static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state, int level, enum plane_id plane_id, u16 value) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); int num_levels = intel_wm_num_levels(dev_priv); bool dirty = false; for (; level < num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; dirty |= raw->plane[plane_id] != value; raw->plane[plane_id] = value; } return dirty; } static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum plane_id plane_id = plane->id; int num_levels = intel_wm_num_levels(to_i915(plane->base.dev)); int level; bool dirty = false; if (!intel_wm_plane_visible(crtc_state, plane_state)) { dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0); goto out; } for (level = 0; level < num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; int wm = vlv_compute_wm_level(crtc_state, plane_state, level); int max_wm = plane_id == PLANE_CURSOR ? 63 : 511; if (wm > max_wm) break; dirty |= raw->plane[plane_id] != wm; raw->plane[plane_id] = wm; } /* mark all higher levels as invalid */ dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); out: if (dirty) drm_dbg_kms(&dev_priv->drm, "%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n", plane->base.name, crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id], crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id], crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]); return dirty; } static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state, enum plane_id plane_id, int level) { const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; return raw->plane[plane_id] <= fifo_state->plane[plane_id]; } static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level) { return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) && vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level); } static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; int num_active_planes = hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR)); bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi); const struct intel_plane_state *old_plane_state; const struct intel_plane_state *new_plane_state; struct intel_plane *plane; enum plane_id plane_id; int level, ret, i; unsigned int dirty = 0; for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { if (new_plane_state->hw.crtc != &crtc->base && old_plane_state->hw.crtc != &crtc->base) continue; if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state)) dirty |= BIT(plane->id); } /* * DSPARB registers may have been reset due to the * power well being turned off. Make sure we restore * them to a consistent state even if no primary/sprite * planes are initially active. */ if (needs_modeset) crtc_state->fifo_changed = true; if (!dirty) return 0; /* cursor changes don't warrant a FIFO recompute */ if (dirty & ~BIT(PLANE_CURSOR)) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct vlv_fifo_state *old_fifo_state = &old_crtc_state->wm.vlv.fifo_state; ret = vlv_compute_fifo(crtc_state); if (ret) return ret; if (needs_modeset || memcmp(old_fifo_state, fifo_state, sizeof(*fifo_state)) != 0) crtc_state->fifo_changed = true; } /* initially allow all levels */ wm_state->num_levels = intel_wm_num_levels(dev_priv); /* * Note that enabling cxsr with no primary/sprite planes * enabled can wedge the pipe. Hence we only allow cxsr * with exactly one enabled primary/sprite plane. */ wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1; for (level = 0; level < wm_state->num_levels; level++) { const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1; if (!vlv_raw_crtc_wm_is_valid(crtc_state, level)) break; for_each_plane_id_on_crtc(crtc, plane_id) { wm_state->wm[level].plane[plane_id] = vlv_invert_wm_value(raw->plane[plane_id], fifo_state->plane[plane_id]); } wm_state->sr[level].plane = vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY], raw->plane[PLANE_SPRITE0], raw->plane[PLANE_SPRITE1]), sr_fifo_size); wm_state->sr[level].cursor = vlv_invert_wm_value(raw->plane[PLANE_CURSOR], 63); } if (level == 0) return -EINVAL; /* limit to only levels we can actually handle */ wm_state->num_levels = level; /* invalidate the higher levels */ vlv_invalidate_wms(crtc, wm_state, level); return 0; } #define VLV_FIFO(plane, value) \ (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV) static void vlv_atomic_update_fifo(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_uncore *uncore = &dev_priv->uncore; const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; int sprite0_start, sprite1_start, fifo_size; u32 dsparb, dsparb2, dsparb3; if (!crtc_state->fifo_changed) return; sprite0_start = fifo_state->plane[PLANE_PRIMARY]; sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start; fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start; drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63); drm_WARN_ON(&dev_priv->drm, fifo_size != 511); trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size); /* * uncore.lock serves a double purpose here. It allows us to * use the less expensive I915_{READ,WRITE}_FW() functions, and * it protects the DSPARB registers from getting clobbered by * parallel updates from multiple pipes. * * intel_pipe_update_start() has already disabled interrupts * for us, so a plain spin_lock() is sufficient here. */ spin_lock(&uncore->lock); switch (crtc->pipe) { case PIPE_A: dsparb = intel_uncore_read_fw(uncore, DSPARB); dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) | VLV_FIFO(SPRITEB, 0xff)); dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) | VLV_FIFO(SPRITEB, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) | VLV_FIFO(SPRITEB_HI, 0x1)); dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) | VLV_FIFO(SPRITEB_HI, sprite1_start >> 8)); intel_uncore_write_fw(uncore, DSPARB, dsparb); intel_uncore_write_fw(uncore, DSPARB2, dsparb2); break; case PIPE_B: dsparb = intel_uncore_read_fw(uncore, DSPARB); dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) | VLV_FIFO(SPRITED, 0xff)); dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) | VLV_FIFO(SPRITED, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) | VLV_FIFO(SPRITED_HI, 0xff)); dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) | VLV_FIFO(SPRITED_HI, sprite1_start >> 8)); intel_uncore_write_fw(uncore, DSPARB, dsparb); intel_uncore_write_fw(uncore, DSPARB2, dsparb2); break; case PIPE_C: dsparb3 = intel_uncore_read_fw(uncore, DSPARB3); dsparb2 = intel_uncore_read_fw(uncore, DSPARB2); dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) | VLV_FIFO(SPRITEF, 0xff)); dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) | VLV_FIFO(SPRITEF, sprite1_start)); dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) | VLV_FIFO(SPRITEF_HI, 0xff)); dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) | VLV_FIFO(SPRITEF_HI, sprite1_start >> 8)); intel_uncore_write_fw(uncore, DSPARB3, dsparb3); intel_uncore_write_fw(uncore, DSPARB2, dsparb2); break; default: break; } intel_uncore_posting_read_fw(uncore, DSPARB); spin_unlock(&uncore->lock); } #undef VLV_FIFO static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate; const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal; struct intel_atomic_state *intel_state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(intel_state, crtc); const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal; int level; if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) { *intermediate = *optimal; intermediate->cxsr = false; goto out; } intermediate->num_levels = min(optimal->num_levels, active->num_levels); intermediate->cxsr = optimal->cxsr && active->cxsr && !new_crtc_state->disable_cxsr; for (level = 0; level < intermediate->num_levels; level++) { enum plane_id plane_id; for_each_plane_id_on_crtc(crtc, plane_id) { intermediate->wm[level].plane[plane_id] = min(optimal->wm[level].plane[plane_id], active->wm[level].plane[plane_id]); } intermediate->sr[level].plane = min(optimal->sr[level].plane, active->sr[level].plane); intermediate->sr[level].cursor = min(optimal->sr[level].cursor, active->sr[level].cursor); } vlv_invalidate_wms(crtc, intermediate, level); out: /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0) new_crtc_state->wm.need_postvbl_update = true; return 0; } static void vlv_merge_wm(struct drm_i915_private *dev_priv, struct vlv_wm_values *wm) { struct intel_crtc *crtc; int num_active_pipes = 0; wm->level = dev_priv->wm.max_level; wm->cxsr = true; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; if (!crtc->active) continue; if (!wm_state->cxsr) wm->cxsr = false; num_active_pipes++; wm->level = min_t(int, wm->level, wm_state->num_levels - 1); } if (num_active_pipes != 1) wm->cxsr = false; if (num_active_pipes > 1) wm->level = VLV_WM_LEVEL_PM2; for_each_intel_crtc(&dev_priv->drm, crtc) { const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv; enum pipe pipe = crtc->pipe; wm->pipe[pipe] = wm_state->wm[wm->level]; if (crtc->active && wm->cxsr) wm->sr = wm_state->sr[wm->level]; wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2; wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2; } } static void vlv_program_watermarks(struct drm_i915_private *dev_priv) { struct vlv_wm_values *old_wm = &dev_priv->wm.vlv; struct vlv_wm_values new_wm = {}; vlv_merge_wm(dev_priv, &new_wm); if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0) return; if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) chv_set_memory_dvfs(dev_priv, false); if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) chv_set_memory_pm5(dev_priv, false); if (is_disabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, false); vlv_write_wm_values(dev_priv, &new_wm); if (is_enabling(old_wm->cxsr, new_wm.cxsr, true)) _intel_set_memory_cxsr(dev_priv, true); if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5)) chv_set_memory_pm5(dev_priv, true); if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS)) chv_set_memory_dvfs(dev_priv, true); *old_wm = new_wm; } static void vlv_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate; vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void vlv_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void i965_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); struct intel_crtc *crtc; int srwm = 1; int cursor_sr = 16; bool cxsr_enabled; /* Calc sr entries for one plane configs */ crtc = single_enabled_crtc(dev_priv); if (crtc) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 12000; const struct drm_display_mode *adjusted_mode = &crtc->config->hw.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int clock = adjusted_mode->crtc_clock; int htotal = adjusted_mode->crtc_htotal; int hdisplay = crtc->config->pipe_src_w; int cpp = fb->format->cpp[0]; int entries; entries = intel_wm_method2(clock, htotal, hdisplay, cpp, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE); srwm = I965_FIFO_SIZE - entries; if (srwm < 0) srwm = 1; srwm &= 0x1ff; drm_dbg_kms(&dev_priv->drm, "self-refresh entries: %d, wm: %d\n", entries, srwm); entries = intel_wm_method2(clock, htotal, crtc->base.cursor->state->crtc_w, 4, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, i965_cursor_wm_info.cacheline_size) + i965_cursor_wm_info.guard_size; cursor_sr = i965_cursor_wm_info.fifo_size - entries; if (cursor_sr > i965_cursor_wm_info.max_wm) cursor_sr = i965_cursor_wm_info.max_wm; drm_dbg_kms(&dev_priv->drm, "self-refresh watermark: display plane %d " "cursor %d\n", srwm, cursor_sr); cxsr_enabled = true; } else { cxsr_enabled = false; /* Turn off self refresh if both pipes are enabled */ intel_set_memory_cxsr(dev_priv, false); } drm_dbg_kms(&dev_priv->drm, "Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n", srwm); /* 965 has limitations... */ I915_WRITE(DSPFW1, FW_WM(srwm, SR) | FW_WM(8, CURSORB) | FW_WM(8, PLANEB) | FW_WM(8, PLANEA)); I915_WRITE(DSPFW2, FW_WM(8, CURSORA) | FW_WM(8, PLANEC_OLD)); /* update cursor SR watermark */ I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR)); if (cxsr_enabled) intel_set_memory_cxsr(dev_priv, true); } #undef FW_WM static void i9xx_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); const struct intel_watermark_params *wm_info; u32 fwater_lo; u32 fwater_hi; int cwm, srwm = 1; int fifo_size; int planea_wm, planeb_wm; struct intel_crtc *crtc, *enabled = NULL; if (IS_I945GM(dev_priv)) wm_info = &i945_wm_info; else if (!IS_GEN(dev_priv, 2)) wm_info = &i915_wm_info; else wm_info = &i830_a_wm_info; fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A); crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A); if (intel_crtc_active(crtc)) { const struct drm_display_mode *adjusted_mode = &crtc->config->hw.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp; if (IS_GEN(dev_priv, 2)) cpp = 4; else cpp = fb->format->cpp[0]; planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, wm_info, fifo_size, cpp, pessimal_latency_ns); enabled = crtc; } else { planea_wm = fifo_size - wm_info->guard_size; if (planea_wm > (long)wm_info->max_wm) planea_wm = wm_info->max_wm; } if (IS_GEN(dev_priv, 2)) wm_info = &i830_bc_wm_info; fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B); crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B); if (intel_crtc_active(crtc)) { const struct drm_display_mode *adjusted_mode = &crtc->config->hw.adjusted_mode; const struct drm_framebuffer *fb = crtc->base.primary->state->fb; int cpp; if (IS_GEN(dev_priv, 2)) cpp = 4; else cpp = fb->format->cpp[0]; planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock, wm_info, fifo_size, cpp, pessimal_latency_ns); if (enabled == NULL) enabled = crtc; else enabled = NULL; } else { planeb_wm = fifo_size - wm_info->guard_size; if (planeb_wm > (long)wm_info->max_wm) planeb_wm = wm_info->max_wm; } drm_dbg_kms(&dev_priv->drm, "FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm); if (IS_I915GM(dev_priv) && enabled) { struct drm_i915_gem_object *obj; obj = intel_fb_obj(enabled->base.primary->state->fb); /* self-refresh seems busted with untiled */ if (!i915_gem_object_is_tiled(obj)) enabled = NULL; } /* * Overlay gets an aggressive default since video jitter is bad. */ cwm = 2; /* Play safe and disable self-refresh before adjusting watermarks. */ intel_set_memory_cxsr(dev_priv, false); /* Calc sr entries for one plane configs */ if (HAS_FW_BLC(dev_priv) && enabled) { /* self-refresh has much higher latency */ static const int sr_latency_ns = 6000; const struct drm_display_mode *adjusted_mode = &enabled->config->hw.adjusted_mode; const struct drm_framebuffer *fb = enabled->base.primary->state->fb; int clock = adjusted_mode->crtc_clock; int htotal = adjusted_mode->crtc_htotal; int hdisplay = enabled->config->pipe_src_w; int cpp; int entries; if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv)) cpp = 4; else cpp = fb->format->cpp[0]; entries = intel_wm_method2(clock, htotal, hdisplay, cpp, sr_latency_ns / 100); entries = DIV_ROUND_UP(entries, wm_info->cacheline_size); drm_dbg_kms(&dev_priv->drm, "self-refresh entries: %d\n", entries); srwm = wm_info->fifo_size - entries; if (srwm < 0) srwm = 1; if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff)); else I915_WRITE(FW_BLC_SELF, srwm & 0x3f); } drm_dbg_kms(&dev_priv->drm, "Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n", planea_wm, planeb_wm, cwm, srwm); fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f); fwater_hi = (cwm & 0x1f); /* Set request length to 8 cachelines per fetch */ fwater_lo = fwater_lo | (1 << 24) | (1 << 8); fwater_hi = fwater_hi | (1 << 8); I915_WRITE(FW_BLC, fwater_lo); I915_WRITE(FW_BLC2, fwater_hi); if (enabled) intel_set_memory_cxsr(dev_priv, true); } static void i845_update_wm(struct intel_crtc *unused_crtc) { struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev); struct intel_crtc *crtc; const struct drm_display_mode *adjusted_mode; u32 fwater_lo; int planea_wm; crtc = single_enabled_crtc(dev_priv); if (crtc == NULL) return; adjusted_mode = &crtc->config->hw.adjusted_mode; planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock, &i845_wm_info, dev_priv->display.get_fifo_size(dev_priv, PLANE_A), 4, pessimal_latency_ns); fwater_lo = I915_READ(FW_BLC) & ~0xfff; fwater_lo |= (3<<8) | planea_wm; drm_dbg_kms(&dev_priv->drm, "Setting FIFO watermarks - A: %d\n", planea_wm); I915_WRITE(FW_BLC, fwater_lo); } /* latency must be in 0.1us units. */ static unsigned int ilk_wm_method1(unsigned int pixel_rate, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method1(pixel_rate, cpp, latency); ret = DIV_ROUND_UP(ret, 64) + 2; return ret; } /* latency must be in 0.1us units. */ static unsigned int ilk_wm_method2(unsigned int pixel_rate, unsigned int htotal, unsigned int width, unsigned int cpp, unsigned int latency) { unsigned int ret; ret = intel_wm_method2(pixel_rate, htotal, width, cpp, latency); ret = DIV_ROUND_UP(ret, 64) + 2; return ret; } static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp) { /* * Neither of these should be possible since this function shouldn't be * called if the CRTC is off or the plane is invisible. But let's be * extra paranoid to avoid a potential divide-by-zero if we screw up * elsewhere in the driver. */ if (WARN_ON(!cpp)) return 0; if (WARN_ON(!horiz_pixels)) return 0; return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2; } struct ilk_wm_maximums { u16 pri; u16 spr; u16 cur; u16 fbc; }; /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 mem_value, bool is_lp) { u32 method1, method2; int cpp; if (mem_value == 0) return U32_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); if (!is_lp) return method1; method2 = ilk_wm_method2(crtc_state->pixel_rate, crtc_state->hw.adjusted_mode.crtc_htotal, drm_rect_width(&plane_state->uapi.dst), cpp, mem_value); return min(method1, method2); } /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 mem_value) { u32 method1, method2; int cpp; if (mem_value == 0) return U32_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value); method2 = ilk_wm_method2(crtc_state->pixel_rate, crtc_state->hw.adjusted_mode.crtc_htotal, drm_rect_width(&plane_state->uapi.dst), cpp, mem_value); return min(method1, method2); } /* * For both WM_PIPE and WM_LP. * mem_value must be in 0.1us units. */ static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 mem_value) { int cpp; if (mem_value == 0) return U32_MAX; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; return ilk_wm_method2(crtc_state->pixel_rate, crtc_state->hw.adjusted_mode.crtc_htotal, drm_rect_width(&plane_state->uapi.dst), cpp, mem_value); } /* Only for WM_LP. */ static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, u32 pri_val) { int cpp; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; cpp = plane_state->hw.fb->format->cpp[0]; return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst), cpp); } static unsigned int ilk_display_fifo_size(const struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 8) return 3072; else if (INTEL_GEN(dev_priv) >= 7) return 768; else return 512; } static unsigned int ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv, int level, bool is_sprite) { if (INTEL_GEN(dev_priv) >= 8) /* BDW primary/sprite plane watermarks */ return level == 0 ? 255 : 2047; else if (INTEL_GEN(dev_priv) >= 7) /* IVB/HSW primary/sprite plane watermarks */ return level == 0 ? 127 : 1023; else if (!is_sprite) /* ILK/SNB primary plane watermarks */ return level == 0 ? 127 : 511; else /* ILK/SNB sprite plane watermarks */ return level == 0 ? 63 : 255; } static unsigned int ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level) { if (INTEL_GEN(dev_priv) >= 7) return level == 0 ? 63 : 255; else return level == 0 ? 31 : 63; } static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 8) return 31; else return 15; } /* Calculate the maximum primary/sprite plane watermark */ static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv, int level, const struct intel_wm_config *config, enum intel_ddb_partitioning ddb_partitioning, bool is_sprite) { unsigned int fifo_size = ilk_display_fifo_size(dev_priv); /* if sprites aren't enabled, sprites get nothing */ if (is_sprite && !config->sprites_enabled) return 0; /* HSW allows LP1+ watermarks even with multiple pipes */ if (level == 0 || config->num_pipes_active > 1) { fifo_size /= INTEL_NUM_PIPES(dev_priv); /* * For some reason the non self refresh * FIFO size is only half of the self * refresh FIFO size on ILK/SNB. */ if (INTEL_GEN(dev_priv) <= 6) fifo_size /= 2; } if (config->sprites_enabled) { /* level 0 is always calculated with 1:1 split */ if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) { if (is_sprite) fifo_size *= 5; fifo_size /= 6; } else { fifo_size /= 2; } } /* clamp to max that the registers can hold */ return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite)); } /* Calculate the maximum cursor plane watermark */ static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv, int level, const struct intel_wm_config *config) { /* HSW LP1+ watermarks w/ multiple pipes */ if (level > 0 && config->num_pipes_active > 1) return 64; /* otherwise just report max that registers can hold */ return ilk_cursor_wm_reg_max(dev_priv, level); } static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv, int level, const struct intel_wm_config *config, enum intel_ddb_partitioning ddb_partitioning, struct ilk_wm_maximums *max) { max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false); max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true); max->cur = ilk_cursor_wm_max(dev_priv, level, config); max->fbc = ilk_fbc_wm_reg_max(dev_priv); } static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv, int level, struct ilk_wm_maximums *max) { max->pri = ilk_plane_wm_reg_max(dev_priv, level, false); max->spr = ilk_plane_wm_reg_max(dev_priv, level, true); max->cur = ilk_cursor_wm_reg_max(dev_priv, level); max->fbc = ilk_fbc_wm_reg_max(dev_priv); } static bool ilk_validate_wm_level(int level, const struct ilk_wm_maximums *max, struct intel_wm_level *result) { bool ret; /* already determined to be invalid? */ if (!result->enable) return false; result->enable = result->pri_val <= max->pri && result->spr_val <= max->spr && result->cur_val <= max->cur; ret = result->enable; /* * HACK until we can pre-compute everything, * and thus fail gracefully if LP0 watermarks * are exceeded... */ if (level == 0 && !result->enable) { if (result->pri_val > max->pri) DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n", level, result->pri_val, max->pri); if (result->spr_val > max->spr) DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n", level, result->spr_val, max->spr); if (result->cur_val > max->cur) DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n", level, result->cur_val, max->cur); result->pri_val = min_t(u32, result->pri_val, max->pri); result->spr_val = min_t(u32, result->spr_val, max->spr); result->cur_val = min_t(u32, result->cur_val, max->cur); result->enable = true; } return ret; } static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv, const struct intel_crtc *crtc, int level, struct intel_crtc_state *crtc_state, const struct intel_plane_state *pristate, const struct intel_plane_state *sprstate, const struct intel_plane_state *curstate, struct intel_wm_level *result) { u16 pri_latency = dev_priv->wm.pri_latency[level]; u16 spr_latency = dev_priv->wm.spr_latency[level]; u16 cur_latency = dev_priv->wm.cur_latency[level]; /* WM1+ latency values stored in 0.5us units */ if (level > 0) { pri_latency *= 5; spr_latency *= 5; cur_latency *= 5; } if (pristate) { result->pri_val = ilk_compute_pri_wm(crtc_state, pristate, pri_latency, level); result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val); } if (sprstate) result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency); if (curstate) result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency); result->enable = true; } static void intel_read_wm_latency(struct drm_i915_private *dev_priv, u16 wm[8]) { struct intel_uncore *uncore = &dev_priv->uncore; if (INTEL_GEN(dev_priv) >= 9) { u32 val; int ret, i; int level, max_level = ilk_wm_max_level(dev_priv); /* read the first set of memory latencies[0:3] */ val = 0; /* data0 to be programmed to 0 for first set */ ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); if (ret) { drm_err(&dev_priv->drm, "SKL Mailbox read error = %d\n", ret); return; } wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK; wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; /* read the second set of memory latencies[4:7] */ val = 1; /* data0 to be programmed to 1 for second set */ ret = sandybridge_pcode_read(dev_priv, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); if (ret) { drm_err(&dev_priv->drm, "SKL Mailbox read error = %d\n", ret); return; } wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK; wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) & GEN9_MEM_LATENCY_LEVEL_MASK; /* * If a level n (n > 1) has a 0us latency, all levels m (m >= n) * need to be disabled. We make sure to sanitize the values out * of the punit to satisfy this requirement. */ for (level = 1; level <= max_level; level++) { if (wm[level] == 0) { for (i = level + 1; i <= max_level; i++) wm[i] = 0; break; } } /* * WaWmMemoryReadLatency:skl+,glk * * punit doesn't take into account the read latency so we need * to add 2us to the various latency levels we retrieve from the * punit when level 0 response data us 0us. */ if (wm[0] == 0) { wm[0] += 2; for (level = 1; level <= max_level; level++) { if (wm[level] == 0) break; wm[level] += 2; } } /* * WA Level-0 adjustment for 16GB DIMMs: SKL+ * If we could not get dimm info enable this WA to prevent from * any underrun. If not able to get Dimm info assume 16GB dimm * to avoid any underrun. */ if (dev_priv->dram_info.is_16gb_dimm) wm[0] += 1; } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD); wm[0] = (sskpd >> 56) & 0xFF; if (wm[0] == 0) wm[0] = sskpd & 0xF; wm[1] = (sskpd >> 4) & 0xFF; wm[2] = (sskpd >> 12) & 0xFF; wm[3] = (sskpd >> 20) & 0x1FF; wm[4] = (sskpd >> 32) & 0x1FF; } else if (INTEL_GEN(dev_priv) >= 6) { u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD); wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK; wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK; wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK; wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK; } else if (INTEL_GEN(dev_priv) >= 5) { u32 mltr = intel_uncore_read(uncore, MLTR_ILK); /* ILK primary LP0 latency is 700 ns */ wm[0] = 7; wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK; wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK; } else { MISSING_CASE(INTEL_DEVID(dev_priv)); } } static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv, u16 wm[5]) { /* ILK sprite LP0 latency is 1300 ns */ if (IS_GEN(dev_priv, 5)) wm[0] = 13; } static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv, u16 wm[5]) { /* ILK cursor LP0 latency is 1300 ns */ if (IS_GEN(dev_priv, 5)) wm[0] = 13; } int ilk_wm_max_level(const struct drm_i915_private *dev_priv) { /* how many WM levels are we expecting */ if (INTEL_GEN(dev_priv) >= 9) return 7; else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) return 4; else if (INTEL_GEN(dev_priv) >= 6) return 3; else return 2; } static void intel_print_wm_latency(struct drm_i915_private *dev_priv, const char *name, const u16 wm[8]) { int level, max_level = ilk_wm_max_level(dev_priv); for (level = 0; level <= max_level; level++) { unsigned int latency = wm[level]; if (latency == 0) { drm_dbg_kms(&dev_priv->drm, "%s WM%d latency not provided\n", name, level); continue; } /* * - latencies are in us on gen9. * - before then, WM1+ latency values are in 0.5us units */ if (INTEL_GEN(dev_priv) >= 9) latency *= 10; else if (level > 0) latency *= 5; drm_dbg_kms(&dev_priv->drm, "%s WM%d latency %u (%u.%u usec)\n", name, level, wm[level], latency / 10, latency % 10); } } static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv, u16 wm[5], u16 min) { int level, max_level = ilk_wm_max_level(dev_priv); if (wm[0] >= min) return false; wm[0] = max(wm[0], min); for (level = 1; level <= max_level; level++) wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5)); return true; } static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv) { bool changed; /* * The BIOS provided WM memory latency values are often * inadequate for high resolution displays. Adjust them. */ changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) | ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) | ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12); if (!changed) return; drm_dbg_kms(&dev_priv->drm, "WM latency values increased to avoid potential underruns\n"); intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); } static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv) { /* * On some SNB machines (Thinkpad X220 Tablet at least) * LP3 usage can cause vblank interrupts to be lost. * The DEIIR bit will go high but it looks like the CPU * never gets interrupted. * * It's not clear whether other interrupt source could * be affected or if this is somehow limited to vblank * interrupts only. To play it safe we disable LP3 * watermarks entirely. */ if (dev_priv->wm.pri_latency[3] == 0 && dev_priv->wm.spr_latency[3] == 0 && dev_priv->wm.cur_latency[3] == 0) return; dev_priv->wm.pri_latency[3] = 0; dev_priv->wm.spr_latency[3] = 0; dev_priv->wm.cur_latency[3] = 0; drm_dbg_kms(&dev_priv->drm, "LP3 watermarks disabled due to potential for lost interrupts\n"); intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); } static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv) { intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency); memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency, sizeof(dev_priv->wm.pri_latency)); memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency, sizeof(dev_priv->wm.pri_latency)); intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency); intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency); intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency); intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency); intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency); if (IS_GEN(dev_priv, 6)) { snb_wm_latency_quirk(dev_priv); snb_wm_lp3_irq_quirk(dev_priv); } } static void skl_setup_wm_latency(struct drm_i915_private *dev_priv) { intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency); intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency); } static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv, struct intel_pipe_wm *pipe_wm) { /* LP0 watermark maximums depend on this pipe alone */ const struct intel_wm_config config = { .num_pipes_active = 1, .sprites_enabled = pipe_wm->sprites_enabled, .sprites_scaled = pipe_wm->sprites_scaled, }; struct ilk_wm_maximums max; /* LP0 watermarks always use 1/2 DDB partitioning */ ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max); /* At least LP0 must be valid */ if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) { drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n"); return false; } return true; } /* Compute new watermarks for the pipe */ static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_pipe_wm *pipe_wm; struct intel_plane *plane; const struct intel_plane_state *plane_state; const struct intel_plane_state *pristate = NULL; const struct intel_plane_state *sprstate = NULL; const struct intel_plane_state *curstate = NULL; int level, max_level = ilk_wm_max_level(dev_priv), usable_level; struct ilk_wm_maximums max; pipe_wm = &crtc_state->wm.ilk.optimal; intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { if (plane->base.type == DRM_PLANE_TYPE_PRIMARY) pristate = plane_state; else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY) sprstate = plane_state; else if (plane->base.type == DRM_PLANE_TYPE_CURSOR) curstate = plane_state; } pipe_wm->pipe_enabled = crtc_state->hw.active; if (sprstate) { pipe_wm->sprites_enabled = sprstate->uapi.visible; pipe_wm->sprites_scaled = sprstate->uapi.visible && (drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 || drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16); } usable_level = max_level; /* ILK/SNB: LP2+ watermarks only w/o sprites */ if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled) usable_level = 1; /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */ if (pipe_wm->sprites_scaled) usable_level = 0; memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm)); ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state, pristate, sprstate, curstate, &pipe_wm->wm[0]); if (!ilk_validate_pipe_wm(dev_priv, pipe_wm)) return -EINVAL; ilk_compute_wm_reg_maximums(dev_priv, 1, &max); for (level = 1; level <= usable_level; level++) { struct intel_wm_level *wm = &pipe_wm->wm[level]; ilk_compute_wm_level(dev_priv, crtc, level, crtc_state, pristate, sprstate, curstate, wm); /* * Disable any watermark level that exceeds the * register maximums since such watermarks are * always invalid. */ if (!ilk_validate_wm_level(level, &max, wm)) { memset(wm, 0, sizeof(*wm)); break; } } return 0; } /* * Build a set of 'intermediate' watermark values that satisfy both the old * state and the new state. These can be programmed to the hardware * immediately. */ static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate) { struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev); struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate; struct intel_atomic_state *intel_state = to_intel_atomic_state(newstate->uapi.state); const struct intel_crtc_state *oldstate = intel_atomic_get_old_crtc_state(intel_state, intel_crtc); const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal; int level, max_level = ilk_wm_max_level(dev_priv); /* * Start with the final, target watermarks, then combine with the * currently active watermarks to get values that are safe both before * and after the vblank. */ *a = newstate->wm.ilk.optimal; if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) || intel_state->skip_intermediate_wm) return 0; a->pipe_enabled |= b->pipe_enabled; a->sprites_enabled |= b->sprites_enabled; a->sprites_scaled |= b->sprites_scaled; for (level = 0; level <= max_level; level++) { struct intel_wm_level *a_wm = &a->wm[level]; const struct intel_wm_level *b_wm = &b->wm[level]; a_wm->enable &= b_wm->enable; a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val); a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val); a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val); a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val); } /* * We need to make sure that these merged watermark values are * actually a valid configuration themselves. If they're not, * there's no safe way to transition from the old state to * the new state, so we need to fail the atomic transaction. */ if (!ilk_validate_pipe_wm(dev_priv, a)) return -EINVAL; /* * If our intermediate WM are identical to the final WM, then we can * omit the post-vblank programming; only update if it's different. */ if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0) newstate->wm.need_postvbl_update = true; return 0; } /* * Merge the watermarks from all active pipes for a specific level. */ static void ilk_merge_wm_level(struct drm_i915_private *dev_priv, int level, struct intel_wm_level *ret_wm) { const struct intel_crtc *intel_crtc; ret_wm->enable = true; for_each_intel_crtc(&dev_priv->drm, intel_crtc) { const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk; const struct intel_wm_level *wm = &active->wm[level]; if (!active->pipe_enabled) continue; /* * The watermark values may have been used in the past, * so we must maintain them in the registers for some * time even if the level is now disabled. */ if (!wm->enable) ret_wm->enable = false; ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val); ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val); ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val); ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val); } } /* * Merge all low power watermarks for all active pipes. */ static void ilk_wm_merge(struct drm_i915_private *dev_priv, const struct intel_wm_config *config, const struct ilk_wm_maximums *max, struct intel_pipe_wm *merged) { int level, max_level = ilk_wm_max_level(dev_priv); int last_enabled_level = max_level; /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */ if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) && config->num_pipes_active > 1) last_enabled_level = 0; /* ILK: FBC WM must be disabled always */ merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6; /* merge each WM1+ level */ for (level = 1; level <= max_level; level++) { struct intel_wm_level *wm = &merged->wm[level]; ilk_merge_wm_level(dev_priv, level, wm); if (level > last_enabled_level) wm->enable = false; else if (!ilk_validate_wm_level(level, max, wm)) /* make sure all following levels get disabled */ last_enabled_level = level - 1; /* * The spec says it is preferred to disable * FBC WMs instead of disabling a WM level. */ if (wm->fbc_val > max->fbc) { if (wm->enable) merged->fbc_wm_enabled = false; wm->fbc_val = 0; } } /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */ /* * FIXME this is racy. FBC might get enabled later. * What we should check here is whether FBC can be * enabled sometime later. */ if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled && intel_fbc_is_active(dev_priv)) { for (level = 2; level <= max_level; level++) { struct intel_wm_level *wm = &merged->wm[level]; wm->enable = false; } } } static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm) { /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */ return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable); } /* The value we need to program into the WM_LPx latency field */ static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv, int level) { if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) return 2 * level; else return dev_priv->wm.pri_latency[level]; } static void ilk_compute_wm_results(struct drm_i915_private *dev_priv, const struct intel_pipe_wm *merged, enum intel_ddb_partitioning partitioning, struct ilk_wm_values *results) { struct intel_crtc *intel_crtc; int level, wm_lp; results->enable_fbc_wm = merged->fbc_wm_enabled; results->partitioning = partitioning; /* LP1+ register values */ for (wm_lp = 1; wm_lp <= 3; wm_lp++) { const struct intel_wm_level *r; level = ilk_wm_lp_to_level(wm_lp, merged); r = &merged->wm[level]; /* * Maintain the watermark values even if the level is * disabled. Doing otherwise could cause underruns. */ results->wm_lp[wm_lp - 1] = (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) | (r->pri_val << WM1_LP_SR_SHIFT) | r->cur_val; if (r->enable) results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN; if (INTEL_GEN(dev_priv) >= 8) results->wm_lp[wm_lp - 1] |= r->fbc_val << WM1_LP_FBC_SHIFT_BDW; else results->wm_lp[wm_lp - 1] |= r->fbc_val << WM1_LP_FBC_SHIFT; /* * Always set WM1S_LP_EN when spr_val != 0, even if the * level is disabled. Doing otherwise could cause underruns. */ if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) { drm_WARN_ON(&dev_priv->drm, wm_lp != 1); results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val; } else results->wm_lp_spr[wm_lp - 1] = r->spr_val; } /* LP0 register values */ for_each_intel_crtc(&dev_priv->drm, intel_crtc) { enum pipe pipe = intel_crtc->pipe; const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk; const struct intel_wm_level *r = &pipe_wm->wm[0]; if (drm_WARN_ON(&dev_priv->drm, !r->enable)) continue; results->wm_pipe[pipe] = (r->pri_val << WM0_PIPE_PLANE_SHIFT) | (r->spr_val << WM0_PIPE_SPRITE_SHIFT) | r->cur_val; } } /* Find the result with the highest level enabled. Check for enable_fbc_wm in * case both are at the same level. Prefer r1 in case they're the same. */ static struct intel_pipe_wm * ilk_find_best_result(struct drm_i915_private *dev_priv, struct intel_pipe_wm *r1, struct intel_pipe_wm *r2) { int level, max_level = ilk_wm_max_level(dev_priv); int level1 = 0, level2 = 0; for (level = 1; level <= max_level; level++) { if (r1->wm[level].enable) level1 = level; if (r2->wm[level].enable) level2 = level; } if (level1 == level2) { if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled) return r2; else return r1; } else if (level1 > level2) { return r1; } else { return r2; } } /* dirty bits used to track which watermarks need changes */ #define WM_DIRTY_PIPE(pipe) (1 << (pipe)) #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp))) #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3)) #define WM_DIRTY_FBC (1 << 24) #define WM_DIRTY_DDB (1 << 25) static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv, const struct ilk_wm_values *old, const struct ilk_wm_values *new) { unsigned int dirty = 0; enum pipe pipe; int wm_lp; for_each_pipe(dev_priv, pipe) { if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) { dirty |= WM_DIRTY_PIPE(pipe); /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } } if (old->enable_fbc_wm != new->enable_fbc_wm) { dirty |= WM_DIRTY_FBC; /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } if (old->partitioning != new->partitioning) { dirty |= WM_DIRTY_DDB; /* Must disable LP1+ watermarks too */ dirty |= WM_DIRTY_LP_ALL; } /* LP1+ watermarks already deemed dirty, no need to continue */ if (dirty & WM_DIRTY_LP_ALL) return dirty; /* Find the lowest numbered LP1+ watermark in need of an update... */ for (wm_lp = 1; wm_lp <= 3; wm_lp++) { if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] || old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1]) break; } /* ...and mark it and all higher numbered LP1+ watermarks as dirty */ for (; wm_lp <= 3; wm_lp++) dirty |= WM_DIRTY_LP(wm_lp); return dirty; } static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv, unsigned int dirty) { struct ilk_wm_values *previous = &dev_priv->wm.hw; bool changed = false; if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) { previous->wm_lp[2] &= ~WM1_LP_SR_EN; I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]); changed = true; } if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) { previous->wm_lp[1] &= ~WM1_LP_SR_EN; I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]); changed = true; } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) { previous->wm_lp[0] &= ~WM1_LP_SR_EN; I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]); changed = true; } /* * Don't touch WM1S_LP_EN here. * Doing so could cause underruns. */ return changed; } /* * The spec says we shouldn't write when we don't need, because every write * causes WMs to be re-evaluated, expending some power. */ static void ilk_write_wm_values(struct drm_i915_private *dev_priv, struct ilk_wm_values *results) { struct ilk_wm_values *previous = &dev_priv->wm.hw; unsigned int dirty; u32 val; dirty = ilk_compute_wm_dirty(dev_priv, previous, results); if (!dirty) return; _ilk_disable_lp_wm(dev_priv, dirty); if (dirty & WM_DIRTY_PIPE(PIPE_A)) I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]); if (dirty & WM_DIRTY_PIPE(PIPE_B)) I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]); if (dirty & WM_DIRTY_PIPE(PIPE_C)) I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]); if (dirty & WM_DIRTY_DDB) { if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) { val = I915_READ(WM_MISC); if (results->partitioning == INTEL_DDB_PART_1_2) val &= ~WM_MISC_DATA_PARTITION_5_6; else val |= WM_MISC_DATA_PARTITION_5_6; I915_WRITE(WM_MISC, val); } else { val = I915_READ(DISP_ARB_CTL2); if (results->partitioning == INTEL_DDB_PART_1_2) val &= ~DISP_DATA_PARTITION_5_6; else val |= DISP_DATA_PARTITION_5_6; I915_WRITE(DISP_ARB_CTL2, val); } } if (dirty & WM_DIRTY_FBC) { val = I915_READ(DISP_ARB_CTL); if (results->enable_fbc_wm) val &= ~DISP_FBC_WM_DIS; else val |= DISP_FBC_WM_DIS; I915_WRITE(DISP_ARB_CTL, val); } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp_spr[0] != results->wm_lp_spr[0]) I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]); if (INTEL_GEN(dev_priv) >= 7) { if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1]) I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]); if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2]) I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]); } if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0]) I915_WRITE(WM1_LP_ILK, results->wm_lp[0]); if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1]) I915_WRITE(WM2_LP_ILK, results->wm_lp[1]); if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2]) I915_WRITE(WM3_LP_ILK, results->wm_lp[2]); dev_priv->wm.hw = *results; } bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv) { return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL); } u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv) { int i; int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices; u8 enabled_slices_mask = 0; for (i = 0; i < max_slices; i++) { if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE) enabled_slices_mask |= BIT(i); } return enabled_slices_mask; } /* * FIXME: We still don't have the proper code detect if we need to apply the WA, * so assume we'll always need it in order to avoid underruns. */ static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv) { return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv); } static bool intel_has_sagv(struct drm_i915_private *dev_priv) { return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) && dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED; } static void skl_setup_sagv_block_time(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 12) { u32 val = 0; int ret; ret = sandybridge_pcode_read(dev_priv, GEN12_PCODE_READ_SAGV_BLOCK_TIME_US, &val, NULL); if (!ret) { dev_priv->sagv_block_time_us = val; return; } drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n"); } else if (IS_GEN(dev_priv, 11)) { dev_priv->sagv_block_time_us = 10; return; } else if (IS_GEN(dev_priv, 10)) { dev_priv->sagv_block_time_us = 20; return; } else if (IS_GEN(dev_priv, 9)) { dev_priv->sagv_block_time_us = 30; return; } else { MISSING_CASE(INTEL_GEN(dev_priv)); } /* Default to an unusable block time */ dev_priv->sagv_block_time_us = -1; } /* * SAGV dynamically adjusts the system agent voltage and clock frequencies * depending on power and performance requirements. The display engine access * to system memory is blocked during the adjustment time. Because of the * blocking time, having this enabled can cause full system hangs and/or pipe * underruns if we don't meet all of the following requirements: * * - <= 1 pipe enabled * - All planes can enable watermarks for latencies >= SAGV engine block time * - We're not using an interlaced display configuration */ int intel_enable_sagv(struct drm_i915_private *dev_priv) { int ret; if (!intel_has_sagv(dev_priv)) return 0; if (dev_priv->sagv_status == I915_SAGV_ENABLED) return 0; drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n"); ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL, GEN9_SAGV_ENABLE); /* We don't need to wait for SAGV when enabling */ /* * Some skl systems, pre-release machines in particular, * don't actually have SAGV. */ if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n"); dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; return 0; } else if (ret < 0) { drm_err(&dev_priv->drm, "Failed to enable SAGV\n"); return ret; } dev_priv->sagv_status = I915_SAGV_ENABLED; return 0; } int intel_disable_sagv(struct drm_i915_private *dev_priv) { int ret; if (!intel_has_sagv(dev_priv)) return 0; if (dev_priv->sagv_status == I915_SAGV_DISABLED) return 0; drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n"); /* bspec says to keep retrying for at least 1 ms */ ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL, GEN9_SAGV_DISABLE, GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, 1); /* * Some skl systems, pre-release machines in particular, * don't actually have SAGV. */ if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) { drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n"); dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED; return 0; } else if (ret < 0) { drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret); return ret; } dev_priv->sagv_status = I915_SAGV_DISABLED; return 0; } void intel_sagv_pre_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_bw_state *new_bw_state; const struct intel_bw_state *old_bw_state; u32 new_mask = 0; /* * Just return if we can't control SAGV or don't have it. * This is different from situation when we have SAGV but just can't * afford it due to DBuf limitation - in case if SAGV is completely * disabled in a BIOS, we are not even allowed to send a PCode request, * as it will throw an error. So have to check it here. */ if (!intel_has_sagv(dev_priv)) return; new_bw_state = intel_atomic_get_new_bw_state(state); if (!new_bw_state) return; if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) { intel_disable_sagv(dev_priv); return; } old_bw_state = intel_atomic_get_old_bw_state(state); /* * Nothing to mask */ if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask) return; new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; /* * If new mask is zero - means there is nothing to mask, * we can only unmask, which should be done in unmask. */ if (!new_mask) return; /* * Restrict required qgv points before updating the configuration. * According to BSpec we can't mask and unmask qgv points at the same * time. Also masking should be done before updating the configuration * and unmasking afterwards. */ icl_pcode_restrict_qgv_points(dev_priv, new_mask); } void intel_sagv_post_plane_update(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_bw_state *new_bw_state; const struct intel_bw_state *old_bw_state; u32 new_mask = 0; /* * Just return if we can't control SAGV or don't have it. * This is different from situation when we have SAGV but just can't * afford it due to DBuf limitation - in case if SAGV is completely * disabled in a BIOS, we are not even allowed to send a PCode request, * as it will throw an error. So have to check it here. */ if (!intel_has_sagv(dev_priv)) return; new_bw_state = intel_atomic_get_new_bw_state(state); if (!new_bw_state) return; if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) { intel_enable_sagv(dev_priv); return; } old_bw_state = intel_atomic_get_old_bw_state(state); /* * Nothing to unmask */ if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask) return; new_mask = new_bw_state->qgv_points_mask; /* * Allow required qgv points after updating the configuration. * According to BSpec we can't mask and unmask qgv points at the same * time. Also masking should be done before updating the configuration * and unmasking afterwards. */ icl_pcode_restrict_qgv_points(dev_priv, new_mask); } static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane; const struct intel_plane_state *plane_state; int level, latency; if (!intel_has_sagv(dev_priv)) return false; if (!crtc_state->hw.active) return true; if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) return false; intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane->id]; /* Skip this plane if it's not enabled */ if (!wm->wm[0].plane_en) continue; /* Find the highest enabled wm level for this plane */ for (level = ilk_wm_max_level(dev_priv); !wm->wm[level].plane_en; --level) { } latency = dev_priv->wm.skl_latency[level]; if (skl_needs_memory_bw_wa(dev_priv) && plane_state->uapi.fb->modifier == I915_FORMAT_MOD_X_TILED) latency += 15; /* * If any of the planes on this pipe don't enable wm levels that * incur memory latencies higher than sagv_block_time_us we * can't enable SAGV. */ if (latency < dev_priv->sagv_block_time_us) return false; } return true; } static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum plane_id plane_id; if (!crtc_state->hw.active) return true; for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_ddb_entry *plane_alloc = &crtc_state->wm.skl.plane_ddb_y[plane_id]; const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc) return false; } return true; } static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (INTEL_GEN(dev_priv) >= 12) return tgl_crtc_can_enable_sagv(crtc_state); else return skl_crtc_can_enable_sagv(crtc_state); } bool intel_can_enable_sagv(struct drm_i915_private *dev_priv, const struct intel_bw_state *bw_state) { if (INTEL_GEN(dev_priv) < 11 && bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) return false; return bw_state->pipe_sagv_reject == 0; } static int intel_compute_sagv_mask(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); int ret; struct intel_crtc *crtc; struct intel_crtc_state *new_crtc_state; struct intel_bw_state *new_bw_state = NULL; const struct intel_bw_state *old_bw_state = NULL; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { new_bw_state = intel_atomic_get_bw_state(state); if (IS_ERR(new_bw_state)) return PTR_ERR(new_bw_state); old_bw_state = intel_atomic_get_old_bw_state(state); if (intel_crtc_can_enable_sagv(new_crtc_state)) new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); else new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); } if (!new_bw_state) return 0; new_bw_state->active_pipes = intel_calc_active_pipes(state, old_bw_state->active_pipes); if (new_bw_state->active_pipes != old_bw_state->active_pipes) { ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; } for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal; /* * We store use_sagv_wm in the crtc state rather than relying on * that bw state since we have no convenient way to get at the * latter from the plane commit hooks (especially in the legacy * cursor case) */ pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 && intel_can_enable_sagv(dev_priv, new_bw_state); } if (intel_can_enable_sagv(dev_priv, new_bw_state) != intel_can_enable_sagv(dev_priv, old_bw_state)) { ret = intel_atomic_serialize_global_state(&new_bw_state->base); if (ret) return ret; } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { ret = intel_atomic_lock_global_state(&new_bw_state->base); if (ret) return ret; } return 0; } /* * Calculate initial DBuf slice offset, based on slice size * and mask(i.e if slice size is 1024 and second slice is enabled * offset would be 1024) */ static unsigned int icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask, u32 slice_size, u32 ddb_size) { unsigned int offset = 0; if (!dbuf_slice_mask) return 0; offset = (ffs(dbuf_slice_mask) - 1) * slice_size; WARN_ON(offset >= ddb_size); return offset; } static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv) { u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size; drm_WARN_ON(&dev_priv->drm, ddb_size == 0); if (INTEL_GEN(dev_priv) < 11) return ddb_size - 4; /* 4 blocks for bypass path allocation */ return ddb_size; } static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state, u8 active_pipes); static void skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state, const u64 total_data_rate, struct skl_ddb_entry *alloc, /* out */ int *num_active /* out */) { struct drm_atomic_state *state = crtc_state->uapi.state; struct intel_atomic_state *intel_state = to_intel_atomic_state(state); struct drm_crtc *for_crtc = crtc_state->uapi.crtc; const struct intel_crtc *crtc; u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0; enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe; u16 ddb_size; u32 ddb_range_size; u32 i; u32 dbuf_slice_mask; u32 active_pipes; u32 offset; u32 slice_size; u32 total_slice_mask; u32 start, end; if (drm_WARN_ON(&dev_priv->drm, !state) || !crtc_state->hw.active) { alloc->start = 0; alloc->end = 0; *num_active = hweight8(dev_priv->active_pipes); return; } if (intel_state->active_pipe_changes) active_pipes = intel_state->active_pipes; else active_pipes = dev_priv->active_pipes; *num_active = hweight8(active_pipes); ddb_size = intel_get_ddb_size(dev_priv); slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices; /* * If the state doesn't change the active CRTC's or there is no * modeset request, then there's no need to recalculate; * the existing pipe allocation limits should remain unchanged. * Note that we're safe from racing commits since any racing commit * that changes the active CRTC list or do modeset would need to * grab _all_ crtc locks, including the one we currently hold. */ if (!intel_state->active_pipe_changes && !intel_state->modeset) { /* * alloc may be cleared by clear_intel_crtc_state, * copy from old state to be sure */ *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb; return; } /* * Get allowed DBuf slices for correspondent pipe and platform. */ dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes); DRM_DEBUG_KMS("DBuf slice mask %x pipe %c active pipes %x\n", dbuf_slice_mask, pipe_name(for_pipe), active_pipes); /* * Figure out at which DBuf slice we start, i.e if we start at Dbuf S2 * and slice size is 1024, the offset would be 1024 */ offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask, slice_size, ddb_size); /* * Figure out total size of allowed DBuf slices, which is basically * a number of allowed slices for that pipe multiplied by slice size. * Inside of this * range ddb entries are still allocated in proportion to display width. */ ddb_range_size = hweight8(dbuf_slice_mask) * slice_size; /* * Watermark/ddb requirement highly depends upon width of the * framebuffer, So instead of allocating DDB equally among pipes * distribute DDB based on resolution/width of the display. */ total_slice_mask = dbuf_slice_mask; for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; enum pipe pipe = crtc->pipe; int hdisplay, vdisplay; u32 pipe_dbuf_slice_mask; if (!crtc_state->hw.active) continue; pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes); /* * According to BSpec pipe can share one dbuf slice with another * pipes or pipe can use multiple dbufs, in both cases we * account for other pipes only if they have exactly same mask. * However we need to account how many slices we should enable * in total. */ total_slice_mask |= pipe_dbuf_slice_mask; /* * Do not account pipes using other slice sets * luckily as of current BSpec slice sets do not partially * intersect(pipes share either same one slice or same slice set * i.e no partial intersection), so it is enough to check for * equality for now. */ if (dbuf_slice_mask != pipe_dbuf_slice_mask) continue; drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay); total_width_in_range += hdisplay; if (pipe < for_pipe) width_before_pipe_in_range += hdisplay; else if (pipe == for_pipe) pipe_width = hdisplay; } /* * FIXME: For now we always enable slice S1 as per * the Bspec display initialization sequence. */ intel_state->enabled_dbuf_slices_mask = total_slice_mask | BIT(DBUF_S1); start = ddb_range_size * width_before_pipe_in_range / total_width_in_range; end = ddb_range_size * (width_before_pipe_in_range + pipe_width) / total_width_in_range; alloc->start = offset + start; alloc->end = offset + end; DRM_DEBUG_KMS("Pipe %d ddb %d-%d\n", for_pipe, alloc->start, alloc->end); DRM_DEBUG_KMS("Enabled ddb slices mask %x num supported %d\n", intel_state->enabled_dbuf_slices_mask, INTEL_INFO(dev_priv)->num_supported_dbuf_slices); } static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, int width, const struct drm_format_info *format, u64 modifier, unsigned int rotation, u32 plane_pixel_rate, struct skl_wm_params *wp, int color_plane); static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, int level, unsigned int latency, const struct skl_wm_params *wp, const struct skl_wm_level *result_prev, struct skl_wm_level *result /* out */); static unsigned int skl_cursor_allocation(const struct intel_crtc_state *crtc_state, int num_active) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); int level, max_level = ilk_wm_max_level(dev_priv); struct skl_wm_level wm = {}; int ret, min_ddb_alloc = 0; struct skl_wm_params wp; ret = skl_compute_wm_params(crtc_state, 256, drm_format_info(DRM_FORMAT_ARGB8888), DRM_FORMAT_MOD_LINEAR, DRM_MODE_ROTATE_0, crtc_state->pixel_rate, &wp, 0); drm_WARN_ON(&dev_priv->drm, ret); for (level = 0; level <= max_level; level++) { unsigned int latency = dev_priv->wm.skl_latency[level]; skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm); if (wm.min_ddb_alloc == U16_MAX) break; min_ddb_alloc = wm.min_ddb_alloc; } return max(num_active == 1 ? 32 : 8, min_ddb_alloc); } static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv, struct skl_ddb_entry *entry, u32 reg) { entry->start = reg & DDB_ENTRY_MASK; entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK; if (entry->end) entry->end += 1; } static void skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv, const enum pipe pipe, const enum plane_id plane_id, struct skl_ddb_entry *ddb_y, struct skl_ddb_entry *ddb_uv) { u32 val, val2; u32 fourcc = 0; /* Cursor doesn't support NV12/planar, so no extra calculation needed */ if (plane_id == PLANE_CURSOR) { val = I915_READ(CUR_BUF_CFG(pipe)); skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val); return; } val = I915_READ(PLANE_CTL(pipe, plane_id)); /* No DDB allocated for disabled planes */ if (val & PLANE_CTL_ENABLE) fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK, val & PLANE_CTL_ORDER_RGBX, val & PLANE_CTL_ALPHA_MASK); if (INTEL_GEN(dev_priv) >= 11) { val = I915_READ(PLANE_BUF_CFG(pipe, plane_id)); skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val); } else { val = I915_READ(PLANE_BUF_CFG(pipe, plane_id)); val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id)); if (fourcc && drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc))) swap(val, val2); skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val); skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2); } } void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc, struct skl_ddb_entry *ddb_y, struct skl_ddb_entry *ddb_uv) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_display_power_domain power_domain; enum pipe pipe = crtc->pipe; intel_wakeref_t wakeref; enum plane_id plane_id; power_domain = POWER_DOMAIN_PIPE(pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return; for_each_plane_id_on_crtc(crtc, plane_id) skl_ddb_get_hw_plane_state(dev_priv, pipe, plane_id, &ddb_y[plane_id], &ddb_uv[plane_id]); intel_display_power_put(dev_priv, power_domain, wakeref); } void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv) { dev_priv->enabled_dbuf_slices_mask = intel_enabled_dbuf_slices_mask(dev_priv); } /* * Determines the downscale amount of a plane for the purposes of watermark calculations. * The bspec defines downscale amount as: * * """ * Horizontal down scale amount = maximum[1, Horizontal source size / * Horizontal destination size] * Vertical down scale amount = maximum[1, Vertical source size / * Vertical destination size] * Total down scale amount = Horizontal down scale amount * * Vertical down scale amount * """ * * Return value is provided in 16.16 fixed point form to retain fractional part. * Caller should take care of dividing & rounding off the value. */ static uint_fixed_16_16_t skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { u32 src_w, src_h, dst_w, dst_h; uint_fixed_16_16_t fp_w_ratio, fp_h_ratio; uint_fixed_16_16_t downscale_h, downscale_w; if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state))) return u32_to_fixed16(0); /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. * * n.b., src is 16.16 fixed point, dst is whole integer. */ src_w = drm_rect_width(&plane_state->uapi.src) >> 16; src_h = drm_rect_height(&plane_state->uapi.src) >> 16; dst_w = drm_rect_width(&plane_state->uapi.dst); dst_h = drm_rect_height(&plane_state->uapi.dst); fp_w_ratio = div_fixed16(src_w, dst_w); fp_h_ratio = div_fixed16(src_h, dst_h); downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1)); downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1)); return mul_fixed16(downscale_w, downscale_h); } struct dbuf_slice_conf_entry { u8 active_pipes; u8 dbuf_mask[I915_MAX_PIPES]; }; /* * Table taken from Bspec 12716 * Pipes do have some preferred DBuf slice affinity, * plus there are some hardcoded requirements on how * those should be distributed for multipipe scenarios. * For more DBuf slices algorithm can get even more messy * and less readable, so decided to use a table almost * as is from BSpec itself - that way it is at least easier * to compare, change and check. */ static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] = /* Autogenerated with igt/tools/intel_dbuf_map tool: */ { { .active_pipes = BIT(PIPE_A), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_B), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_C), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, {} }; /* * Table taken from Bspec 49255 * Pipes do have some preferred DBuf slice affinity, * plus there are some hardcoded requirements on how * those should be distributed for multipipe scenarios. * For more DBuf slices algorithm can get even more messy * and less readable, so decided to use a table almost * as is from BSpec itself - that way it is at least easier * to compare, change and check. */ static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] = /* Autogenerated with igt/tools/intel_dbuf_map tool: */ { { .active_pipes = BIT(PIPE_A), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S2), [PIPE_B] = BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_C), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_D), .dbuf_mask = { [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_C] = BIT(DBUF_S1), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S2), }, }, { .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), .dbuf_mask = { [PIPE_A] = BIT(DBUF_S1), [PIPE_B] = BIT(DBUF_S1), [PIPE_C] = BIT(DBUF_S2), [PIPE_D] = BIT(DBUF_S2), }, }, {} }; static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, const struct dbuf_slice_conf_entry *dbuf_slices) { int i; for (i = 0; i < dbuf_slices[i].active_pipes; i++) { if (dbuf_slices[i].active_pipes == active_pipes) return dbuf_slices[i].dbuf_mask[pipe]; } return 0; } /* * This function finds an entry with same enabled pipe configuration and * returns correspondent DBuf slice mask as stated in BSpec for particular * platform. */ static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes) { /* * FIXME: For ICL this is still a bit unclear as prev BSpec revision * required calculating "pipe ratio" in order to determine * if one or two slices can be used for single pipe configurations * as additional constraint to the existing table. * However based on recent info, it should be not "pipe ratio" * but rather ratio between pixel_rate and cdclk with additional * constants, so for now we are using only table until this is * clarified. Also this is the reason why crtc_state param is * still here - we will need it once those additional constraints * pop up. */ return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs); } static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes) { return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs); } static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state, u8 active_pipes) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (IS_GEN(dev_priv, 12)) return tgl_compute_dbuf_slices(pipe, active_pipes); else if (IS_GEN(dev_priv, 11)) return icl_compute_dbuf_slices(pipe, active_pipes); /* * For anything else just return one slice yet. * Should be extended for other platforms. */ return BIT(DBUF_S1); } static u64 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, int color_plane) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); const struct drm_framebuffer *fb = plane_state->hw.fb; u32 data_rate; u32 width = 0, height = 0; uint_fixed_16_16_t down_scale_amount; u64 rate; if (!plane_state->uapi.visible) return 0; if (plane->id == PLANE_CURSOR) return 0; if (color_plane == 1 && !intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier)) return 0; /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. */ width = drm_rect_width(&plane_state->uapi.src) >> 16; height = drm_rect_height(&plane_state->uapi.src) >> 16; /* UV plane does 1/2 pixel sub-sampling */ if (color_plane == 1) { width /= 2; height /= 2; } data_rate = width * height; down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state); rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount); rate *= fb->format->cpp[color_plane]; return rate; } static u64 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state, u64 *plane_data_rate, u64 *uv_plane_data_rate) { struct intel_plane *plane; const struct intel_plane_state *plane_state; u64 total_data_rate = 0; /* Calculate and cache data rate for each plane */ intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { enum plane_id plane_id = plane->id; u64 rate; /* packed/y */ rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0); plane_data_rate[plane_id] = rate; total_data_rate += rate; /* uv-plane */ rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1); uv_plane_data_rate[plane_id] = rate; total_data_rate += rate; } return total_data_rate; } static u64 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state, u64 *plane_data_rate) { struct intel_plane *plane; const struct intel_plane_state *plane_state; u64 total_data_rate = 0; /* Calculate and cache data rate for each plane */ intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { enum plane_id plane_id = plane->id; u64 rate; if (!plane_state->planar_linked_plane) { rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0); plane_data_rate[plane_id] = rate; total_data_rate += rate; } else { enum plane_id y_plane_id; /* * The slave plane might not iterate in * intel_atomic_crtc_state_for_each_plane_state(), * and needs the master plane state which may be * NULL if we try get_new_plane_state(), so we * always calculate from the master. */ if (plane_state->planar_slave) continue; /* Y plane rate is calculated on the slave */ rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0); y_plane_id = plane_state->planar_linked_plane->id; plane_data_rate[y_plane_id] = rate; total_data_rate += rate; rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1); plane_data_rate[plane_id] = rate; total_data_rate += rate; } } return total_data_rate; } static const struct skl_wm_level * skl_plane_wm_level(const struct intel_crtc_state *crtc_state, enum plane_id plane_id, int level) { const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; if (level == 0 && pipe_wm->use_sagv_wm) return &wm->sagv_wm0; return &wm->wm[level]; } static int skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb; u16 alloc_size, start = 0; u16 total[I915_MAX_PLANES] = {}; u16 uv_total[I915_MAX_PLANES] = {}; u64 total_data_rate; enum plane_id plane_id; int num_active; u64 plane_data_rate[I915_MAX_PLANES] = {}; u64 uv_plane_data_rate[I915_MAX_PLANES] = {}; u32 blocks; int level; /* Clear the partitioning for disabled planes. */ memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y)); memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv)); if (!crtc_state->hw.active) { alloc->start = alloc->end = 0; return 0; } if (INTEL_GEN(dev_priv) >= 11) total_data_rate = icl_get_total_relative_data_rate(crtc_state, plane_data_rate); else total_data_rate = skl_get_total_relative_data_rate(crtc_state, plane_data_rate, uv_plane_data_rate); skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate, alloc, &num_active); alloc_size = skl_ddb_entry_size(alloc); if (alloc_size == 0) return 0; /* Allocate fixed number of blocks for cursor. */ total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active); alloc_size -= total[PLANE_CURSOR]; crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start = alloc->end - total[PLANE_CURSOR]; crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end; if (total_data_rate == 0) return 0; /* * Find the highest watermark level for which we can satisfy the block * requirement of active planes. */ for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) { blocks = 0; for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (plane_id == PLANE_CURSOR) { if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) { drm_WARN_ON(&dev_priv->drm, wm->wm[level].min_ddb_alloc != U16_MAX); blocks = U32_MAX; break; } continue; } blocks += wm->wm[level].min_ddb_alloc; blocks += wm->uv_wm[level].min_ddb_alloc; } if (blocks <= alloc_size) { alloc_size -= blocks; break; } } if (level < 0) { drm_dbg_kms(&dev_priv->drm, "Requested display configuration exceeds system DDB limitations"); drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n", blocks, alloc_size); return -EINVAL; } /* * Grant each plane the blocks it requires at the highest achievable * watermark level, plus an extra share of the leftover blocks * proportional to its relative data rate. */ for_each_plane_id_on_crtc(crtc, plane_id) { const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; u64 rate; u16 extra; if (plane_id == PLANE_CURSOR) continue; /* * We've accounted for all active planes; remaining planes are * all disabled. */ if (total_data_rate == 0) break; rate = plane_data_rate[plane_id]; extra = min_t(u16, alloc_size, DIV64_U64_ROUND_UP(alloc_size * rate, total_data_rate)); total[plane_id] = wm->wm[level].min_ddb_alloc + extra; alloc_size -= extra; total_data_rate -= rate; if (total_data_rate == 0) break; rate = uv_plane_data_rate[plane_id]; extra = min_t(u16, alloc_size, DIV64_U64_ROUND_UP(alloc_size * rate, total_data_rate)); uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra; alloc_size -= extra; total_data_rate -= rate; } drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0); /* Set the actual DDB start/end points for each plane */ start = alloc->start; for_each_plane_id_on_crtc(crtc, plane_id) { struct skl_ddb_entry *plane_alloc = &crtc_state->wm.skl.plane_ddb_y[plane_id]; struct skl_ddb_entry *uv_plane_alloc = &crtc_state->wm.skl.plane_ddb_uv[plane_id]; if (plane_id == PLANE_CURSOR) continue; /* Gen11+ uses a separate plane for UV watermarks */ drm_WARN_ON(&dev_priv->drm, INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]); /* Leave disabled planes at (0,0) */ if (total[plane_id]) { plane_alloc->start = start; start += total[plane_id]; plane_alloc->end = start; } if (uv_total[plane_id]) { uv_plane_alloc->start = start; start += uv_total[plane_id]; uv_plane_alloc->end = start; } } /* * When we calculated watermark values we didn't know how high * of a level we'd actually be able to hit, so we just marked * all levels as "enabled." Go back now and disable the ones * that aren't actually possible. */ for (level++; level <= ilk_wm_max_level(dev_priv); level++) { for_each_plane_id_on_crtc(crtc, plane_id) { struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; /* * We only disable the watermarks for each plane if * they exceed the ddb allocation of said plane. This * is done so that we don't end up touching cursor * watermarks needlessly when some other plane reduces * our max possible watermark level. * * Bspec has this to say about the PLANE_WM enable bit: * "All the watermarks at this level for all enabled * planes must be enabled before the level will be used." * So this is actually safe to do. */ if (wm->wm[level].min_ddb_alloc > total[plane_id] || wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id]) memset(&wm->wm[level], 0, sizeof(wm->wm[level])); /* * Wa_1408961008:icl, ehl * Underruns with WM1+ disabled */ if (IS_GEN(dev_priv, 11) && level == 1 && wm->wm[0].plane_en) { wm->wm[level].plane_res_b = wm->wm[0].plane_res_b; wm->wm[level].plane_res_l = wm->wm[0].plane_res_l; wm->wm[level].ignore_lines = wm->wm[0].ignore_lines; } } } /* * Go back and disable the transition watermark if it turns out we * don't have enough DDB blocks for it. */ for_each_plane_id_on_crtc(crtc, plane_id) { struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; if (wm->trans_wm.plane_res_b >= total[plane_id]) memset(&wm->trans_wm, 0, sizeof(wm->trans_wm)); } return 0; } /* * The max latency should be 257 (max the punit can code is 255 and we add 2us * for the read latency) and cpp should always be <= 8, so that * should allow pixel_rate up to ~2 GHz which seems sufficient since max * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. */ static uint_fixed_16_16_t skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate, u8 cpp, u32 latency, u32 dbuf_block_size) { u32 wm_intermediate_val; uint_fixed_16_16_t ret; if (latency == 0) return FP_16_16_MAX; wm_intermediate_val = latency * pixel_rate * cpp; ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size); if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) ret = add_fixed16_u32(ret, 1); return ret; } static uint_fixed_16_16_t skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency, uint_fixed_16_16_t plane_blocks_per_line) { u32 wm_intermediate_val; uint_fixed_16_16_t ret; if (latency == 0) return FP_16_16_MAX; wm_intermediate_val = latency * pixel_rate; wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000); ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); return ret; } static uint_fixed_16_16_t intel_get_linetime_us(const struct intel_crtc_state *crtc_state) { u32 pixel_rate; u32 crtc_htotal; uint_fixed_16_16_t linetime_us; if (!crtc_state->hw.active) return u32_to_fixed16(0); pixel_rate = crtc_state->pixel_rate; if (WARN_ON(pixel_rate == 0)) return u32_to_fixed16(0); crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal; linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); return linetime_us; } static u32 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { u64 adjusted_pixel_rate; uint_fixed_16_16_t downscale_amount; /* Shouldn't reach here on disabled planes... */ if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state))) return 0; /* * Adjusted plane pixel rate is just the pipe's adjusted pixel rate * with additional adjustments for plane-specific scaling. */ adjusted_pixel_rate = crtc_state->pixel_rate; downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state); return mul_round_up_u32_fixed16(adjusted_pixel_rate, downscale_amount); } static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, int width, const struct drm_format_info *format, u64 modifier, unsigned int rotation, u32 plane_pixel_rate, struct skl_wm_params *wp, int color_plane) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 interm_pbpl; /* only planar format has two planes */ if (color_plane == 1 && !intel_format_info_is_yuv_semiplanar(format, modifier)) { drm_dbg_kms(&dev_priv->drm, "Non planar format have single plane\n"); return -EINVAL; } wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED || modifier == I915_FORMAT_MOD_Yf_TILED || modifier == I915_FORMAT_MOD_Y_TILED_CCS || modifier == I915_FORMAT_MOD_Yf_TILED_CCS; wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED; wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS || modifier == I915_FORMAT_MOD_Yf_TILED_CCS; wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier); wp->width = width; if (color_plane == 1 && wp->is_planar) wp->width /= 2; wp->cpp = format->cpp[color_plane]; wp->plane_pixel_rate = plane_pixel_rate; if (INTEL_GEN(dev_priv) >= 11 && modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1) wp->dbuf_block_size = 256; else wp->dbuf_block_size = 512; if (drm_rotation_90_or_270(rotation)) { switch (wp->cpp) { case 1: wp->y_min_scanlines = 16; break; case 2: wp->y_min_scanlines = 8; break; case 4: wp->y_min_scanlines = 4; break; default: MISSING_CASE(wp->cpp); return -EINVAL; } } else { wp->y_min_scanlines = 4; } if (skl_needs_memory_bw_wa(dev_priv)) wp->y_min_scanlines *= 2; wp->plane_bytes_per_line = wp->width * wp->cpp; if (wp->y_tiled) { interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line * wp->y_min_scanlines, wp->dbuf_block_size); if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) interm_pbpl++; wp->plane_blocks_per_line = div_fixed16(interm_pbpl, wp->y_min_scanlines); } else { interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, wp->dbuf_block_size); if (!wp->x_tiled || INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) interm_pbpl++; wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); } wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines, wp->plane_blocks_per_line); wp->linetime_us = fixed16_to_u32_round_up( intel_get_linetime_us(crtc_state)); return 0; } static int skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, struct skl_wm_params *wp, int color_plane) { const struct drm_framebuffer *fb = plane_state->hw.fb; int width; /* * Src coordinates are already rotated by 270 degrees for * the 90/270 degree plane rotation cases (to match the * GTT mapping), hence no need to account for rotation here. */ width = drm_rect_width(&plane_state->uapi.src) >> 16; return skl_compute_wm_params(crtc_state, width, fb->format, fb->modifier, plane_state->hw.rotation, skl_adjusted_plane_pixel_rate(crtc_state, plane_state), wp, color_plane); } static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level) { if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) return true; /* The number of lines are ignored for the level 0 watermark. */ return level > 0; } static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, int level, unsigned int latency, const struct skl_wm_params *wp, const struct skl_wm_level *result_prev, struct skl_wm_level *result /* out */) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); uint_fixed_16_16_t method1, method2; uint_fixed_16_16_t selected_result; u32 res_blocks, res_lines, min_ddb_alloc = 0; if (latency == 0) { /* reject it */ result->min_ddb_alloc = U16_MAX; return; } /* * WaIncreaseLatencyIPCEnabled: kbl,cfl * Display WA #1141: kbl,cfl */ if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) && dev_priv->ipc_enabled) latency += 4; if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled) latency += 15; method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate, wp->cpp, latency, wp->dbuf_block_size); method2 = skl_wm_method2(wp->plane_pixel_rate, crtc_state->hw.adjusted_mode.crtc_htotal, latency, wp->plane_blocks_per_line); if (wp->y_tiled) { selected_result = max_fixed16(method2, wp->y_tile_minimum); } else { if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal / wp->dbuf_block_size < 1) && (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) { selected_result = method2; } else if (latency >= wp->linetime_us) { if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv)) selected_result = min_fixed16(method1, method2); else selected_result = method2; } else { selected_result = method1; } } res_blocks = fixed16_to_u32_round_up(selected_result) + 1; res_lines = div_round_up_fixed16(selected_result, wp->plane_blocks_per_line); if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) { /* Display WA #1125: skl,bxt,kbl */ if (level == 0 && wp->rc_surface) res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); /* Display WA #1126: skl,bxt,kbl */ if (level >= 1 && level <= 7) { if (wp->y_tiled) { res_blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); res_lines += wp->y_min_scanlines; } else { res_blocks++; } /* * Make sure result blocks for higher latency levels are * atleast as high as level below the current level. * Assumption in DDB algorithm optimization for special * cases. Also covers Display WA #1125 for RC. */ if (result_prev->plane_res_b > res_blocks) res_blocks = result_prev->plane_res_b; } } if (INTEL_GEN(dev_priv) >= 11) { if (wp->y_tiled) { int extra_lines; if (res_lines % wp->y_min_scanlines == 0) extra_lines = wp->y_min_scanlines; else extra_lines = wp->y_min_scanlines * 2 - res_lines % wp->y_min_scanlines; min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines, wp->plane_blocks_per_line); } else { min_ddb_alloc = res_blocks + DIV_ROUND_UP(res_blocks, 10); } } if (!skl_wm_has_lines(dev_priv, level)) res_lines = 0; if (res_lines > 31) { /* reject it */ result->min_ddb_alloc = U16_MAX; return; } /* * If res_lines is valid, assume we can use this watermark level * for now. We'll come back and disable it after we calculate the * DDB allocation if it turns out we don't actually have enough * blocks to satisfy it. */ result->plane_res_b = res_blocks; result->plane_res_l = res_lines; /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */ result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1; result->plane_en = true; } static void skl_compute_wm_levels(const struct intel_crtc_state *crtc_state, const struct skl_wm_params *wm_params, struct skl_wm_level *levels) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); int level, max_level = ilk_wm_max_level(dev_priv); struct skl_wm_level *result_prev = &levels[0]; for (level = 0; level <= max_level; level++) { struct skl_wm_level *result = &levels[level]; unsigned int latency = dev_priv->wm.skl_latency[level]; skl_compute_plane_wm(crtc_state, level, latency, wm_params, result_prev, result); result_prev = result; } } static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state, const struct skl_wm_params *wm_params, struct skl_plane_wm *plane_wm) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0; struct skl_wm_level *levels = plane_wm->wm; unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us; skl_compute_plane_wm(crtc_state, 0, latency, wm_params, &levels[0], sagv_wm); } static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state, const struct skl_wm_params *wp, struct skl_plane_wm *wm) { struct drm_device *dev = crtc_state->uapi.crtc->dev; const struct drm_i915_private *dev_priv = to_i915(dev); u16 trans_min, trans_amount, trans_y_tile_min; u16 wm0_sel_res_b, trans_offset_b, res_blocks; /* Transition WM don't make any sense if ipc is disabled */ if (!dev_priv->ipc_enabled) return; /* * WaDisableTWM:skl,kbl,cfl,bxt * Transition WM are not recommended by HW team for GEN9 */ if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) return; if (INTEL_GEN(dev_priv) >= 11) trans_min = 4; else trans_min = 14; /* Display WA #1140: glk,cnl */ if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv)) trans_amount = 0; else trans_amount = 10; /* This is configurable amount */ trans_offset_b = trans_min + trans_amount; /* * The spec asks for Selected Result Blocks for wm0 (the real value), * not Result Blocks (the integer value). Pay attention to the capital * letters. The value wm_l0->plane_res_b is actually Result Blocks, but * since Result Blocks is the ceiling of Selected Result Blocks plus 1, * and since we later will have to get the ceiling of the sum in the * transition watermarks calculation, we can just pretend Selected * Result Blocks is Result Blocks minus 1 and it should work for the * current platforms. */ wm0_sel_res_b = wm->wm[0].plane_res_b - 1; if (wp->y_tiled) { trans_y_tile_min = (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum); res_blocks = max(wm0_sel_res_b, trans_y_tile_min) + trans_offset_b; } else { res_blocks = wm0_sel_res_b + trans_offset_b; } /* * Just assume we can enable the transition watermark. After * computing the DDB we'll come back and disable it if that * assumption turns out to be false. */ wm->trans_wm.plane_res_b = res_blocks + 1; wm->trans_wm.plane_en = true; } static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, enum plane_id plane_id, int color_plane) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; struct skl_wm_params wm_params; int ret; ret = skl_compute_plane_wm_params(crtc_state, plane_state, &wm_params, color_plane); if (ret) return ret; skl_compute_wm_levels(crtc_state, &wm_params, wm->wm); if (INTEL_GEN(dev_priv) >= 12) tgl_compute_sagv_wm(crtc_state, &wm_params, wm); skl_compute_transition_wm(crtc_state, &wm_params, wm); return 0; } static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state, enum plane_id plane_id) { struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; struct skl_wm_params wm_params; int ret; wm->is_planar = true; /* uv plane watermarks must also be validated for NV12/Planar */ ret = skl_compute_plane_wm_params(crtc_state, plane_state, &wm_params, 1); if (ret) return ret; skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm); return 0; } static int skl_build_plane_wm(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); const struct drm_framebuffer *fb = plane_state->hw.fb; enum plane_id plane_id = plane->id; int ret; if (!intel_wm_plane_visible(crtc_state, plane_state)) return 0; ret = skl_build_plane_wm_single(crtc_state, plane_state, plane_id, 0); if (ret) return ret; if (fb->format->is_yuv && fb->format->num_planes > 1) { ret = skl_build_plane_wm_uv(crtc_state, plane_state, plane_id); if (ret) return ret; } return 0; } static int icl_build_plane_wm(struct intel_crtc_state *crtc_state, const struct intel_plane_state *plane_state) { enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id; int ret; /* Watermarks calculated in master */ if (plane_state->planar_slave) return 0; if (plane_state->planar_linked_plane) { const struct drm_framebuffer *fb = plane_state->hw.fb; enum plane_id y_plane_id = plane_state->planar_linked_plane->id; WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)); WARN_ON(!fb->format->is_yuv || fb->format->num_planes == 1); ret = skl_build_plane_wm_single(crtc_state, plane_state, y_plane_id, 0); if (ret) return ret; ret = skl_build_plane_wm_single(crtc_state, plane_state, plane_id, 1); if (ret) return ret; } else if (intel_wm_plane_visible(crtc_state, plane_state)) { ret = skl_build_plane_wm_single(crtc_state, plane_state, plane_id, 0); if (ret) return ret; } return 0; } static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; struct intel_plane *plane; const struct intel_plane_state *plane_state; int ret; /* * We'll only calculate watermarks for planes that are actually * enabled, so make sure all other planes are set as disabled. */ memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes)); intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) { if (INTEL_GEN(dev_priv) >= 11) ret = icl_build_plane_wm(crtc_state, plane_state); else ret = skl_build_plane_wm(crtc_state, plane_state); if (ret) return ret; } return 0; } static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, i915_reg_t reg, const struct skl_ddb_entry *entry) { if (entry->end) intel_de_write_fw(dev_priv, reg, (entry->end - 1) << 16 | entry->start); else intel_de_write_fw(dev_priv, reg, 0); } static void skl_write_wm_level(struct drm_i915_private *dev_priv, i915_reg_t reg, const struct skl_wm_level *level) { u32 val = 0; if (level->plane_en) val |= PLANE_WM_EN; if (level->ignore_lines) val |= PLANE_WM_IGNORE_LINES; val |= level->plane_res_b; val |= level->plane_res_l << PLANE_WM_LINES_SHIFT; intel_de_write_fw(dev_priv, reg, val); } void skl_write_plane_wm(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); int level, max_level = ilk_wm_max_level(dev_priv); enum plane_id plane_id = plane->id; enum pipe pipe = plane->pipe; const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; const struct skl_ddb_entry *ddb_y = &crtc_state->wm.skl.plane_ddb_y[plane_id]; const struct skl_ddb_entry *ddb_uv = &crtc_state->wm.skl.plane_ddb_uv[plane_id]; for (level = 0; level <= max_level; level++) { const struct skl_wm_level *wm_level; wm_level = skl_plane_wm_level(crtc_state, plane_id, level); skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level), wm_level); } skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id), &wm->trans_wm); if (INTEL_GEN(dev_priv) >= 11) { skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id), ddb_y); return; } if (wm->is_planar) swap(ddb_y, ddb_uv); skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane_id), ddb_y); skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv); } void skl_write_cursor_wm(struct intel_plane *plane, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(plane->base.dev); int level, max_level = ilk_wm_max_level(dev_priv); enum plane_id plane_id = plane->id; enum pipe pipe = plane->pipe; const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; const struct skl_ddb_entry *ddb = &crtc_state->wm.skl.plane_ddb_y[plane_id]; for (level = 0; level <= max_level; level++) { const struct skl_wm_level *wm_level; wm_level = skl_plane_wm_level(crtc_state, plane_id, level); skl_write_wm_level(dev_priv, CUR_WM(pipe, level), wm_level); } skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm); skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb); } bool skl_wm_level_equals(const struct skl_wm_level *l1, const struct skl_wm_level *l2) { return l1->plane_en == l2->plane_en && l1->ignore_lines == l2->ignore_lines && l1->plane_res_l == l2->plane_res_l && l1->plane_res_b == l2->plane_res_b; } static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv, const struct skl_plane_wm *wm1, const struct skl_plane_wm *wm2) { int level, max_level = ilk_wm_max_level(dev_priv); for (level = 0; level <= max_level; level++) { /* * We don't check uv_wm as the hardware doesn't actually * use it. It only gets used for calculating the required * ddb allocation. */ if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level])) return false; } return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm); } static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, const struct skl_ddb_entry *b) { return a->start < b->end && b->start < a->end; } bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb, const struct skl_ddb_entry *entries, int num_entries, int ignore_idx) { int i; for (i = 0; i < num_entries; i++) { if (i != ignore_idx && skl_ddb_entries_overlap(ddb, &entries[i])) return true; } return false; } static int skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { struct intel_plane_state *plane_state; enum plane_id plane_id = plane->id; if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id], &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) && skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id], &new_crtc_state->wm.skl.plane_ddb_uv[plane_id])) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); new_crtc_state->update_planes |= BIT(plane_id); } return 0; } static int skl_compute_ddb(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *old_crtc_state; struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int ret, i; state->enabled_dbuf_slices_mask = dev_priv->enabled_dbuf_slices_mask; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { ret = skl_allocate_pipe_ddb(new_crtc_state); if (ret) return ret; ret = skl_ddb_add_affected_planes(old_crtc_state, new_crtc_state); if (ret) return ret; } return 0; } static char enast(bool enable) { return enable ? '*' : ' '; } static void skl_print_wm_changes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state; const struct intel_crtc_state *new_crtc_state; struct intel_plane *plane; struct intel_crtc *crtc; int i; if (!drm_debug_enabled(DRM_UT_KMS)) return; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm; old_pipe_wm = &old_crtc_state->wm.skl.optimal; new_pipe_wm = &new_crtc_state->wm.skl.optimal; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { enum plane_id plane_id = plane->id; const struct skl_ddb_entry *old, *new; old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id]; new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id]; if (skl_ddb_entry_equal(old, new)) continue; drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n", plane->base.base.id, plane->base.name, old->start, old->end, new->start, new->end, skl_ddb_entry_size(old), skl_ddb_entry_size(new)); } for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { enum plane_id plane_id = plane->id; const struct skl_plane_wm *old_wm, *new_wm; old_wm = &old_pipe_wm->planes[plane_id]; new_wm = &new_pipe_wm->planes[plane_id]; if (skl_plane_wm_equals(dev_priv, old_wm, new_wm)) continue; drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm" " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n", plane->base.base.id, plane->base.name, enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en), enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en), enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en), enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en), enast(old_wm->trans_wm.plane_en), enast(old_wm->sagv_wm0.plane_en), enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en), enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en), enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en), enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en), enast(new_wm->trans_wm.plane_en), enast(new_wm->sagv_wm0.plane_en)); drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d" " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n", plane->base.base.id, plane->base.name, enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l, enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l, enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l, enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l, enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l, enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l, enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l, enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l, enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l, enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l, enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l, enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l, enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l, enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l, enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l, enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l, enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l, enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l, enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l, enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l); drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d" " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n", plane->base.base.id, plane->base.name, old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b, old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b, old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b, old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b, old_wm->trans_wm.plane_res_b, old_wm->sagv_wm0.plane_res_b, new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b, new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b, new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b, new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b, new_wm->trans_wm.plane_res_b, new_wm->sagv_wm0.plane_res_b); drm_dbg_kms(&dev_priv->drm, "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d" " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n", plane->base.base.id, plane->base.name, old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc, old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc, old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc, old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc, old_wm->trans_wm.min_ddb_alloc, old_wm->sagv_wm0.min_ddb_alloc, new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc, new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc, new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc, new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc, new_wm->trans_wm.min_ddb_alloc, new_wm->sagv_wm0.min_ddb_alloc); } } } static int intel_add_all_pipes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); } return 0; } static int skl_ddb_add_affected_pipes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); int ret; /* * If this is our first atomic update following hardware readout, * we can't trust the DDB that the BIOS programmed for us. Let's * pretend that all pipes switched active status so that we'll * ensure a full DDB recompute. */ if (dev_priv->wm.distrust_bios_wm) { ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, state->base.acquire_ctx); if (ret) return ret; state->active_pipe_changes = INTEL_INFO(dev_priv)->pipe_mask; /* * We usually only initialize state->active_pipes if we * we're doing a modeset; make sure this field is always * initialized during the sanitization process that happens * on the first commit too. */ if (!state->modeset) state->active_pipes = dev_priv->active_pipes; } /* * If the modeset changes which CRTC's are active, we need to * recompute the DDB allocation for *all* active pipes, even * those that weren't otherwise being modified in any way by this * atomic commit. Due to the shrinking of the per-pipe allocations * when new active CRTC's are added, it's possible for a pipe that * we were already using and aren't changing at all here to suddenly * become invalid if its DDB needs exceeds its new allocation. * * Note that if we wind up doing a full DDB recompute, we can't let * any other display updates race with this transaction, so we need * to grab the lock on *all* CRTC's. */ if (state->active_pipe_changes || state->modeset) { ret = intel_add_all_pipes(state); if (ret) return ret; } return 0; } /* * To make sure the cursor watermark registers are always consistent * with our computed state the following scenario needs special * treatment: * * 1. enable cursor * 2. move cursor entirely offscreen * 3. disable cursor * * Step 2. does call .disable_plane() but does not zero the watermarks * (since we consider an offscreen cursor still active for the purposes * of watermarks). Step 3. would not normally call .disable_plane() * because the actual plane visibility isn't changing, and we don't * deallocate the cursor ddb until the pipe gets disabled. So we must * force step 3. to call .disable_plane() to update the watermark * registers properly. * * Other planes do not suffer from this issues as their watermarks are * calculated based on the actual plane visibility. The only time this * can trigger for the other planes is during the initial readout as the * default value of the watermarks registers is not zero. */ static int skl_wm_add_affected_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct intel_plane *plane; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { struct intel_plane_state *plane_state; enum plane_id plane_id = plane->id; /* * Force a full wm update for every plane on modeset. * Required because the reset value of the wm registers * is non-zero, whereas we want all disabled planes to * have zero watermarks. So if we turn off the relevant * power well the hardware state will go out of sync * with the software state. */ if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) && skl_plane_wm_equals(dev_priv, &old_crtc_state->wm.skl.optimal.planes[plane_id], &new_crtc_state->wm.skl.optimal.planes[plane_id])) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); new_crtc_state->update_planes |= BIT(plane_id); } return 0; } static int skl_compute_wm(struct intel_atomic_state *state) { struct intel_crtc *crtc; struct intel_crtc_state *new_crtc_state; struct intel_crtc_state *old_crtc_state; int ret, i; ret = skl_ddb_add_affected_pipes(state); if (ret) return ret; /* * Calculate WM's for all pipes that are part of this transaction. * Note that skl_ddb_add_affected_pipes may have added more CRTC's that * weren't otherwise being modified if pipe allocations had to change. */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { ret = skl_build_pipe_wm(new_crtc_state); if (ret) return ret; } ret = skl_compute_ddb(state); if (ret) return ret; ret = intel_compute_sagv_mask(state); if (ret) return ret; /* * skl_compute_ddb() will have adjusted the final watermarks * based on how much ddb is available. Now we can actually * check if the final watermarks changed. */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { ret = skl_wm_add_affected_planes(state, crtc); if (ret) return ret; } skl_print_wm_changes(state); return 0; } static void ilk_compute_wm_config(struct drm_i915_private *dev_priv, struct intel_wm_config *config) { struct intel_crtc *crtc; /* Compute the currently _active_ config */ for_each_intel_crtc(&dev_priv->drm, crtc) { const struct intel_pipe_wm *wm = &crtc->wm.active.ilk; if (!wm->pipe_enabled) continue; config->sprites_enabled |= wm->sprites_enabled; config->sprites_scaled |= wm->sprites_scaled; config->num_pipes_active++; } } static void ilk_program_watermarks(struct drm_i915_private *dev_priv) { struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm; struct ilk_wm_maximums max; struct intel_wm_config config = {}; struct ilk_wm_values results = {}; enum intel_ddb_partitioning partitioning; ilk_compute_wm_config(dev_priv, &config); ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max); ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2); /* 5/6 split only in single pipe config on IVB+ */ if (INTEL_GEN(dev_priv) >= 7 && config.num_pipes_active == 1 && config.sprites_enabled) { ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max); ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6); best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6); } else { best_lp_wm = &lp_wm_1_2; } partitioning = (best_lp_wm == &lp_wm_1_2) ? INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6; ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results); ilk_write_wm_values(dev_priv, &results); } static void ilk_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate; ilk_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void ilk_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!crtc_state->wm.need_postvbl_update) return; mutex_lock(&dev_priv->wm.wm_mutex); crtc->wm.active.ilk = crtc_state->wm.ilk.optimal; ilk_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level) { level->plane_en = val & PLANE_WM_EN; level->ignore_lines = val & PLANE_WM_IGNORE_LINES; level->plane_res_b = val & PLANE_WM_BLOCKS_MASK; level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) & PLANE_WM_LINES_MASK; } void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc, struct skl_pipe_wm *out) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; int level, max_level; enum plane_id plane_id; u32 val; max_level = ilk_wm_max_level(dev_priv); for_each_plane_id_on_crtc(crtc, plane_id) { struct skl_plane_wm *wm = &out->planes[plane_id]; for (level = 0; level <= max_level; level++) { if (plane_id != PLANE_CURSOR) val = I915_READ(PLANE_WM(pipe, plane_id, level)); else val = I915_READ(CUR_WM(pipe, level)); skl_wm_level_from_reg_val(val, &wm->wm[level]); } if (INTEL_GEN(dev_priv) >= 12) wm->sagv_wm0 = wm->wm[0]; if (plane_id != PLANE_CURSOR) val = I915_READ(PLANE_WM_TRANS(pipe, plane_id)); else val = I915_READ(CUR_WM_TRANS(pipe)); skl_wm_level_from_reg_val(val, &wm->trans_wm); } if (!crtc->active) return; } void skl_wm_get_hw_state(struct drm_i915_private *dev_priv) { struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; skl_ddb_get_hw_state(dev_priv); for_each_intel_crtc(&dev_priv->drm, crtc) { crtc_state = to_intel_crtc_state(crtc->base.state); skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal); } if (dev_priv->active_pipes) { /* Fully recompute DDB on first atomic commit */ dev_priv->wm.distrust_bios_wm = true; } } static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct ilk_wm_values *hw = &dev_priv->wm.hw; struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal; enum pipe pipe = crtc->pipe; static const i915_reg_t wm0_pipe_reg[] = { [PIPE_A] = WM0_PIPEA_ILK, [PIPE_B] = WM0_PIPEB_ILK, [PIPE_C] = WM0_PIPEC_IVB, }; hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]); memset(active, 0, sizeof(*active)); active->pipe_enabled = crtc->active; if (active->pipe_enabled) { u32 tmp = hw->wm_pipe[pipe]; /* * For active pipes LP0 watermark is marked as * enabled, and LP1+ watermaks as disabled since * we can't really reverse compute them in case * multiple pipes are active. */ active->wm[0].enable = true; active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT; active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT; active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK; } else { int level, max_level = ilk_wm_max_level(dev_priv); /* * For inactive pipes, all watermark levels * should be marked as enabled but zeroed, * which is what we'd compute them to. */ for (level = 0; level <= max_level; level++) active->wm[level].enable = true; } crtc->wm.active.ilk = *active; } #define _FW_WM(value, plane) \ (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT) #define _FW_WM_VLV(value, plane) \ (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT) static void g4x_read_wm_values(struct drm_i915_private *dev_priv, struct g4x_wm_values *wm) { u32 tmp; tmp = I915_READ(DSPFW1); wm->sr.plane = _FW_WM(tmp, SR); wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB); wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA); tmp = I915_READ(DSPFW2); wm->fbc_en = tmp & DSPFW_FBC_SR_EN; wm->sr.fbc = _FW_WM(tmp, FBC_SR); wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB); wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA); tmp = I915_READ(DSPFW3); wm->hpll_en = tmp & DSPFW_HPLL_SR_EN; wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR); wm->hpll.plane = _FW_WM(tmp, HPLL_SR); } static void vlv_read_wm_values(struct drm_i915_private *dev_priv, struct vlv_wm_values *wm) { enum pipe pipe; u32 tmp; for_each_pipe(dev_priv, pipe) { tmp = I915_READ(VLV_DDL(pipe)); wm->ddl[pipe].plane[PLANE_PRIMARY] = (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_CURSOR] = (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_SPRITE0] = (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); wm->ddl[pipe].plane[PLANE_SPRITE1] = (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK); } tmp = I915_READ(DSPFW1); wm->sr.plane = _FW_WM(tmp, SR); wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB); wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB); wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA); tmp = I915_READ(DSPFW2); wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB); wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA); wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA); tmp = I915_READ(DSPFW3); wm->sr.cursor = _FW_WM(tmp, CURSOR_SR); if (IS_CHERRYVIEW(dev_priv)) { tmp = I915_READ(DSPFW7_CHV); wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); tmp = I915_READ(DSPFW8_CHV); wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF); wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE); tmp = I915_READ(DSPFW9_CHV); wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC); wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC); tmp = I915_READ(DSPHOWM); wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8; wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8; wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; } else { tmp = I915_READ(DSPFW7); wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED); wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC); tmp = I915_READ(DSPHOWM); wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9; wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8; wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8; wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8; } } #undef _FW_WM #undef _FW_WM_VLV void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv) { struct g4x_wm_values *wm = &dev_priv->wm.g4x; struct intel_crtc *crtc; g4x_read_wm_values(dev_priv, wm); wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct g4x_wm_state *active = &crtc->wm.active.g4x; struct g4x_pipe_wm *raw; enum pipe pipe = crtc->pipe; enum plane_id plane_id; int level, max_level; active->cxsr = wm->cxsr; active->hpll_en = wm->hpll_en; active->fbc_en = wm->fbc_en; active->sr = wm->sr; active->hpll = wm->hpll; for_each_plane_id_on_crtc(crtc, plane_id) { active->wm.plane[plane_id] = wm->pipe[pipe].plane[plane_id]; } if (wm->cxsr && wm->hpll_en) max_level = G4X_WM_LEVEL_HPLL; else if (wm->cxsr) max_level = G4X_WM_LEVEL_SR; else max_level = G4X_WM_LEVEL_NORMAL; level = G4X_WM_LEVEL_NORMAL; raw = &crtc_state->wm.g4x.raw[level]; for_each_plane_id_on_crtc(crtc, plane_id) raw->plane[plane_id] = active->wm.plane[plane_id]; if (++level > max_level) goto out; raw = &crtc_state->wm.g4x.raw[level]; raw->plane[PLANE_PRIMARY] = active->sr.plane; raw->plane[PLANE_CURSOR] = active->sr.cursor; raw->plane[PLANE_SPRITE0] = 0; raw->fbc = active->sr.fbc; if (++level > max_level) goto out; raw = &crtc_state->wm.g4x.raw[level]; raw->plane[PLANE_PRIMARY] = active->hpll.plane; raw->plane[PLANE_CURSOR] = active->hpll.cursor; raw->plane[PLANE_SPRITE0] = 0; raw->fbc = active->hpll.fbc; out: for_each_plane_id_on_crtc(crtc, plane_id) g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX); crtc_state->wm.g4x.optimal = *active; crtc_state->wm.g4x.intermediate = *active; drm_dbg_kms(&dev_priv->drm, "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n", pipe_name(pipe), wm->pipe[pipe].plane[PLANE_PRIMARY], wm->pipe[pipe].plane[PLANE_CURSOR], wm->pipe[pipe].plane[PLANE_SPRITE0]); } drm_dbg_kms(&dev_priv->drm, "Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n", wm->sr.plane, wm->sr.cursor, wm->sr.fbc); drm_dbg_kms(&dev_priv->drm, "Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n", wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc); drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n", yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en)); } void g4x_wm_sanitize(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; mutex_lock(&dev_priv->wm.wm_mutex); for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, plane->pipe); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal; enum plane_id plane_id = plane->id; int level; if (plane_state->uapi.visible) continue; for (level = 0; level < 3; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; raw->plane[plane_id] = 0; wm_state->wm.plane[plane_id] = 0; } if (plane_id == PLANE_PRIMARY) { for (level = 0; level < 3; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level]; raw->fbc = 0; } wm_state->sr.fbc = 0; wm_state->hpll.fbc = 0; wm_state->fbc_en = false; } } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); crtc_state->wm.g4x.intermediate = crtc_state->wm.g4x.optimal; crtc->wm.active.g4x = crtc_state->wm.g4x.optimal; } g4x_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv) { struct vlv_wm_values *wm = &dev_priv->wm.vlv; struct intel_crtc *crtc; u32 val; vlv_read_wm_values(dev_priv, wm); wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN; wm->level = VLV_WM_LEVEL_PM2; if (IS_CHERRYVIEW(dev_priv)) { vlv_punit_get(dev_priv); val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM); if (val & DSP_MAXFIFO_PM5_ENABLE) wm->level = VLV_WM_LEVEL_PM5; /* * If DDR DVFS is disabled in the BIOS, Punit * will never ack the request. So if that happens * assume we don't have to enable/disable DDR DVFS * dynamically. To test that just set the REQ_ACK * bit to poke the Punit, but don't change the * HIGH/LOW bits so that we don't actually change * the current state. */ val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); val |= FORCE_DDR_FREQ_REQ_ACK; vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val); if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) & FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) { drm_dbg_kms(&dev_priv->drm, "Punit not acking DDR DVFS request, " "assuming DDR DVFS is disabled\n"); dev_priv->wm.max_level = VLV_WM_LEVEL_PM5; } else { val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2); if ((val & FORCE_DDR_HIGH_FREQ) == 0) wm->level = VLV_WM_LEVEL_DDR_DVFS; } vlv_punit_put(dev_priv); } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct vlv_wm_state *active = &crtc->wm.active.vlv; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum pipe pipe = crtc->pipe; enum plane_id plane_id; int level; vlv_get_fifo_size(crtc_state); active->num_levels = wm->level + 1; active->cxsr = wm->cxsr; for (level = 0; level < active->num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; active->sr[level].plane = wm->sr.plane; active->sr[level].cursor = wm->sr.cursor; for_each_plane_id_on_crtc(crtc, plane_id) { active->wm[level].plane[plane_id] = wm->pipe[pipe].plane[plane_id]; raw->plane[plane_id] = vlv_invert_wm_value(active->wm[level].plane[plane_id], fifo_state->plane[plane_id]); } } for_each_plane_id_on_crtc(crtc, plane_id) vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX); vlv_invalidate_wms(crtc, active, level); crtc_state->wm.vlv.optimal = *active; crtc_state->wm.vlv.intermediate = *active; drm_dbg_kms(&dev_priv->drm, "Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n", pipe_name(pipe), wm->pipe[pipe].plane[PLANE_PRIMARY], wm->pipe[pipe].plane[PLANE_CURSOR], wm->pipe[pipe].plane[PLANE_SPRITE0], wm->pipe[pipe].plane[PLANE_SPRITE1]); } drm_dbg_kms(&dev_priv->drm, "Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n", wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr); } void vlv_wm_sanitize(struct drm_i915_private *dev_priv) { struct intel_plane *plane; struct intel_crtc *crtc; mutex_lock(&dev_priv->wm.wm_mutex); for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, plane->pipe); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal; const struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state; enum plane_id plane_id = plane->id; int level; if (plane_state->uapi.visible) continue; for (level = 0; level < wm_state->num_levels; level++) { struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level]; raw->plane[plane_id] = 0; wm_state->wm[level].plane[plane_id] = vlv_invert_wm_value(raw->plane[plane_id], fifo_state->plane[plane_id]); } } for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); crtc_state->wm.vlv.intermediate = crtc_state->wm.vlv.optimal; crtc->wm.active.vlv = crtc_state->wm.vlv.optimal; } vlv_program_watermarks(dev_priv); mutex_unlock(&dev_priv->wm.wm_mutex); } /* * FIXME should probably kill this and improve * the real watermark readout/sanitation instead */ static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv) { I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN); I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN); I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN); /* * Don't touch WM1S_LP_EN here. * Doing so could cause underruns. */ } void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv) { struct ilk_wm_values *hw = &dev_priv->wm.hw; struct intel_crtc *crtc; ilk_init_lp_watermarks(dev_priv); for_each_intel_crtc(&dev_priv->drm, crtc) ilk_pipe_wm_get_hw_state(crtc); hw->wm_lp[0] = I915_READ(WM1_LP_ILK); hw->wm_lp[1] = I915_READ(WM2_LP_ILK); hw->wm_lp[2] = I915_READ(WM3_LP_ILK); hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK); if (INTEL_GEN(dev_priv) >= 7) { hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB); hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB); } if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ? INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; else if (IS_IVYBRIDGE(dev_priv)) hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ? INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2; hw->enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS); } /** * intel_update_watermarks - update FIFO watermark values based on current modes * @crtc: the #intel_crtc on which to compute the WM * * Calculate watermark values for the various WM regs based on current mode * and plane configuration. * * There are several cases to deal with here: * - normal (i.e. non-self-refresh) * - self-refresh (SR) mode * - lines are large relative to FIFO size (buffer can hold up to 2) * - lines are small relative to FIFO size (buffer can hold more than 2 * lines), so need to account for TLB latency * * The normal calculation is: * watermark = dotclock * bytes per pixel * latency * where latency is platform & configuration dependent (we assume pessimal * values here). * * The SR calculation is: * watermark = (trunc(latency/line time)+1) * surface width * * bytes per pixel * where * line time = htotal / dotclock * surface width = hdisplay for normal plane and 64 for cursor * and latency is assumed to be high, as above. * * The final value programmed to the register should always be rounded up, * and include an extra 2 entries to account for clock crossings. * * We don't use the sprite, so we can ignore that. And on Crestline we have * to set the non-SR watermarks to 8. */ void intel_update_watermarks(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (dev_priv->display.update_wm) dev_priv->display.update_wm(crtc); } void intel_enable_ipc(struct drm_i915_private *dev_priv) { u32 val; if (!HAS_IPC(dev_priv)) return; val = I915_READ(DISP_ARB_CTL2); if (dev_priv->ipc_enabled) val |= DISP_IPC_ENABLE; else val &= ~DISP_IPC_ENABLE; I915_WRITE(DISP_ARB_CTL2, val); } static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv) { /* Display WA #0477 WaDisableIPC: skl */ if (IS_SKYLAKE(dev_priv)) return false; /* Display WA #1141: SKL:all KBL:all CFL */ if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) return dev_priv->dram_info.symmetric_memory; return true; } void intel_init_ipc(struct drm_i915_private *dev_priv) { if (!HAS_IPC(dev_priv)) return; dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv); intel_enable_ipc(dev_priv); } static void ibx_init_clock_gating(struct drm_i915_private *dev_priv) { /* * On Ibex Peak and Cougar Point, we need to disable clock * gating for the panel power sequencer or it will fail to * start up when no ports are active. */ I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE); } static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv) { enum pipe pipe; for_each_pipe(dev_priv, pipe) { I915_WRITE(DSPCNTR(pipe), I915_READ(DSPCNTR(pipe)) | DISPPLANE_TRICKLE_FEED_DISABLE); I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe))); POSTING_READ(DSPSURF(pipe)); } } static void ilk_init_clock_gating(struct drm_i915_private *dev_priv) { u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; /* * Required for FBC * WaFbcDisableDpfcClockGating:ilk */ dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE | ILK_DPFCUNIT_CLOCK_GATE_DISABLE | ILK_DPFDUNIT_CLOCK_GATE_ENABLE; I915_WRITE(PCH_3DCGDIS0, MARIUNIT_CLOCK_GATE_DISABLE | SVSMUNIT_CLOCK_GATE_DISABLE); I915_WRITE(PCH_3DCGDIS1, VFMUNIT_CLOCK_GATE_DISABLE); /* * According to the spec the following bits should be set in * order to enable memory self-refresh * The bit 22/21 of 0x42004 * The bit 5 of 0x42020 * The bit 15 of 0x45000 */ I915_WRITE(ILK_DISPLAY_CHICKEN2, (I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE | ILK_VSDPFD_FULL)); dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE; I915_WRITE(DISP_ARB_CTL, (I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS)); /* * Based on the document from hardware guys the following bits * should be set unconditionally in order to enable FBC. * The bit 22 of 0x42000 * The bit 22 of 0x42004 * The bit 7,8,9 of 0x42020. */ if (IS_IRONLAKE_M(dev_priv)) { /* WaFbcAsynchFlipDisableFbcQueue:ilk */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE); } I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_ELPIN_409_SELECT); g4x_disable_trickle_feed(dev_priv); ibx_init_clock_gating(dev_priv); } static void cpt_init_clock_gating(struct drm_i915_private *dev_priv) { enum pipe pipe; u32 val; /* * On Ibex Peak and Cougar Point, we need to disable clock * gating for the panel power sequencer or it will fail to * start up when no ports are active. */ I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE | PCH_DPLUNIT_CLOCK_GATE_DISABLE | PCH_CPUNIT_CLOCK_GATE_DISABLE); I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) | DPLS_EDP_PPS_FIX_DIS); /* The below fixes the weird display corruption, a few pixels shifted * downward, on (only) LVDS of some HP laptops with IVY. */ for_each_pipe(dev_priv, pipe) { val = I915_READ(TRANS_CHICKEN2(pipe)); val |= TRANS_CHICKEN2_TIMING_OVERRIDE; val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED; if (dev_priv->vbt.fdi_rx_polarity_inverted) val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED; val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER; val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH; I915_WRITE(TRANS_CHICKEN2(pipe), val); } /* WADP0ClockGatingDisable */ for_each_pipe(dev_priv, pipe) { I915_WRITE(TRANS_CHICKEN1(pipe), TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); } } static void gen6_check_mch_setup(struct drm_i915_private *dev_priv) { u32 tmp; tmp = I915_READ(MCH_SSKPD); if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) drm_dbg_kms(&dev_priv->drm, "Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n", tmp); } static void gen6_init_clock_gating(struct drm_i915_private *dev_priv) { u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE; I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_ELPIN_409_SELECT); I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_BLBUNIT_CLOCK_GATE_DISABLE | GEN6_CSUNIT_CLOCK_GATE_DISABLE); /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock * gating disable must be set. Failure to set it results in * flickering pixels due to Z write ordering failures after * some amount of runtime in the Mesa "fire" demo, and Unigine * Sanctuary and Tropics, and apparently anything else with * alpha test or pixel discard. * * According to the spec, bit 11 (RCCUNIT) must also be set, * but we didn't debug actual testcases to find it out. * * WaDisableRCCUnitClockGating:snb * WaDisableRCPBUnitClockGating:snb */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCPBUNIT_CLOCK_GATE_DISABLE | GEN6_RCCUNIT_CLOCK_GATE_DISABLE); /* * According to the spec the following bits should be * set in order to enable memory self-refresh and fbc: * The bit21 and bit22 of 0x42000 * The bit21 and bit22 of 0x42004 * The bit5 and bit7 of 0x42020 * The bit14 of 0x70180 * The bit14 of 0x71180 * * WaFbcAsynchFlipDisableFbcQueue:snb */ I915_WRITE(ILK_DISPLAY_CHICKEN1, I915_READ(ILK_DISPLAY_CHICKEN1) | ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS); I915_WRITE(ILK_DISPLAY_CHICKEN2, I915_READ(ILK_DISPLAY_CHICKEN2) | ILK_DPARB_GATE | ILK_VSDPFD_FULL); I915_WRITE(ILK_DSPCLK_GATE_D, I915_READ(ILK_DSPCLK_GATE_D) | ILK_DPARBUNIT_CLOCK_GATE_ENABLE | ILK_DPFDUNIT_CLOCK_GATE_ENABLE); g4x_disable_trickle_feed(dev_priv); cpt_init_clock_gating(dev_priv); gen6_check_mch_setup(dev_priv); } static void lpt_init_clock_gating(struct drm_i915_private *dev_priv) { /* * TODO: this bit should only be enabled when really needed, then * disabled when not needed anymore in order to save power. */ if (HAS_PCH_LPT_LP(dev_priv)) I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) | PCH_LP_PARTITION_LEVEL_DISABLE); /* WADPOClockGatingDisable:hsw */ I915_WRITE(TRANS_CHICKEN1(PIPE_A), I915_READ(TRANS_CHICKEN1(PIPE_A)) | TRANS_CHICKEN1_DP0UNIT_GC_DISABLE); } static void lpt_suspend_hw(struct drm_i915_private *dev_priv) { if (HAS_PCH_LPT_LP(dev_priv)) { u32 val = I915_READ(SOUTH_DSPCLK_GATE_D); val &= ~PCH_LP_PARTITION_LEVEL_DISABLE; I915_WRITE(SOUTH_DSPCLK_GATE_D, val); } } static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv, int general_prio_credits, int high_prio_credits) { u32 misccpctl; u32 val; /* WaTempDisableDOPClkGating:bdw */ misccpctl = I915_READ(GEN7_MISCCPCTL); I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE); val = I915_READ(GEN8_L3SQCREG1); val &= ~L3_PRIO_CREDITS_MASK; val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits); val |= L3_HIGH_PRIO_CREDITS(high_prio_credits); I915_WRITE(GEN8_L3SQCREG1, val); /* * Wait at least 100 clocks before re-enabling clock gating. * See the definition of L3SQCREG1 in BSpec. */ POSTING_READ(GEN8_L3SQCREG1); udelay(1); I915_WRITE(GEN7_MISCCPCTL, misccpctl); } static void icl_init_clock_gating(struct drm_i915_private *dev_priv) { /* This is not an Wa. Enable to reduce Sampler power */ I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN, I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE); /*Wa_14010594013:icl, ehl */ intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1, 0, CNL_DELAY_PMRSP); } static void tgl_init_clock_gating(struct drm_i915_private *dev_priv) { u32 vd_pg_enable = 0; unsigned int i; /* This is not a WA. Enable VD HCP & MFX_ENC powergate */ for (i = 0; i < I915_MAX_VCS; i++) { if (HAS_ENGINE(dev_priv, _VCS(i))) vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) | VDN_MFX_POWERGATE_ENABLE(i); } I915_WRITE(POWERGATE_ENABLE, I915_READ(POWERGATE_ENABLE) | vd_pg_enable); /* Wa_1409825376:tgl (pre-prod)*/ if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0)) I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) | TGL_VRH_GATING_DIS); /* Wa_14011059788:tgl */ intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN, 0, DFR_DISABLE); } static void cnp_init_clock_gating(struct drm_i915_private *dev_priv) { if (!HAS_PCH_CNP(dev_priv)) return; /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */ I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) | CNP_PWM_CGE_GATING_DISABLE); } static void cnl_init_clock_gating(struct drm_i915_private *dev_priv) { u32 val; cnp_init_clock_gating(dev_priv); /* This is not an Wa. Enable for better image quality */ I915_WRITE(_3D_CHICKEN3, _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE)); /* WaEnableChickenDCPR:cnl */ I915_WRITE(GEN8_CHICKEN_DCPR_1, I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM); /* WaFbcWakeMemOn:cnl */ I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) | DISP_FBC_MEMORY_WAKE); val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE); /* ReadHitWriteOnlyDisable:cnl */ val |= RCCUNIT_CLKGATE_DIS; I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val); /* Wa_2201832410:cnl */ val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE); val |= GWUNIT_CLKGATE_DIS; I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val); /* WaDisableVFclkgate:cnl */ /* WaVFUnitClockGatingDisable:cnl */ val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE); val |= VFUNIT_CLKGATE_DIS; I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val); } static void cfl_init_clock_gating(struct drm_i915_private *dev_priv) { cnp_init_clock_gating(dev_priv); gen9_init_clock_gating(dev_priv); /* WaFbcNukeOnHostModify:cfl */ I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | ILK_DPFC_NUKE_ON_ANY_MODIFICATION); } static void kbl_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* WaDisableSDEUnitClockGating:kbl */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* WaDisableGamClockGating:kbl */ if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0)) I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_GAMUNIT_CLOCK_GATE_DISABLE); /* WaFbcNukeOnHostModify:kbl */ I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | ILK_DPFC_NUKE_ON_ANY_MODIFICATION); } static void skl_init_clock_gating(struct drm_i915_private *dev_priv) { gen9_init_clock_gating(dev_priv); /* WAC6entrylatency:skl */ I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) | FBC_LLC_FULLY_OPEN); /* WaFbcNukeOnHostModify:skl */ I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) | ILK_DPFC_NUKE_ON_ANY_MODIFICATION); } static void bdw_init_clock_gating(struct drm_i915_private *dev_priv) { enum pipe pipe; /* WaSwitchSolVfFArbitrationPriority:bdw */ I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); /* WaPsrDPAMaskVBlankInSRD:bdw */ I915_WRITE(CHICKEN_PAR1_1, I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD); /* WaPsrDPRSUnmaskVBlankInSRD:bdw */ for_each_pipe(dev_priv, pipe) { I915_WRITE(CHICKEN_PIPESL_1(pipe), I915_READ(CHICKEN_PIPESL_1(pipe)) | BDW_DPRS_MASK_VBLANK_SRD); } /* WaVSRefCountFullforceMissDisable:bdw */ /* WaDSRefCountFullforceMissDisable:bdw */ I915_WRITE(GEN7_FF_THREAD_MODE, I915_READ(GEN7_FF_THREAD_MODE) & ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); /* WaDisableSDEUnitClockGating:bdw */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* WaProgramL3SqcReg1Default:bdw */ gen8_set_l3sqc_credits(dev_priv, 30, 2); /* WaKVMNotificationOnConfigChange:bdw */ I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1) | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT); lpt_init_clock_gating(dev_priv); /* WaDisableDopClockGating:bdw * * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP * clock gating. */ I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE); } static void hsw_init_clock_gating(struct drm_i915_private *dev_priv) { /* This is required by WaCatErrorRejectionIssue:hsw */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); /* WaSwitchSolVfFArbitrationPriority:hsw */ I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL); lpt_init_clock_gating(dev_priv); } static void ivb_init_clock_gating(struct drm_i915_private *dev_priv) { u32 snpcr; I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE); /* WaDisableBackToBackFlipFix:ivb */ I915_WRITE(IVB_CHICKEN3, CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | CHICKEN3_DGMG_DONE_FIX_DISABLE); if (IS_IVB_GT1(dev_priv)) I915_WRITE(GEN7_ROW_CHICKEN2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); else { /* must write both registers */ I915_WRITE(GEN7_ROW_CHICKEN2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); I915_WRITE(GEN7_ROW_CHICKEN2_GT2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); } /* * According to the spec, bit 13 (RCZUNIT) must be set on IVB. * This implements the WaDisableRCZUnitClockGating:ivb workaround. */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE); /* This is required by WaCatErrorRejectionIssue:ivb */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); g4x_disable_trickle_feed(dev_priv); snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= GEN6_MBC_SNPCR_MED; I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); if (!HAS_PCH_NOP(dev_priv)) cpt_init_clock_gating(dev_priv); gen6_check_mch_setup(dev_priv); } static void vlv_init_clock_gating(struct drm_i915_private *dev_priv) { /* WaDisableBackToBackFlipFix:vlv */ I915_WRITE(IVB_CHICKEN3, CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE | CHICKEN3_DGMG_DONE_FIX_DISABLE); /* WaDisableDopClockGating:vlv */ I915_WRITE(GEN7_ROW_CHICKEN2, _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE)); /* This is required by WaCatErrorRejectionIssue:vlv */ I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG, I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) | GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB); /* * According to the spec, bit 13 (RCZUNIT) must be set on IVB. * This implements the WaDisableRCZUnitClockGating:vlv workaround. */ I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE); /* WaDisableL3Bank2xClockGate:vlv * Disabling L3 clock gating- MMIO 940c[25] = 1 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */ I915_WRITE(GEN7_UCGCTL4, I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE); /* * WaDisableVLVClockGating_VBIIssue:vlv * Disable clock gating on th GCFG unit to prevent a delay * in the reporting of vblank events. */ I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS); } static void chv_init_clock_gating(struct drm_i915_private *dev_priv) { /* WaVSRefCountFullforceMissDisable:chv */ /* WaDSRefCountFullforceMissDisable:chv */ I915_WRITE(GEN7_FF_THREAD_MODE, I915_READ(GEN7_FF_THREAD_MODE) & ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME)); /* WaDisableSemaphoreAndSyncFlipWait:chv */ I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL, _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE)); /* WaDisableCSUnitClockGating:chv */ I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) | GEN6_CSUNIT_CLOCK_GATE_DISABLE); /* WaDisableSDEUnitClockGating:chv */ I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) | GEN8_SDEUNIT_CLOCK_GATE_DISABLE); /* * WaProgramL3SqcReg1Default:chv * See gfxspecs/Related Documents/Performance Guide/ * LSQC Setting Recommendations. */ gen8_set_l3sqc_credits(dev_priv, 38, 2); } static void g4x_init_clock_gating(struct drm_i915_private *dev_priv) { u32 dspclk_gate; I915_WRITE(RENCLK_GATE_D1, 0); I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE | GS_UNIT_CLOCK_GATE_DISABLE | CL_UNIT_CLOCK_GATE_DISABLE); I915_WRITE(RAMCLK_GATE_D, 0); dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE | OVRUNIT_CLOCK_GATE_DISABLE | OVCUNIT_CLOCK_GATE_DISABLE; if (IS_GM45(dev_priv)) dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE; I915_WRITE(DSPCLK_GATE_D, dspclk_gate); g4x_disable_trickle_feed(dev_priv); } static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv) { struct intel_uncore *uncore = &dev_priv->uncore; intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE); intel_uncore_write(uncore, RENCLK_GATE_D2, 0); intel_uncore_write(uncore, DSPCLK_GATE_D, 0); intel_uncore_write(uncore, RAMCLK_GATE_D, 0); intel_uncore_write16(uncore, DEUC, 0); intel_uncore_write(uncore, MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); } static void i965g_init_clock_gating(struct drm_i915_private *dev_priv) { I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE | I965_RCC_CLOCK_GATE_DISABLE | I965_RCPB_CLOCK_GATE_DISABLE | I965_ISC_CLOCK_GATE_DISABLE | I965_FBC_CLOCK_GATE_DISABLE); I915_WRITE(RENCLK_GATE_D2, 0); I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); } static void gen3_init_clock_gating(struct drm_i915_private *dev_priv) { u32 dstate = I915_READ(D_STATE); dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING | DSTATE_DOT_CLOCK_GATING; I915_WRITE(D_STATE, dstate); if (IS_PINEVIEW(dev_priv)) I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY)); /* IIR "flip pending" means done if this bit is set */ I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE)); /* interrupts should cause a wake up from C3 */ I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN)); /* On GEN3 we really need to make sure the ARB C3 LP bit is set */ I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE)); I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE)); } static void i85x_init_clock_gating(struct drm_i915_private *dev_priv) { I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE); /* interrupts should cause a wake up from C3 */ I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) | _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE)); I915_WRITE(MEM_MODE, _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE)); } static void i830_init_clock_gating(struct drm_i915_private *dev_priv) { I915_WRITE(MEM_MODE, _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) | _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE)); } void intel_init_clock_gating(struct drm_i915_private *dev_priv) { dev_priv->display.init_clock_gating(dev_priv); } void intel_suspend_hw(struct drm_i915_private *dev_priv) { if (HAS_PCH_LPT(dev_priv)) lpt_suspend_hw(dev_priv); } static void nop_init_clock_gating(struct drm_i915_private *dev_priv) { drm_dbg_kms(&dev_priv->drm, "No clock gating settings or workarounds applied.\n"); } /** * intel_init_clock_gating_hooks - setup the clock gating hooks * @dev_priv: device private * * Setup the hooks that configure which clocks of a given platform can be * gated and also apply various GT and display specific workarounds for these * platforms. Note that some GT specific workarounds are applied separately * when GPU contexts or batchbuffers start their execution. */ void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv) { if (IS_GEN(dev_priv, 12)) dev_priv->display.init_clock_gating = tgl_init_clock_gating; else if (IS_GEN(dev_priv, 11)) dev_priv->display.init_clock_gating = icl_init_clock_gating; else if (IS_CANNONLAKE(dev_priv)) dev_priv->display.init_clock_gating = cnl_init_clock_gating; else if (IS_COFFEELAKE(dev_priv)) dev_priv->display.init_clock_gating = cfl_init_clock_gating; else if (IS_SKYLAKE(dev_priv)) dev_priv->display.init_clock_gating = skl_init_clock_gating; else if (IS_KABYLAKE(dev_priv)) dev_priv->display.init_clock_gating = kbl_init_clock_gating; else if (IS_BROXTON(dev_priv)) dev_priv->display.init_clock_gating = bxt_init_clock_gating; else if (IS_GEMINILAKE(dev_priv)) dev_priv->display.init_clock_gating = glk_init_clock_gating; else if (IS_BROADWELL(dev_priv)) dev_priv->display.init_clock_gating = bdw_init_clock_gating; else if (IS_CHERRYVIEW(dev_priv)) dev_priv->display.init_clock_gating = chv_init_clock_gating; else if (IS_HASWELL(dev_priv)) dev_priv->display.init_clock_gating = hsw_init_clock_gating; else if (IS_IVYBRIDGE(dev_priv)) dev_priv->display.init_clock_gating = ivb_init_clock_gating; else if (IS_VALLEYVIEW(dev_priv)) dev_priv->display.init_clock_gating = vlv_init_clock_gating; else if (IS_GEN(dev_priv, 6)) dev_priv->display.init_clock_gating = gen6_init_clock_gating; else if (IS_GEN(dev_priv, 5)) dev_priv->display.init_clock_gating = ilk_init_clock_gating; else if (IS_G4X(dev_priv)) dev_priv->display.init_clock_gating = g4x_init_clock_gating; else if (IS_I965GM(dev_priv)) dev_priv->display.init_clock_gating = i965gm_init_clock_gating; else if (IS_I965G(dev_priv)) dev_priv->display.init_clock_gating = i965g_init_clock_gating; else if (IS_GEN(dev_priv, 3)) dev_priv->display.init_clock_gating = gen3_init_clock_gating; else if (IS_I85X(dev_priv) || IS_I865G(dev_priv)) dev_priv->display.init_clock_gating = i85x_init_clock_gating; else if (IS_GEN(dev_priv, 2)) dev_priv->display.init_clock_gating = i830_init_clock_gating; else { MISSING_CASE(INTEL_DEVID(dev_priv)); dev_priv->display.init_clock_gating = nop_init_clock_gating; } } /* Set up chip specific power management-related functions */ void intel_init_pm(struct drm_i915_private *dev_priv) { /* For cxsr */ if (IS_PINEVIEW(dev_priv)) pnv_get_mem_freq(dev_priv); else if (IS_GEN(dev_priv, 5)) ilk_get_mem_freq(dev_priv); if (intel_has_sagv(dev_priv)) skl_setup_sagv_block_time(dev_priv); /* For FIFO watermark updates */ if (INTEL_GEN(dev_priv) >= 9) { skl_setup_wm_latency(dev_priv); dev_priv->display.compute_global_watermarks = skl_compute_wm; } else if (HAS_PCH_SPLIT(dev_priv)) { ilk_setup_wm_latency(dev_priv); if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] && dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) || (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] && dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) { dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm; dev_priv->display.compute_intermediate_wm = ilk_compute_intermediate_wm; dev_priv->display.initial_watermarks = ilk_initial_watermarks; dev_priv->display.optimize_watermarks = ilk_optimize_watermarks; } else { drm_dbg_kms(&dev_priv->drm, "Failed to read display plane latency. " "Disable CxSR\n"); } } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_setup_wm_latency(dev_priv); dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm; dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm; dev_priv->display.initial_watermarks = vlv_initial_watermarks; dev_priv->display.optimize_watermarks = vlv_optimize_watermarks; dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo; } else if (IS_G4X(dev_priv)) { g4x_setup_wm_latency(dev_priv); dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm; dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm; dev_priv->display.initial_watermarks = g4x_initial_watermarks; dev_priv->display.optimize_watermarks = g4x_optimize_watermarks; } else if (IS_PINEVIEW(dev_priv)) { if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv), dev_priv->is_ddr3, dev_priv->fsb_freq, dev_priv->mem_freq)) { drm_info(&dev_priv->drm, "failed to find known CxSR latency " "(found ddr%s fsb freq %d, mem freq %d), " "disabling CxSR\n", (dev_priv->is_ddr3 == 1) ? "3" : "2", dev_priv->fsb_freq, dev_priv->mem_freq); /* Disable CxSR and never update its watermark again */ intel_set_memory_cxsr(dev_priv, false); dev_priv->display.update_wm = NULL; } else dev_priv->display.update_wm = pnv_update_wm; } else if (IS_GEN(dev_priv, 4)) { dev_priv->display.update_wm = i965_update_wm; } else if (IS_GEN(dev_priv, 3)) { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i9xx_get_fifo_size; } else if (IS_GEN(dev_priv, 2)) { if (INTEL_NUM_PIPES(dev_priv) == 1) { dev_priv->display.update_wm = i845_update_wm; dev_priv->display.get_fifo_size = i845_get_fifo_size; } else { dev_priv->display.update_wm = i9xx_update_wm; dev_priv->display.get_fifo_size = i830_get_fifo_size; } } else { drm_err(&dev_priv->drm, "unexpected fall-through in %s\n", __func__); } } void intel_pm_setup(struct drm_i915_private *dev_priv) { dev_priv->runtime_pm.suspended = false; atomic_set(&dev_priv->runtime_pm.wakeref_count, 0); }