/* * Copyright 2006 Dave Airlie * Copyright © 2006-2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt * Jesse Barnes */ #include #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include #include #include "i915_drv.h" static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi) { return hdmi_to_dig_port(intel_hdmi)->base.base.dev; } static void assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi) { struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi); struct drm_i915_private *dev_priv = to_i915(dev); u32 enabled_bits; enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE; WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits, "HDMI port enabled, expecting disabled\n"); } static void assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { WARN(I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder)) & TRANS_DDI_FUNC_ENABLE, "HDMI transcoder function enabled, expecting disabled\n"); } struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder) { struct intel_digital_port *intel_dig_port = container_of(encoder, struct intel_digital_port, base.base); return &intel_dig_port->hdmi; } static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector) { return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base); } static u32 g4x_infoframe_index(unsigned int type) { switch (type) { case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_SELECT_AVI; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_SELECT_SPD; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_SELECT_VENDOR; default: MISSING_CASE(type); return 0; } } static u32 g4x_infoframe_enable(unsigned int type) { switch (type) { case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_ENABLE_VENDOR; default: MISSING_CASE(type); return 0; } } static u32 hsw_infoframe_enable(unsigned int type) { switch (type) { case DP_SDP_VSC: return VIDEO_DIP_ENABLE_VSC_HSW; case HDMI_INFOFRAME_TYPE_AVI: return VIDEO_DIP_ENABLE_AVI_HSW; case HDMI_INFOFRAME_TYPE_SPD: return VIDEO_DIP_ENABLE_SPD_HSW; case HDMI_INFOFRAME_TYPE_VENDOR: return VIDEO_DIP_ENABLE_VS_HSW; default: MISSING_CASE(type); return 0; } } static i915_reg_t hsw_dip_data_reg(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder, unsigned int type, int i) { switch (type) { case DP_SDP_VSC: return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i); case HDMI_INFOFRAME_TYPE_AVI: return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i); case HDMI_INFOFRAME_TYPE_SPD: return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i); case HDMI_INFOFRAME_TYPE_VENDOR: return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i); default: MISSING_CASE(type); return INVALID_MMIO_REG; } } static void g4x_write_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 val = I915_READ(VIDEO_DIP_CTL); int i; WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); I915_WRITE(VIDEO_DIP_CTL, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(VIDEO_DIP_DATA, *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(VIDEO_DIP_DATA, 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(VIDEO_DIP_CTL, val); POSTING_READ(VIDEO_DIP_CTL); } static bool g4x_infoframe_enabled(struct drm_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); u32 val = I915_READ(VIDEO_DIP_CTL); if ((val & VIDEO_DIP_ENABLE) == 0) return false; if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port)) return false; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); } static void ibx_write_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); int i; WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static bool ibx_infoframe_enabled(struct drm_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe; i915_reg_t reg = TVIDEO_DIP_CTL(pipe); u32 val = I915_READ(reg); if ((val & VIDEO_DIP_ENABLE) == 0) return false; if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port)) return false; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); } static void cpt_write_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); int i; WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); /* The DIP control register spec says that we need to update the AVI * infoframe without clearing its enable bit */ if (type != HDMI_INFOFRAME_TYPE_AVI) val &= ~g4x_infoframe_enable(type); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static bool cpt_infoframe_enabled(struct drm_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe; u32 val = I915_READ(TVIDEO_DIP_CTL(pipe)); if ((val & VIDEO_DIP_ENABLE) == 0) return false; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); } static void vlv_write_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); int i; WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n"); val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */ val |= g4x_infoframe_index(type); val &= ~g4x_infoframe_enable(type); I915_WRITE(reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < VIDEO_DIP_DATA_SIZE; i += 4) I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0); mmiowb(); val |= g4x_infoframe_enable(type); val &= ~VIDEO_DIP_FREQ_MASK; val |= VIDEO_DIP_FREQ_VSYNC; I915_WRITE(reg, val); POSTING_READ(reg); } static bool vlv_infoframe_enabled(struct drm_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); enum pipe pipe = to_intel_crtc(pipe_config->base.crtc)->pipe; u32 val = I915_READ(VLV_TVIDEO_DIP_CTL(pipe)); if ((val & VIDEO_DIP_ENABLE) == 0) return false; if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(intel_dig_port->base.port)) return false; return val & (VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); } static void hsw_write_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, unsigned int type, const void *frame, ssize_t len) { const u32 *data = frame; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder); int data_size = type == DP_SDP_VSC ? VIDEO_DIP_VSC_DATA_SIZE : VIDEO_DIP_DATA_SIZE; int i; u32 val = I915_READ(ctl_reg); val &= ~hsw_infoframe_enable(type); I915_WRITE(ctl_reg, val); mmiowb(); for (i = 0; i < len; i += 4) { I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), *data); data++; } /* Write every possible data byte to force correct ECC calculation. */ for (; i < data_size; i += 4) I915_WRITE(hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2), 0); mmiowb(); val |= hsw_infoframe_enable(type); I915_WRITE(ctl_reg, val); POSTING_READ(ctl_reg); } static bool hsw_infoframe_enabled(struct drm_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); u32 val = I915_READ(HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder)); return val & (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); } /* * The data we write to the DIP data buffer registers is 1 byte bigger than the * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting * at 0). It's also a byte used by DisplayPort so the same DIP registers can be * used for both technologies. * * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0 * DW1: DB3 | DB2 | DB1 | DB0 * DW2: DB7 | DB6 | DB5 | DB4 * DW3: ... * * (HB is Header Byte, DB is Data Byte) * * The hdmi pack() functions don't know about that hardware specific hole so we * trick them by giving an offset into the buffer and moving back the header * bytes by one. */ static void intel_write_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, union hdmi_infoframe *frame) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); u8 buffer[VIDEO_DIP_DATA_SIZE]; ssize_t len; /* see comment above for the reason for this offset */ len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1); if (len < 0) return; /* Insert the 'hole' (see big comment above) at position 3 */ buffer[0] = buffer[1]; buffer[1] = buffer[2]; buffer[2] = buffer[3]; buffer[3] = 0; len++; intel_dig_port->write_infoframe(encoder, crtc_state, frame->any.type, buffer, len); } static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; struct drm_connector *connector = &intel_hdmi->attached_connector->base; bool is_hdmi2_sink = connector->display_info.hdmi.scdc.supported; union hdmi_infoframe frame; int ret; ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, adjusted_mode, is_hdmi2_sink); if (ret < 0) { DRM_ERROR("couldn't fill AVI infoframe\n"); return; } if (crtc_state->ycbcr420) frame.avi.colorspace = HDMI_COLORSPACE_YUV420; else frame.avi.colorspace = HDMI_COLORSPACE_RGB; drm_hdmi_avi_infoframe_quant_range(&frame.avi, adjusted_mode, crtc_state->limited_color_range ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL, intel_hdmi->rgb_quant_range_selectable, is_hdmi2_sink); drm_hdmi_avi_infoframe_content_type(&frame.avi, conn_state); /* TODO: handle pixel repetition for YCBCR420 outputs */ intel_write_infoframe(encoder, crtc_state, &frame); } static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state) { union hdmi_infoframe frame; int ret; ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx"); if (ret < 0) { DRM_ERROR("couldn't fill SPD infoframe\n"); return; } frame.spd.sdi = HDMI_SPD_SDI_PC; intel_write_infoframe(encoder, crtc_state, &frame); } static void intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { union hdmi_infoframe frame; int ret; ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi, conn_state->connector, &crtc_state->base.adjusted_mode); if (ret < 0) return; intel_write_infoframe(encoder, crtc_state, &frame); } static void g4x_set_infoframes(struct drm_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; i915_reg_t reg = VIDEO_DIP_CTL; u32 val = I915_READ(reg); u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port); assert_hdmi_port_disabled(intel_hdmi); /* If the registers were not initialized yet, they might be zeroes, * which means we're selecting the AVI DIP and we're setting its * frequency to once. This seems to really confuse the HW and make * things stop working (the register spec says the AVI always needs to * be sent every VSync). So here we avoid writing to the register more * than we need and also explicitly select the AVI DIP and explicitly * set its frequency to every VSync. Avoiding to write it twice seems to * be enough to solve the problem, but being defensive shouldn't hurt us * either. */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; if (port != (val & VIDEO_DIP_PORT_MASK)) { DRM_DEBUG_KMS("video DIP still enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); return; } val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); I915_WRITE(reg, val); POSTING_READ(reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { if (val & VIDEO_DIP_ENABLE) { DRM_DEBUG_KMS("video DIP already enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); return; } val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD); I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state); intel_hdmi_set_spd_infoframe(encoder, crtc_state); intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state); } static bool hdmi_sink_is_deep_color(const struct drm_connector_state *conn_state) { struct drm_connector *connector = conn_state->connector; /* * HDMI cloning is only supported on g4x which doesn't * support deep color or GCP infoframes anyway so no * need to worry about multiple HDMI sinks here. */ return connector->display_info.bpc > 8; } /* * Determine if default_phase=1 can be indicated in the GCP infoframe. * * From HDMI specification 1.4a: * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing * phase of 0 */ static bool gcp_default_phase_possible(int pipe_bpp, const struct drm_display_mode *mode) { unsigned int pixels_per_group; switch (pipe_bpp) { case 30: /* 4 pixels in 5 clocks */ pixels_per_group = 4; break; case 36: /* 2 pixels in 3 clocks */ pixels_per_group = 2; break; case 48: /* 1 pixel in 2 clocks */ pixels_per_group = 1; break; default: /* phase information not relevant for 8bpc */ return false; } return mode->crtc_hdisplay % pixels_per_group == 0 && mode->crtc_htotal % pixels_per_group == 0 && mode->crtc_hblank_start % pixels_per_group == 0 && mode->crtc_hblank_end % pixels_per_group == 0 && mode->crtc_hsync_start % pixels_per_group == 0 && mode->crtc_hsync_end % pixels_per_group == 0 && ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 || mode->crtc_htotal/2 % pixels_per_group == 0); } static bool intel_hdmi_set_gcp_infoframe(struct drm_encoder *encoder, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); i915_reg_t reg; u32 val = 0; if (HAS_DDI(dev_priv)) reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) reg = VLV_TVIDEO_DIP_GCP(crtc->pipe); else if (HAS_PCH_SPLIT(dev_priv)) reg = TVIDEO_DIP_GCP(crtc->pipe); else return false; /* Indicate color depth whenever the sink supports deep color */ if (hdmi_sink_is_deep_color(conn_state)) val |= GCP_COLOR_INDICATION; /* Enable default_phase whenever the display mode is suitably aligned */ if (gcp_default_phase_possible(crtc_state->pipe_bpp, &crtc_state->base.adjusted_mode)) val |= GCP_DEFAULT_PHASE_ENABLE; I915_WRITE(reg, val); return val != 0; } static void ibx_set_infoframes(struct drm_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { WARN(val & VIDEO_DIP_ENABLE, "DIP already enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP; I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state); intel_hdmi_set_spd_infoframe(encoder, crtc_state); intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state); } static void cpt_set_infoframes(struct drm_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); return; } /* Set both together, unset both together: see the spec. */ val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI; val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP; I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state); intel_hdmi_set_spd_infoframe(encoder, crtc_state); intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state); } static void vlv_set_infoframes(struct drm_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder); i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe); u32 val = I915_READ(reg); u32 port = VIDEO_DIP_PORT(intel_dig_port->base.port); assert_hdmi_port_disabled(intel_hdmi); /* See the big comment in g4x_set_infoframes() */ val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC; if (!enable) { if (!(val & VIDEO_DIP_ENABLE)) return; val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); I915_WRITE(reg, val); POSTING_READ(reg); return; } if (port != (val & VIDEO_DIP_PORT_MASK)) { WARN(val & VIDEO_DIP_ENABLE, "DIP already enabled on port %c\n", (val & VIDEO_DIP_PORT_MASK) >> 29); val &= ~VIDEO_DIP_PORT_MASK; val |= port; } val |= VIDEO_DIP_ENABLE; val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP); if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP; I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state); intel_hdmi_set_spd_infoframe(encoder, crtc_state); intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state); } static void hsw_set_infoframes(struct drm_encoder *encoder, bool enable, const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder); u32 val = I915_READ(reg); assert_hdmi_transcoder_func_disabled(dev_priv, crtc_state->cpu_transcoder); val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW); if (!enable) { I915_WRITE(reg, val); POSTING_READ(reg); return; } if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state)) val |= VIDEO_DIP_ENABLE_GCP_HSW; I915_WRITE(reg, val); POSTING_READ(reg); intel_hdmi_set_avi_infoframe(encoder, crtc_state, conn_state); intel_hdmi_set_spd_infoframe(encoder, crtc_state); intel_hdmi_set_hdmi_infoframe(encoder, crtc_state, conn_state); } void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable) { struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi)); struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI) return; DRM_DEBUG_KMS("%s DP dual mode adaptor TMDS output\n", enable ? "Enabling" : "Disabling"); drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type, adapter, enable); } static int intel_hdmi_hdcp_read(struct intel_digital_port *intel_dig_port, unsigned int offset, void *buffer, size_t size) { struct intel_hdmi *hdmi = &intel_dig_port->hdmi; struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); int ret; u8 start = offset & 0xff; struct i2c_msg msgs[] = { { .addr = DRM_HDCP_DDC_ADDR, .flags = 0, .len = 1, .buf = &start, }, { .addr = DRM_HDCP_DDC_ADDR, .flags = I2C_M_RD, .len = size, .buf = buffer } }; ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs)); if (ret == ARRAY_SIZE(msgs)) return 0; return ret >= 0 ? -EIO : ret; } static int intel_hdmi_hdcp_write(struct intel_digital_port *intel_dig_port, unsigned int offset, void *buffer, size_t size) { struct intel_hdmi *hdmi = &intel_dig_port->hdmi; struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); int ret; u8 *write_buf; struct i2c_msg msg; write_buf = kzalloc(size + 1, GFP_KERNEL); if (!write_buf) return -ENOMEM; write_buf[0] = offset & 0xff; memcpy(&write_buf[1], buffer, size); msg.addr = DRM_HDCP_DDC_ADDR; msg.flags = 0, msg.len = size + 1, msg.buf = write_buf; ret = i2c_transfer(adapter, &msg, 1); if (ret == 1) ret = 0; else if (ret >= 0) ret = -EIO; kfree(write_buf); return ret; } static int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, u8 *an) { struct intel_hdmi *hdmi = &intel_dig_port->hdmi; struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); int ret; ret = intel_hdmi_hdcp_write(intel_dig_port, DRM_HDCP_DDC_AN, an, DRM_HDCP_AN_LEN); if (ret) { DRM_ERROR("Write An over DDC failed (%d)\n", ret); return ret; } ret = intel_gmbus_output_aksv(adapter); if (ret < 0) { DRM_ERROR("Failed to output aksv (%d)\n", ret); return ret; } return 0; } static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, u8 *bksv) { int ret; ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BKSV, bksv, DRM_HDCP_KSV_LEN); if (ret) DRM_ERROR("Read Bksv over DDC failed (%d)\n", ret); return ret; } static int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, u8 *bstatus) { int ret; ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BSTATUS, bstatus, DRM_HDCP_BSTATUS_LEN); if (ret) DRM_ERROR("Read bstatus over DDC failed (%d)\n", ret); return ret; } static int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, bool *repeater_present) { int ret; u8 val; ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); if (ret) { DRM_ERROR("Read bcaps over DDC failed (%d)\n", ret); return ret; } *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT; return 0; } static int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, u8 *ri_prime) { int ret; ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_RI_PRIME, ri_prime, DRM_HDCP_RI_LEN); if (ret) DRM_ERROR("Read Ri' over DDC failed (%d)\n", ret); return ret; } static int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, bool *ksv_ready) { int ret; u8 val; ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_BCAPS, &val, 1); if (ret) { DRM_ERROR("Read bcaps over DDC failed (%d)\n", ret); return ret; } *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY; return 0; } static int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, int num_downstream, u8 *ksv_fifo) { int ret; ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_KSV_FIFO, ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN); if (ret) { DRM_ERROR("Read ksv fifo over DDC failed (%d)\n", ret); return ret; } return 0; } static int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, int i, u32 *part) { int ret; if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) return -EINVAL; ret = intel_hdmi_hdcp_read(intel_dig_port, DRM_HDCP_DDC_V_PRIME(i), part, DRM_HDCP_V_PRIME_PART_LEN); if (ret) DRM_ERROR("Read V'[%d] over DDC failed (%d)\n", i, ret); return ret; } static int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, bool enable) { int ret; if (!enable) usleep_range(6, 60); /* Bspec says >= 6us */ ret = intel_ddi_toggle_hdcp_signalling(&intel_dig_port->base, enable); if (ret) { DRM_ERROR("%s HDCP signalling failed (%d)\n", enable ? "Enable" : "Disable", ret); return ret; } return 0; } static bool intel_hdmi_hdcp_check_link(struct intel_digital_port *intel_dig_port) { struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private; enum port port = intel_dig_port->base.port; int ret; union { u32 reg; u8 shim[DRM_HDCP_RI_LEN]; } ri; ret = intel_hdmi_hdcp_read_ri_prime(intel_dig_port, ri.shim); if (ret) return false; I915_WRITE(PORT_HDCP_RPRIME(port), ri.reg); /* Wait for Ri prime match */ if (wait_for(I915_READ(PORT_HDCP_STATUS(port)) & (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) { DRM_ERROR("Ri' mismatch detected, link check failed (%x)\n", I915_READ(PORT_HDCP_STATUS(port))); return false; } return true; } static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = { .write_an_aksv = intel_hdmi_hdcp_write_an_aksv, .read_bksv = intel_hdmi_hdcp_read_bksv, .read_bstatus = intel_hdmi_hdcp_read_bstatus, .repeater_present = intel_hdmi_hdcp_repeater_present, .read_ri_prime = intel_hdmi_hdcp_read_ri_prime, .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready, .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo, .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part, .toggle_signalling = intel_hdmi_hdcp_toggle_signalling, .check_link = intel_hdmi_hdcp_check_link, }; static void intel_hdmi_prepare(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; u32 hdmi_val; intel_dp_dual_mode_set_tmds_output(intel_hdmi, true); hdmi_val = SDVO_ENCODING_HDMI; if (!HAS_PCH_SPLIT(dev_priv) && crtc_state->limited_color_range) hdmi_val |= HDMI_COLOR_RANGE_16_235; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH; if (crtc_state->pipe_bpp > 24) hdmi_val |= HDMI_COLOR_FORMAT_12bpc; else hdmi_val |= SDVO_COLOR_FORMAT_8bpc; if (crtc_state->has_hdmi_sink) hdmi_val |= HDMI_MODE_SELECT_HDMI; if (HAS_PCH_CPT(dev_priv)) hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe); else if (IS_CHERRYVIEW(dev_priv)) hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe); else hdmi_val |= SDVO_PIPE_SEL(crtc->pipe); I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val); POSTING_READ(intel_hdmi->hdmi_reg); } static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); bool ret; if (!intel_display_power_get_if_enabled(dev_priv, encoder->power_domain)) return false; ret = intel_sdvo_port_enabled(dev_priv, intel_hdmi->hdmi_reg, pipe); intel_display_power_put(dev_priv, encoder->power_domain); return ret; } static void intel_hdmi_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct intel_digital_port *intel_dig_port = hdmi_to_dig_port(intel_hdmi); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 tmp, flags = 0; int dotclock; pipe_config->output_types |= BIT(INTEL_OUTPUT_HDMI); tmp = I915_READ(intel_hdmi->hdmi_reg); if (tmp & SDVO_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & SDVO_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; if (tmp & HDMI_MODE_SELECT_HDMI) pipe_config->has_hdmi_sink = true; if (intel_dig_port->infoframe_enabled(&encoder->base, pipe_config)) pipe_config->has_infoframe = true; if (tmp & SDVO_AUDIO_ENABLE) pipe_config->has_audio = true; if (!HAS_PCH_SPLIT(dev_priv) && tmp & HDMI_COLOR_RANGE_16_235) pipe_config->limited_color_range = true; pipe_config->base.adjusted_mode.flags |= flags; if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc) dotclock = pipe_config->port_clock * 2 / 3; else dotclock = pipe_config->port_clock; if (pipe_config->pixel_multiplier) dotclock /= pipe_config->pixel_multiplier; pipe_config->base.adjusted_mode.crtc_clock = dotclock; pipe_config->lane_count = 4; } static void intel_enable_hdmi_audio(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); WARN_ON(!pipe_config->has_hdmi_sink); DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n", pipe_name(crtc->pipe)); intel_audio_codec_enable(encoder, pipe_config, conn_state); } static void g4x_enable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); u32 temp; temp = I915_READ(intel_hdmi->hdmi_reg); temp |= SDVO_ENABLE; if (pipe_config->has_audio) temp |= SDVO_AUDIO_ENABLE; I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); if (pipe_config->has_audio) intel_enable_hdmi_audio(encoder, pipe_config, conn_state); } static void ibx_enable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); u32 temp; temp = I915_READ(intel_hdmi->hdmi_reg); temp |= SDVO_ENABLE; if (pipe_config->has_audio) temp |= SDVO_AUDIO_ENABLE; /* * HW workaround, need to write this twice for issue * that may result in first write getting masked. */ I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); /* * HW workaround, need to toggle enable bit off and on * for 12bpc with pixel repeat. * * FIXME: BSpec says this should be done at the end of * of the modeset sequence, so not sure if this isn't too soon. */ if (pipe_config->pipe_bpp > 24 && pipe_config->pixel_multiplier > 1) { I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE); POSTING_READ(intel_hdmi->hdmi_reg); /* * HW workaround, need to write this twice for issue * that may result in first write getting masked. */ I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); } if (pipe_config->has_audio) intel_enable_hdmi_audio(encoder, pipe_config, conn_state); } static void cpt_enable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); enum pipe pipe = crtc->pipe; u32 temp; temp = I915_READ(intel_hdmi->hdmi_reg); temp |= SDVO_ENABLE; if (pipe_config->has_audio) temp |= SDVO_AUDIO_ENABLE; /* * WaEnableHDMI8bpcBefore12bpc:snb,ivb * * The procedure for 12bpc is as follows: * 1. disable HDMI clock gating * 2. enable HDMI with 8bpc * 3. enable HDMI with 12bpc * 4. enable HDMI clock gating */ if (pipe_config->pipe_bpp > 24) { I915_WRITE(TRANS_CHICKEN1(pipe), I915_READ(TRANS_CHICKEN1(pipe)) | TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE); temp &= ~SDVO_COLOR_FORMAT_MASK; temp |= SDVO_COLOR_FORMAT_8bpc; } I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); if (pipe_config->pipe_bpp > 24) { temp &= ~SDVO_COLOR_FORMAT_MASK; temp |= HDMI_COLOR_FORMAT_12bpc; I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); I915_WRITE(TRANS_CHICKEN1(pipe), I915_READ(TRANS_CHICKEN1(pipe)) & ~TRANS_CHICKEN1_HDMIUNIT_GC_DISABLE); } if (pipe_config->has_audio) intel_enable_hdmi_audio(encoder, pipe_config, conn_state); } static void vlv_enable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { } static void intel_disable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct intel_digital_port *intel_dig_port = hdmi_to_dig_port(intel_hdmi); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); u32 temp; temp = I915_READ(intel_hdmi->hdmi_reg); temp &= ~(SDVO_ENABLE | SDVO_AUDIO_ENABLE); I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); /* * HW workaround for IBX, we need to move the port * to transcoder A after disabling it to allow the * matching DP port to be enabled on transcoder A. */ if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B) { /* * We get CPU/PCH FIFO underruns on the other pipe when * doing the workaround. Sweep them under the rug. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); temp &= ~SDVO_PIPE_SEL_MASK; temp |= SDVO_ENABLE | SDVO_PIPE_SEL(PIPE_A); /* * HW workaround, need to write this twice for issue * that may result in first write getting masked. */ I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); temp &= ~SDVO_ENABLE; I915_WRITE(intel_hdmi->hdmi_reg, temp); POSTING_READ(intel_hdmi->hdmi_reg); intel_wait_for_vblank_if_active(dev_priv, PIPE_A); intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } intel_dig_port->set_infoframes(&encoder->base, false, old_crtc_state, old_conn_state); intel_dp_dual_mode_set_tmds_output(intel_hdmi, false); } static void g4x_disable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); intel_disable_hdmi(encoder, old_crtc_state, old_conn_state); } static void pch_disable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); } static void pch_post_disable_hdmi(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_hdmi(encoder, old_crtc_state, old_conn_state); } static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[encoder->port]; int max_tmds_clock; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) max_tmds_clock = 594000; else if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) max_tmds_clock = 300000; else if (INTEL_GEN(dev_priv) >= 5) max_tmds_clock = 225000; else max_tmds_clock = 165000; if (info->max_tmds_clock) max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock); return max_tmds_clock; } static int hdmi_port_clock_limit(struct intel_hdmi *hdmi, bool respect_downstream_limits, bool force_dvi) { struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base; int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder); if (respect_downstream_limits) { struct intel_connector *connector = hdmi->attached_connector; const struct drm_display_info *info = &connector->base.display_info; if (hdmi->dp_dual_mode.max_tmds_clock) max_tmds_clock = min(max_tmds_clock, hdmi->dp_dual_mode.max_tmds_clock); if (info->max_tmds_clock) max_tmds_clock = min(max_tmds_clock, info->max_tmds_clock); else if (!hdmi->has_hdmi_sink || force_dvi) max_tmds_clock = min(max_tmds_clock, 165000); } return max_tmds_clock; } static enum drm_mode_status hdmi_port_clock_valid(struct intel_hdmi *hdmi, int clock, bool respect_downstream_limits, bool force_dvi) { struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi)); if (clock < 25000) return MODE_CLOCK_LOW; if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits, force_dvi)) return MODE_CLOCK_HIGH; /* BXT DPLL can't generate 223-240 MHz */ if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000) return MODE_CLOCK_RANGE; /* CHV DPLL can't generate 216-240 MHz */ if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000) return MODE_CLOCK_RANGE; return MODE_OK; } static enum drm_mode_status intel_hdmi_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_hdmi *hdmi = intel_attached_hdmi(connector); struct drm_device *dev = intel_hdmi_to_dev(hdmi); struct drm_i915_private *dev_priv = to_i915(dev); enum drm_mode_status status; int clock; int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; bool force_dvi = READ_ONCE(to_intel_digital_connector_state(connector->state)->force_audio) == HDMI_AUDIO_OFF_DVI; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; clock = mode->clock; if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING) clock *= 2; if (clock > max_dotclk) return MODE_CLOCK_HIGH; if (mode->flags & DRM_MODE_FLAG_DBLCLK) clock *= 2; if (drm_mode_is_420_only(&connector->display_info, mode)) clock /= 2; /* check if we can do 8bpc */ status = hdmi_port_clock_valid(hdmi, clock, true, force_dvi); if (hdmi->has_hdmi_sink && !force_dvi) { /* if we can't do 8bpc we may still be able to do 12bpc */ if (status != MODE_OK && !HAS_GMCH_DISPLAY(dev_priv)) status = hdmi_port_clock_valid(hdmi, clock * 3 / 2, true, force_dvi); /* if we can't do 8,12bpc we may still be able to do 10bpc */ if (status != MODE_OK && INTEL_GEN(dev_priv) >= 11) status = hdmi_port_clock_valid(hdmi, clock * 5 / 4, true, force_dvi); } return status; } static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state, int bpc) { struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev); struct drm_atomic_state *state = crtc_state->base.state; struct drm_connector_state *connector_state; struct drm_connector *connector; int i; if (HAS_GMCH_DISPLAY(dev_priv)) return false; if (bpc == 10 && INTEL_GEN(dev_priv) < 11) return false; if (crtc_state->pipe_bpp <= 8*3) return false; if (!crtc_state->has_hdmi_sink) return false; /* * HDMI deep color affects the clocks, so it's only possible * when not cloning with other encoder types. */ if (crtc_state->output_types != 1 << INTEL_OUTPUT_HDMI) return false; for_each_new_connector_in_state(state, connector, connector_state, i) { const struct drm_display_info *info = &connector->display_info; if (connector_state->crtc != crtc_state->base.crtc) continue; if (crtc_state->ycbcr420) { const struct drm_hdmi_info *hdmi = &info->hdmi; if (bpc == 12 && !(hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36)) return false; else if (bpc == 10 && !(hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30)) return false; } else { if (bpc == 12 && !(info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36)) return false; else if (bpc == 10 && !(info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30)) return false; } } /* Display WA #1139: glk */ if (bpc == 12 && IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1) && crtc_state->base.adjusted_mode.htotal > 5460) return false; return true; } static bool intel_hdmi_ycbcr420_config(struct drm_connector *connector, struct intel_crtc_state *config, int *clock_12bpc, int *clock_10bpc, int *clock_8bpc) { struct intel_crtc *intel_crtc = to_intel_crtc(config->base.crtc); if (!connector->ycbcr_420_allowed) { DRM_ERROR("Platform doesn't support YCBCR420 output\n"); return false; } /* YCBCR420 TMDS rate requirement is half the pixel clock */ config->port_clock /= 2; *clock_12bpc /= 2; *clock_10bpc /= 2; *clock_8bpc /= 2; config->ycbcr420 = true; /* YCBCR 420 output conversion needs a scaler */ if (skl_update_scaler_crtc(config)) { DRM_DEBUG_KMS("Scaler allocation for output failed\n"); return false; } intel_pch_panel_fitting(intel_crtc, config, DRM_MODE_SCALE_FULLSCREEN); return true; } bool intel_hdmi_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; struct drm_connector *connector = conn_state->connector; struct drm_scdc *scdc = &connector->display_info.hdmi.scdc; struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); int clock_8bpc = pipe_config->base.adjusted_mode.crtc_clock; int clock_10bpc = clock_8bpc * 5 / 4; int clock_12bpc = clock_8bpc * 3 / 2; int desired_bpp; bool force_dvi = intel_conn_state->force_audio == HDMI_AUDIO_OFF_DVI; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return false; pipe_config->has_hdmi_sink = !force_dvi && intel_hdmi->has_hdmi_sink; if (pipe_config->has_hdmi_sink) pipe_config->has_infoframe = true; if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* See CEA-861-E - 5.1 Default Encoding Parameters */ pipe_config->limited_color_range = pipe_config->has_hdmi_sink && drm_default_rgb_quant_range(adjusted_mode) == HDMI_QUANTIZATION_RANGE_LIMITED; } else { pipe_config->limited_color_range = intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) { pipe_config->pixel_multiplier = 2; clock_8bpc *= 2; clock_10bpc *= 2; clock_12bpc *= 2; } if (drm_mode_is_420_only(&connector->display_info, adjusted_mode)) { if (!intel_hdmi_ycbcr420_config(connector, pipe_config, &clock_12bpc, &clock_10bpc, &clock_8bpc)) { DRM_ERROR("Can't support YCBCR420 output\n"); return false; } } if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv)) pipe_config->has_pch_encoder = true; if (pipe_config->has_hdmi_sink) { if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) pipe_config->has_audio = intel_hdmi->has_audio; else pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; } /* * Note that g4x/vlv don't support 12bpc hdmi outputs. We also need * to check that the higher clock still fits within limits. */ if (hdmi_deep_color_possible(pipe_config, 12) && hdmi_port_clock_valid(intel_hdmi, clock_12bpc, true, force_dvi) == MODE_OK) { DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n"); desired_bpp = 12*3; /* Need to adjust the port link by 1.5x for 12bpc. */ pipe_config->port_clock = clock_12bpc; } else if (hdmi_deep_color_possible(pipe_config, 10) && hdmi_port_clock_valid(intel_hdmi, clock_10bpc, true, force_dvi) == MODE_OK) { DRM_DEBUG_KMS("picking bpc to 10 for HDMI output\n"); desired_bpp = 10 * 3; /* Need to adjust the port link by 1.25x for 10bpc. */ pipe_config->port_clock = clock_10bpc; } else { DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n"); desired_bpp = 8*3; pipe_config->port_clock = clock_8bpc; } if (!pipe_config->bw_constrained) { DRM_DEBUG_KMS("forcing pipe bpp to %i for HDMI\n", desired_bpp); pipe_config->pipe_bpp = desired_bpp; } if (hdmi_port_clock_valid(intel_hdmi, pipe_config->port_clock, false, force_dvi) != MODE_OK) { DRM_DEBUG_KMS("unsupported HDMI clock, rejecting mode\n"); return false; } /* Set user selected PAR to incoming mode's member */ adjusted_mode->picture_aspect_ratio = conn_state->picture_aspect_ratio; pipe_config->lane_count = 4; if (scdc->scrambling.supported && (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))) { if (scdc->scrambling.low_rates) pipe_config->hdmi_scrambling = true; if (pipe_config->port_clock > 340000) { pipe_config->hdmi_scrambling = true; pipe_config->hdmi_high_tmds_clock_ratio = true; } } return true; } static void intel_hdmi_unset_edid(struct drm_connector *connector) { struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); intel_hdmi->has_hdmi_sink = false; intel_hdmi->has_audio = false; intel_hdmi->rgb_quant_range_selectable = false; intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE; intel_hdmi->dp_dual_mode.max_tmds_clock = 0; kfree(to_intel_connector(connector)->detect_edid); to_intel_connector(connector)->detect_edid = NULL; } static void intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_hdmi *hdmi = intel_attached_hdmi(connector); enum port port = hdmi_to_dig_port(hdmi)->base.port; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus); enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter); /* * Type 1 DVI adaptors are not required to implement any * registers, so we can't always detect their presence. * Ideally we should be able to check the state of the * CONFIG1 pin, but no such luck on our hardware. * * The only method left to us is to check the VBT to see * if the port is a dual mode capable DP port. But let's * only do that when we sucesfully read the EDID, to avoid * confusing log messages about DP dual mode adaptors when * there's nothing connected to the port. */ if (type == DRM_DP_DUAL_MODE_UNKNOWN) { /* An overridden EDID imply that we want this port for testing. * Make sure not to set limits for that port. */ if (has_edid && !connector->override_edid && intel_bios_is_port_dp_dual_mode(dev_priv, port)) { DRM_DEBUG_KMS("Assuming DP dual mode adaptor presence based on VBT\n"); type = DRM_DP_DUAL_MODE_TYPE1_DVI; } else { type = DRM_DP_DUAL_MODE_NONE; } } if (type == DRM_DP_DUAL_MODE_NONE) return; hdmi->dp_dual_mode.type = type; hdmi->dp_dual_mode.max_tmds_clock = drm_dp_dual_mode_max_tmds_clock(type, adapter); DRM_DEBUG_KMS("DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n", drm_dp_get_dual_mode_type_name(type), hdmi->dp_dual_mode.max_tmds_clock); } static bool intel_hdmi_set_edid(struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct edid *edid; bool connected = false; struct i2c_adapter *i2c; intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); edid = drm_get_edid(connector, i2c); if (!edid && !intel_gmbus_is_forced_bit(i2c)) { DRM_DEBUG_KMS("HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n"); intel_gmbus_force_bit(i2c, true); edid = drm_get_edid(connector, i2c); intel_gmbus_force_bit(i2c, false); } intel_hdmi_dp_dual_mode_detect(connector, edid != NULL); intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS); to_intel_connector(connector)->detect_edid = edid; if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { intel_hdmi->rgb_quant_range_selectable = drm_rgb_quant_range_selectable(edid); intel_hdmi->has_audio = drm_detect_monitor_audio(edid); intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid); connected = true; } cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid); return connected; } static enum drm_connector_status intel_hdmi_detect(struct drm_connector *connector, bool force) { enum drm_connector_status status = connector_status_disconnected; struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector); struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS); if (IS_ICELAKE(dev_priv) && !intel_digital_port_connected(encoder)) goto out; intel_hdmi_unset_edid(connector); if (intel_hdmi_set_edid(connector)) status = connector_status_connected; out: intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS); if (status != connector_status_connected) cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier); return status; } static void intel_hdmi_force(struct drm_connector *connector) { DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_hdmi_unset_edid(connector); if (connector->status != connector_status_connected) return; intel_hdmi_set_edid(connector); } static int intel_hdmi_get_modes(struct drm_connector *connector) { struct edid *edid; edid = to_intel_connector(connector)->detect_edid; if (edid == NULL) return 0; return intel_connector_update_modes(connector, edid); } static void intel_hdmi_pre_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base); intel_hdmi_prepare(encoder, pipe_config); intel_dig_port->set_infoframes(&encoder->base, pipe_config->has_infoframe, pipe_config, conn_state); } static void vlv_hdmi_pre_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); vlv_phy_pre_encoder_enable(encoder, pipe_config); /* HDMI 1.0V-2dB */ vlv_set_phy_signal_level(encoder, 0x2b245f5f, 0x00002000, 0x5578b83a, 0x2b247878); dport->set_infoframes(&encoder->base, pipe_config->has_infoframe, pipe_config, conn_state); g4x_enable_hdmi(encoder, pipe_config, conn_state); vlv_wait_port_ready(dev_priv, dport, 0x0); } static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_hdmi_prepare(encoder, pipe_config); vlv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_hdmi_prepare(encoder, pipe_config); chv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_hdmi_post_pll_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { chv_phy_post_pll_disable(encoder, old_crtc_state); } static void vlv_hdmi_post_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { /* Reset lanes to avoid HDMI flicker (VLV w/a) */ vlv_phy_reset_lanes(encoder, old_crtc_state); } static void chv_hdmi_post_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); mutex_lock(&dev_priv->sb_lock); /* Assert data lane reset */ chv_data_lane_soft_reset(encoder, old_crtc_state, true); mutex_unlock(&dev_priv->sb_lock); } static void chv_hdmi_pre_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_digital_port *dport = enc_to_dig_port(&encoder->base); struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); chv_phy_pre_encoder_enable(encoder, pipe_config); /* FIXME: Program the support xxx V-dB */ /* Use 800mV-0dB */ chv_set_phy_signal_level(encoder, 128, 102, false); dport->set_infoframes(&encoder->base, pipe_config->has_infoframe, pipe_config, conn_state); g4x_enable_hdmi(encoder, pipe_config, conn_state); vlv_wait_port_ready(dev_priv, dport, 0x0); /* Second common lane will stay alive on its own now */ chv_phy_release_cl2_override(encoder); } static void intel_hdmi_destroy(struct drm_connector *connector) { if (intel_attached_hdmi(connector)->cec_notifier) cec_notifier_put(intel_attached_hdmi(connector)->cec_notifier); kfree(to_intel_connector(connector)->detect_edid); drm_connector_cleanup(connector); kfree(connector); } static const struct drm_connector_funcs intel_hdmi_connector_funcs = { .detect = intel_hdmi_detect, .force = intel_hdmi_force, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .late_register = intel_connector_register, .early_unregister = intel_connector_unregister, .destroy = intel_hdmi_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, }; static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = { .get_modes = intel_hdmi_get_modes, .mode_valid = intel_hdmi_mode_valid, .atomic_check = intel_digital_connector_atomic_check, }; static const struct drm_encoder_funcs intel_hdmi_enc_funcs = { .destroy = intel_encoder_destroy, }; static void intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector) { intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); intel_attach_aspect_ratio_property(connector); drm_connector_attach_content_type_property(connector); connector->state->picture_aspect_ratio = HDMI_PICTURE_ASPECT_NONE; } /* * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup * @encoder: intel_encoder * @connector: drm_connector * @high_tmds_clock_ratio = bool to indicate if the function needs to set * or reset the high tmds clock ratio for scrambling * @scrambling: bool to Indicate if the function needs to set or reset * sink scrambling * * This function handles scrambling on HDMI 2.0 capable sinks. * If required clock rate is > 340 Mhz && scrambling is supported by sink * it enables scrambling. This should be called before enabling the HDMI * 2.0 port, as the sink can choose to disable the scrambling if it doesn't * detect a scrambled clock within 100 ms. * * Returns: * True on success, false on failure. */ bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder, struct drm_connector *connector, bool high_tmds_clock_ratio, bool scrambling) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base); struct drm_scrambling *sink_scrambling = &connector->display_info.hdmi.scdc.scrambling; struct i2c_adapter *adapter = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus); if (!sink_scrambling->supported) return true; DRM_DEBUG_KMS("[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n", connector->base.id, connector->name, yesno(scrambling), high_tmds_clock_ratio ? 40 : 10); /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */ return drm_scdc_set_high_tmds_clock_ratio(adapter, high_tmds_clock_ratio) && drm_scdc_set_scrambling(adapter, scrambling); } static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_DPB; break; case PORT_C: ddc_pin = GMBUS_PIN_DPC; break; case PORT_D: ddc_pin = GMBUS_PIN_DPD_CHV; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_DPB; break; } return ddc_pin; } static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_1_BXT; break; case PORT_C: ddc_pin = GMBUS_PIN_2_BXT; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_1_BXT; break; } return ddc_pin; } static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_1_BXT; break; case PORT_C: ddc_pin = GMBUS_PIN_2_BXT; break; case PORT_D: ddc_pin = GMBUS_PIN_4_CNP; break; case PORT_F: ddc_pin = GMBUS_PIN_3_BXT; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_1_BXT; break; } return ddc_pin; } static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_A: ddc_pin = GMBUS_PIN_1_BXT; break; case PORT_B: ddc_pin = GMBUS_PIN_2_BXT; break; case PORT_C: ddc_pin = GMBUS_PIN_9_TC1_ICP; break; case PORT_D: ddc_pin = GMBUS_PIN_10_TC2_ICP; break; case PORT_E: ddc_pin = GMBUS_PIN_11_TC3_ICP; break; case PORT_F: ddc_pin = GMBUS_PIN_12_TC4_ICP; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_2_BXT; break; } return ddc_pin; } static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { u8 ddc_pin; switch (port) { case PORT_B: ddc_pin = GMBUS_PIN_DPB; break; case PORT_C: ddc_pin = GMBUS_PIN_DPC; break; case PORT_D: ddc_pin = GMBUS_PIN_DPD; break; default: MISSING_CASE(port); ddc_pin = GMBUS_PIN_DPB; break; } return ddc_pin; } static u8 intel_hdmi_ddc_pin(struct drm_i915_private *dev_priv, enum port port) { const struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; u8 ddc_pin; if (info->alternate_ddc_pin) { DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (VBT)\n", info->alternate_ddc_pin, port_name(port)); return info->alternate_ddc_pin; } if (IS_CHERRYVIEW(dev_priv)) ddc_pin = chv_port_to_ddc_pin(dev_priv, port); else if (IS_GEN9_LP(dev_priv)) ddc_pin = bxt_port_to_ddc_pin(dev_priv, port); else if (HAS_PCH_CNP(dev_priv)) ddc_pin = cnp_port_to_ddc_pin(dev_priv, port); else if (HAS_PCH_ICP(dev_priv)) ddc_pin = icl_port_to_ddc_pin(dev_priv, port); else ddc_pin = g4x_port_to_ddc_pin(dev_priv, port); DRM_DEBUG_KMS("Using DDC pin 0x%x for port %c (platform default)\n", ddc_pin, port_name(port)); return ddc_pin; } void intel_infoframe_init(struct intel_digital_port *intel_dig_port) { struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { intel_dig_port->write_infoframe = vlv_write_infoframe; intel_dig_port->set_infoframes = vlv_set_infoframes; intel_dig_port->infoframe_enabled = vlv_infoframe_enabled; } else if (IS_G4X(dev_priv)) { intel_dig_port->write_infoframe = g4x_write_infoframe; intel_dig_port->set_infoframes = g4x_set_infoframes; intel_dig_port->infoframe_enabled = g4x_infoframe_enabled; } else if (HAS_DDI(dev_priv)) { intel_dig_port->write_infoframe = hsw_write_infoframe; intel_dig_port->set_infoframes = hsw_set_infoframes; intel_dig_port->infoframe_enabled = hsw_infoframe_enabled; } else if (HAS_PCH_IBX(dev_priv)) { intel_dig_port->write_infoframe = ibx_write_infoframe; intel_dig_port->set_infoframes = ibx_set_infoframes; intel_dig_port->infoframe_enabled = ibx_infoframe_enabled; } else { intel_dig_port->write_infoframe = cpt_write_infoframe; intel_dig_port->set_infoframes = cpt_set_infoframes; intel_dig_port->infoframe_enabled = cpt_infoframe_enabled; } } void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi; struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = intel_encoder->port; DRM_DEBUG_KMS("Adding HDMI connector on port %c\n", port_name(port)); if (WARN(intel_dig_port->max_lanes < 4, "Not enough lanes (%d) for HDMI on port %c\n", intel_dig_port->max_lanes, port_name(port))) return; drm_connector_init(dev, connector, &intel_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs); connector->interlace_allowed = 1; connector->doublescan_allowed = 0; connector->stereo_allowed = 1; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) connector->ycbcr_420_allowed = true; intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(dev_priv, port); if (WARN_ON(port == PORT_A)) return; intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); if (HAS_DDI(dev_priv)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; intel_hdmi_add_properties(intel_hdmi, connector); if (is_hdcp_supported(dev_priv, port)) { int ret = intel_hdcp_init(intel_connector, &intel_hdmi_hdcp_shim); if (ret) DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); } intel_connector_attach_encoder(intel_connector, intel_encoder); intel_hdmi->attached_connector = intel_connector; /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G45(dev_priv)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } intel_hdmi->cec_notifier = cec_notifier_get_conn(dev->dev, port_identifier(port)); if (!intel_hdmi->cec_notifier) DRM_DEBUG_KMS("CEC notifier get failed\n"); } void intel_hdmi_init(struct drm_i915_private *dev_priv, i915_reg_t hdmi_reg, enum port port) { struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct intel_connector *intel_connector; intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return; intel_connector = intel_connector_alloc(); if (!intel_connector) { kfree(intel_dig_port); return; } intel_encoder = &intel_dig_port->base; drm_encoder_init(&dev_priv->drm, &intel_encoder->base, &intel_hdmi_enc_funcs, DRM_MODE_ENCODER_TMDS, "HDMI %c", port_name(port)); intel_encoder->hotplug = intel_encoder_hotplug; intel_encoder->compute_config = intel_hdmi_compute_config; if (HAS_PCH_SPLIT(dev_priv)) { intel_encoder->disable = pch_disable_hdmi; intel_encoder->post_disable = pch_post_disable_hdmi; } else { intel_encoder->disable = g4x_disable_hdmi; } intel_encoder->get_hw_state = intel_hdmi_get_hw_state; intel_encoder->get_config = intel_hdmi_get_config; if (IS_CHERRYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable; intel_encoder->pre_enable = chv_hdmi_pre_enable; intel_encoder->enable = vlv_enable_hdmi; intel_encoder->post_disable = chv_hdmi_post_disable; intel_encoder->post_pll_disable = chv_hdmi_post_pll_disable; } else if (IS_VALLEYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable; intel_encoder->pre_enable = vlv_hdmi_pre_enable; intel_encoder->enable = vlv_enable_hdmi; intel_encoder->post_disable = vlv_hdmi_post_disable; } else { intel_encoder->pre_enable = intel_hdmi_pre_enable; if (HAS_PCH_CPT(dev_priv)) intel_encoder->enable = cpt_enable_hdmi; else if (HAS_PCH_IBX(dev_priv)) intel_encoder->enable = ibx_enable_hdmi; else intel_encoder->enable = g4x_enable_hdmi; } intel_encoder->type = INTEL_OUTPUT_HDMI; intel_encoder->power_domain = intel_port_to_power_domain(port); intel_encoder->port = port; if (IS_CHERRYVIEW(dev_priv)) { if (port == PORT_D) intel_encoder->crtc_mask = 1 << 2; else intel_encoder->crtc_mask = (1 << 0) | (1 << 1); } else { intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); } intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG; /* * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems * to work on real hardware. And since g4x can send infoframes to * only one port anyway, nothing is lost by allowing it. */ if (IS_G4X(dev_priv)) intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI; intel_dig_port->hdmi.hdmi_reg = hdmi_reg; intel_dig_port->dp.output_reg = INVALID_MMIO_REG; intel_dig_port->max_lanes = 4; intel_infoframe_init(intel_dig_port); intel_hdmi_init_connector(intel_dig_port, intel_connector); }