/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard * */ #include #include #include #include #include #include #include "psb_drv.h" #include "psb_intel_drv.h" #include "psb_intel_reg.h" #include "gma_display.h" #include /** * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp * aux algorithm * @running: set by the algo indicating whether an i2c is ongoing or whether * the i2c bus is quiescent * @address: i2c target address for the currently ongoing transfer * @aux_ch: driver callback to transfer a single byte of the i2c payload */ struct i2c_algo_dp_aux_data { bool running; u16 address; int (*aux_ch) (struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte); }; /* Run a single AUX_CH I2C transaction, writing/reading data as necessary */ static int i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; int ret; ret = (*algo_data->aux_ch)(adapter, mode, write_byte, read_byte); return ret; } /* * I2C over AUX CH */ /* * Send the address. If the I2C link is running, this 'restarts' * the connection with the new address, this is used for doing * a write followed by a read (as needed for DDC) */ static int i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; int mode = MODE_I2C_START; int ret; if (reading) mode |= MODE_I2C_READ; else mode |= MODE_I2C_WRITE; algo_data->address = address; algo_data->running = true; ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); return ret; } /* * Stop the I2C transaction. This closes out the link, sending * a bare address packet with the MOT bit turned off */ static void i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; int mode = MODE_I2C_STOP; if (reading) mode |= MODE_I2C_READ; else mode |= MODE_I2C_WRITE; if (algo_data->running) { (void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL); algo_data->running = false; } } /* * Write a single byte to the current I2C address, the * the I2C link must be running or this returns -EIO */ static int i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; int ret; if (!algo_data->running) return -EIO; ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL); return ret; } /* * Read a single byte from the current I2C address, the * I2C link must be running or this returns -EIO */ static int i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; int ret; if (!algo_data->running) return -EIO; ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret); return ret; } static int i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs, int num) { int ret = 0; bool reading = false; int m; int b; for (m = 0; m < num; m++) { u16 len = msgs[m].len; u8 *buf = msgs[m].buf; reading = (msgs[m].flags & I2C_M_RD) != 0; ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading); if (ret < 0) break; if (reading) { for (b = 0; b < len; b++) { ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]); if (ret < 0) break; } } else { for (b = 0; b < len; b++) { ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]); if (ret < 0) break; } } if (ret < 0) break; } if (ret >= 0) ret = num; i2c_algo_dp_aux_stop(adapter, reading); DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret); return ret; } static u32 i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL | I2C_FUNC_10BIT_ADDR; } static const struct i2c_algorithm i2c_dp_aux_algo = { .master_xfer = i2c_algo_dp_aux_xfer, .functionality = i2c_algo_dp_aux_functionality, }; static void i2c_dp_aux_reset_bus(struct i2c_adapter *adapter) { (void) i2c_algo_dp_aux_address(adapter, 0, false); (void) i2c_algo_dp_aux_stop(adapter, false); } static int i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter) { adapter->algo = &i2c_dp_aux_algo; adapter->retries = 3; i2c_dp_aux_reset_bus(adapter); return 0; } /* * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon. */ static int i2c_dp_aux_add_bus(struct i2c_adapter *adapter) { int error; error = i2c_dp_aux_prepare_bus(adapter); if (error) return error; error = i2c_add_adapter(adapter); return error; } #define _wait_for(COND, MS, W) ({ \ unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \ int ret__ = 0; \ while (! (COND)) { \ if (time_after(jiffies, timeout__)) { \ ret__ = -ETIMEDOUT; \ break; \ } \ if (W && !in_dbg_master()) msleep(W); \ } \ ret__; \ }) #define wait_for(COND, MS) _wait_for(COND, MS, 1) #define DP_LINK_CHECK_TIMEOUT (10 * 1000) #define DP_LINK_CONFIGURATION_SIZE 9 #define CDV_FAST_LINK_TRAIN 1 struct cdv_intel_dp { uint32_t output_reg; uint32_t DP; uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]; bool has_audio; int force_audio; uint32_t color_range; uint8_t link_bw; uint8_t lane_count; uint8_t dpcd[4]; struct gma_encoder *encoder; struct i2c_adapter adapter; struct i2c_algo_dp_aux_data algo; uint8_t train_set[4]; uint8_t link_status[DP_LINK_STATUS_SIZE]; int panel_power_up_delay; int panel_power_down_delay; int panel_power_cycle_delay; int backlight_on_delay; int backlight_off_delay; struct drm_display_mode *panel_fixed_mode; /* for eDP */ bool panel_on; }; struct ddi_regoff { uint32_t PreEmph1; uint32_t PreEmph2; uint32_t VSwing1; uint32_t VSwing2; uint32_t VSwing3; uint32_t VSwing4; uint32_t VSwing5; }; static struct ddi_regoff ddi_DP_train_table[] = { {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154, .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150, .VSwing5 = 0x8158,}, {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254, .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250, .VSwing5 = 0x8258,}, }; static uint32_t dp_vswing_premph_table[] = { 0x55338954, 0x4000, 0x554d8954, 0x2000, 0x55668954, 0, 0x559ac0d4, 0x6000, }; /** * is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. */ static bool is_edp(struct gma_encoder *encoder) { return encoder->type == INTEL_OUTPUT_EDP; } static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder); static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder); static void cdv_intel_dp_link_down(struct gma_encoder *encoder); static int cdv_intel_dp_max_lane_count(struct gma_encoder *encoder) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; int max_lane_count = 4; if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f; switch (max_lane_count) { case 1: case 2: case 4: break; default: max_lane_count = 4; } } return max_lane_count; } static int cdv_intel_dp_max_link_bw(struct gma_encoder *encoder) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE]; switch (max_link_bw) { case DP_LINK_BW_1_62: case DP_LINK_BW_2_7: break; default: max_link_bw = DP_LINK_BW_1_62; break; } return max_link_bw; } static int cdv_intel_dp_link_clock(uint8_t link_bw) { if (link_bw == DP_LINK_BW_2_7) return 270000; else return 162000; } static int cdv_intel_dp_link_required(int pixel_clock, int bpp) { return (pixel_clock * bpp + 7) / 8; } static int cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes) { return (max_link_clock * max_lanes * 19) / 20; } static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; u32 pp; if (intel_dp->panel_on) { DRM_DEBUG_KMS("Skip VDD on because of panel on\n"); return; } DRM_DEBUG_KMS("\n"); pp = REG_READ(PP_CONTROL); pp |= EDP_FORCE_VDD; REG_WRITE(PP_CONTROL, pp); REG_READ(PP_CONTROL); msleep(intel_dp->panel_power_up_delay); } static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; u32 pp; DRM_DEBUG_KMS("\n"); pp = REG_READ(PP_CONTROL); pp &= ~EDP_FORCE_VDD; REG_WRITE(PP_CONTROL, pp); REG_READ(PP_CONTROL); } /* Returns true if the panel was already on when called */ static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE; if (intel_dp->panel_on) return true; DRM_DEBUG_KMS("\n"); pp = REG_READ(PP_CONTROL); pp &= ~PANEL_UNLOCK_MASK; pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON); REG_WRITE(PP_CONTROL, pp); REG_READ(PP_CONTROL); if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) { DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS)); intel_dp->panel_on = false; } else intel_dp->panel_on = true; msleep(intel_dp->panel_power_up_delay); return false; } static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; u32 pp, idle_off_mask = PP_ON ; struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; DRM_DEBUG_KMS("\n"); pp = REG_READ(PP_CONTROL); if ((pp & POWER_TARGET_ON) == 0) return; intel_dp->panel_on = false; pp &= ~PANEL_UNLOCK_MASK; /* ILK workaround: disable reset around power sequence */ pp &= ~POWER_TARGET_ON; pp &= ~EDP_FORCE_VDD; pp &= ~EDP_BLC_ENABLE; REG_WRITE(PP_CONTROL, pp); REG_READ(PP_CONTROL); DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS)); if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) { DRM_DEBUG_KMS("Error in turning off Panel\n"); } msleep(intel_dp->panel_power_cycle_delay); DRM_DEBUG_KMS("Over\n"); } static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; u32 pp; DRM_DEBUG_KMS("\n"); /* * If we enable the backlight right away following a panel power * on, we may see slight flicker as the panel syncs with the eDP * link. So delay a bit to make sure the image is solid before * allowing it to appear. */ msleep(300); pp = REG_READ(PP_CONTROL); pp |= EDP_BLC_ENABLE; REG_WRITE(PP_CONTROL, pp); gma_backlight_enable(dev); } static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder) { struct drm_device *dev = intel_encoder->base.dev; struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; u32 pp; DRM_DEBUG_KMS("\n"); gma_backlight_disable(dev); msleep(10); pp = REG_READ(PP_CONTROL); pp &= ~EDP_BLC_ENABLE; REG_WRITE(PP_CONTROL, pp); msleep(intel_dp->backlight_off_delay); } static enum drm_mode_status cdv_intel_dp_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct gma_encoder *encoder = gma_attached_encoder(connector); struct cdv_intel_dp *intel_dp = encoder->dev_priv; int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder)); int max_lanes = cdv_intel_dp_max_lane_count(encoder); struct drm_psb_private *dev_priv = connector->dev->dev_private; if (is_edp(encoder) && intel_dp->panel_fixed_mode) { if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay) return MODE_PANEL; } /* only refuse the mode on non eDP since we have seen some weird eDP panels which are outside spec tolerances but somehow work by magic */ if (!is_edp(encoder) && (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp) > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))) return MODE_CLOCK_HIGH; if (is_edp(encoder)) { if (cdv_intel_dp_link_required(mode->clock, 24) > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)) return MODE_CLOCK_HIGH; } if (mode->clock < 10000) return MODE_CLOCK_LOW; return MODE_OK; } static uint32_t pack_aux(uint8_t *src, int src_bytes) { int i; uint32_t v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((uint32_t) src[i]) << ((3-i) * 8); return v; } static void unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } static int cdv_intel_dp_aux_ch(struct gma_encoder *encoder, uint8_t *send, int send_bytes, uint8_t *recv, int recv_size) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; uint32_t output_reg = intel_dp->output_reg; struct drm_device *dev = encoder->base.dev; uint32_t ch_ctl = output_reg + 0x10; uint32_t ch_data = ch_ctl + 4; int i; int recv_bytes; uint32_t status; uint32_t aux_clock_divider; int try, precharge; /* The clock divider is based off the hrawclk, * and would like to run at 2MHz. So, take the * hrawclk value and divide by 2 and use that * On CDV platform it uses 200MHz as hrawclk. * */ aux_clock_divider = 200 / 2; precharge = 4; if (is_edp(encoder)) precharge = 10; if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) { DRM_ERROR("dp_aux_ch not started status 0x%08x\n", REG_READ(ch_ctl)); return -EBUSY; } /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) REG_WRITE(ch_data + i, pack_aux(send + i, send_bytes - i)); /* Send the command and wait for it to complete */ REG_WRITE(ch_ctl, DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_TIME_OUT_400us | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); for (;;) { status = REG_READ(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; udelay(100); } /* Clear done status and any errors */ REG_WRITE(ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); if (status & DP_AUX_CH_CTL_DONE) break; } if ((status & DP_AUX_CH_CTL_DONE) == 0) { DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); return -EBUSY; } /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); return -EIO; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); return -ETIMEDOUT; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) unpack_aux(REG_READ(ch_data + i), recv + i, recv_bytes - i); return recv_bytes; } /* Write data to the aux channel in native mode */ static int cdv_intel_dp_aux_native_write(struct gma_encoder *encoder, uint16_t address, uint8_t *send, int send_bytes) { int ret; uint8_t msg[20]; int msg_bytes; uint8_t ack; if (send_bytes > 16) return -1; msg[0] = DP_AUX_NATIVE_WRITE << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = send_bytes - 1; memcpy(&msg[4], send, send_bytes); msg_bytes = send_bytes + 4; for (;;) { ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1); if (ret < 0) return ret; ack >>= 4; if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) break; else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) udelay(100); else return -EIO; } return send_bytes; } /* Write a single byte to the aux channel in native mode */ static int cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder, uint16_t address, uint8_t byte) { return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1); } /* read bytes from a native aux channel */ static int cdv_intel_dp_aux_native_read(struct gma_encoder *encoder, uint16_t address, uint8_t *recv, int recv_bytes) { uint8_t msg[4]; int msg_bytes; uint8_t reply[20]; int reply_bytes; uint8_t ack; int ret; msg[0] = DP_AUX_NATIVE_READ << 4; msg[1] = address >> 8; msg[2] = address & 0xff; msg[3] = recv_bytes - 1; msg_bytes = 4; reply_bytes = recv_bytes + 1; for (;;) { ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, reply, reply_bytes); if (ret == 0) return -EPROTO; if (ret < 0) return ret; ack = reply[0] >> 4; if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) { memcpy(recv, reply + 1, ret - 1); return ret - 1; } else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER) udelay(100); else return -EIO; } } static int cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode, uint8_t write_byte, uint8_t *read_byte) { struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data; struct cdv_intel_dp *intel_dp = container_of(adapter, struct cdv_intel_dp, adapter); struct gma_encoder *encoder = intel_dp->encoder; uint16_t address = algo_data->address; uint8_t msg[5]; uint8_t reply[2]; unsigned retry; int msg_bytes; int reply_bytes; int ret; /* Set up the command byte */ if (mode & MODE_I2C_READ) msg[0] = DP_AUX_I2C_READ << 4; else msg[0] = DP_AUX_I2C_WRITE << 4; if (!(mode & MODE_I2C_STOP)) msg[0] |= DP_AUX_I2C_MOT << 4; msg[1] = address >> 8; msg[2] = address; switch (mode) { case MODE_I2C_WRITE: msg[3] = 0; msg[4] = write_byte; msg_bytes = 5; reply_bytes = 1; break; case MODE_I2C_READ: msg[3] = 0; msg_bytes = 4; reply_bytes = 2; break; default: msg_bytes = 3; reply_bytes = 1; break; } for (retry = 0; retry < 5; retry++) { ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, reply, reply_bytes); if (ret < 0) { DRM_DEBUG_KMS("aux_ch failed %d\n", ret); return ret; } switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) { case DP_AUX_NATIVE_REPLY_ACK: /* I2C-over-AUX Reply field is only valid * when paired with AUX ACK. */ break; case DP_AUX_NATIVE_REPLY_NACK: DRM_DEBUG_KMS("aux_ch native nack\n"); return -EREMOTEIO; case DP_AUX_NATIVE_REPLY_DEFER: udelay(100); continue; default: DRM_ERROR("aux_ch invalid native reply 0x%02x\n", reply[0]); return -EREMOTEIO; } switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) { case DP_AUX_I2C_REPLY_ACK: if (mode == MODE_I2C_READ) { *read_byte = reply[1]; } return reply_bytes - 1; case DP_AUX_I2C_REPLY_NACK: DRM_DEBUG_KMS("aux_i2c nack\n"); return -EREMOTEIO; case DP_AUX_I2C_REPLY_DEFER: DRM_DEBUG_KMS("aux_i2c defer\n"); udelay(100); break; default: DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]); return -EREMOTEIO; } } DRM_ERROR("too many retries, giving up\n"); return -EREMOTEIO; } static int cdv_intel_dp_i2c_init(struct gma_connector *connector, struct gma_encoder *encoder, const char *name) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; int ret; DRM_DEBUG_KMS("i2c_init %s\n", name); intel_dp->algo.running = false; intel_dp->algo.address = 0; intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch; memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter)); intel_dp->adapter.owner = THIS_MODULE; intel_dp->adapter.class = I2C_CLASS_DDC; strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1); intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0'; intel_dp->adapter.algo_data = &intel_dp->algo; intel_dp->adapter.dev.parent = connector->base.kdev; if (is_edp(encoder)) cdv_intel_edp_panel_vdd_on(encoder); ret = i2c_dp_aux_add_bus(&intel_dp->adapter); if (is_edp(encoder)) cdv_intel_edp_panel_vdd_off(encoder); return ret; } static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode, struct drm_display_mode *adjusted_mode) { adjusted_mode->hdisplay = fixed_mode->hdisplay; adjusted_mode->hsync_start = fixed_mode->hsync_start; adjusted_mode->hsync_end = fixed_mode->hsync_end; adjusted_mode->htotal = fixed_mode->htotal; adjusted_mode->vdisplay = fixed_mode->vdisplay; adjusted_mode->vsync_start = fixed_mode->vsync_start; adjusted_mode->vsync_end = fixed_mode->vsync_end; adjusted_mode->vtotal = fixed_mode->vtotal; adjusted_mode->clock = fixed_mode->clock; drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V); } static bool cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_psb_private *dev_priv = encoder->dev->dev_private; struct gma_encoder *intel_encoder = to_gma_encoder(encoder); struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; int lane_count, clock; int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder); int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0; static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 }; int refclock = mode->clock; int bpp = 24; if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) { cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode); refclock = intel_dp->panel_fixed_mode->clock; bpp = dev_priv->edp.bpp; } for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) { for (clock = max_clock; clock >= 0; clock--) { int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count); if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) { intel_dp->link_bw = bws[clock]; intel_dp->lane_count = lane_count; adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); DRM_DEBUG_KMS("Display port link bw %02x lane " "count %d clock %d\n", intel_dp->link_bw, intel_dp->lane_count, adjusted_mode->clock); return true; } } } if (is_edp(intel_encoder)) { /* okay we failed just pick the highest */ intel_dp->lane_count = max_lane_count; intel_dp->link_bw = bws[max_clock]; adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw); DRM_DEBUG_KMS("Force picking display port link bw %02x lane " "count %d clock %d\n", intel_dp->link_bw, intel_dp->lane_count, adjusted_mode->clock); return true; } return false; } struct cdv_intel_dp_m_n { uint32_t tu; uint32_t gmch_m; uint32_t gmch_n; uint32_t link_m; uint32_t link_n; }; static void cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den) { /* while (*num > 0xffffff || *den > 0xffffff) { *num >>= 1; *den >>= 1; }*/ uint64_t value, m; m = *num; value = m * (0x800000); m = do_div(value, *den); *num = value; *den = 0x800000; } static void cdv_intel_dp_compute_m_n(int bpp, int nlanes, int pixel_clock, int link_clock, struct cdv_intel_dp_m_n *m_n) { m_n->tu = 64; m_n->gmch_m = (pixel_clock * bpp + 7) >> 3; m_n->gmch_n = link_clock * nlanes; cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n); m_n->link_m = pixel_clock; m_n->link_n = link_clock; cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n); } void cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = crtc->dev; struct drm_psb_private *dev_priv = dev->dev_private; struct drm_mode_config *mode_config = &dev->mode_config; struct drm_encoder *encoder; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); int lane_count = 4, bpp = 24; struct cdv_intel_dp_m_n m_n; int pipe = gma_crtc->pipe; /* * Find the lane count in the intel_encoder private */ list_for_each_entry(encoder, &mode_config->encoder_list, head) { struct gma_encoder *intel_encoder; struct cdv_intel_dp *intel_dp; if (encoder->crtc != crtc) continue; intel_encoder = to_gma_encoder(encoder); intel_dp = intel_encoder->dev_priv; if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) { lane_count = intel_dp->lane_count; break; } else if (is_edp(intel_encoder)) { lane_count = intel_dp->lane_count; bpp = dev_priv->edp.bpp; break; } } /* * Compute the GMCH and Link ratios. The '3' here is * the number of bytes_per_pixel post-LUT, which we always * set up for 8-bits of R/G/B, or 3 bytes total. */ cdv_intel_dp_compute_m_n(bpp, lane_count, mode->clock, adjusted_mode->clock, &m_n); { REG_WRITE(PIPE_GMCH_DATA_M(pipe), ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) | m_n.gmch_m); REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n); REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m); REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n); } } static void cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct gma_encoder *intel_encoder = to_gma_encoder(encoder); struct drm_crtc *crtc = encoder->crtc; struct gma_crtc *gma_crtc = to_gma_crtc(crtc); struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; struct drm_device *dev = encoder->dev; intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; intel_dp->DP |= intel_dp->color_range; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF; switch (intel_dp->lane_count) { case 1: intel_dp->DP |= DP_PORT_WIDTH_1; break; case 2: intel_dp->DP |= DP_PORT_WIDTH_2; break; case 4: intel_dp->DP |= DP_PORT_WIDTH_4; break; } if (intel_dp->has_audio) intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE); intel_dp->link_configuration[0] = intel_dp->link_bw; intel_dp->link_configuration[1] = intel_dp->lane_count; /* * Check for DPCD version > 1.1 and enhanced framing support */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) { intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN; intel_dp->DP |= DP_ENHANCED_FRAMING; } /* CPT DP's pipe select is decided in TRANS_DP_CTL */ if (gma_crtc->pipe == 1) intel_dp->DP |= DP_PIPEB_SELECT; REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN)); DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP); if (is_edp(intel_encoder)) { uint32_t pfit_control; cdv_intel_edp_panel_on(intel_encoder); if (mode->hdisplay != adjusted_mode->hdisplay || mode->vdisplay != adjusted_mode->vdisplay) pfit_control = PFIT_ENABLE; else pfit_control = 0; pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT; REG_WRITE(PFIT_CONTROL, pfit_control); } } /* If the sink supports it, try to set the power state appropriately */ static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DRM_MODE_DPMS_ON) { ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER, DP_SET_POWER_D3); if (ret != 1) DRM_DEBUG_DRIVER("failed to write sink power state\n"); } else { /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER, DP_SET_POWER_D0); if (ret == 1) break; udelay(1000); } } } static void cdv_intel_dp_prepare(struct drm_encoder *encoder) { struct gma_encoder *intel_encoder = to_gma_encoder(encoder); int edp = is_edp(intel_encoder); if (edp) { cdv_intel_edp_backlight_off(intel_encoder); cdv_intel_edp_panel_off(intel_encoder); cdv_intel_edp_panel_vdd_on(intel_encoder); } /* Wake up the sink first */ cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON); cdv_intel_dp_link_down(intel_encoder); if (edp) cdv_intel_edp_panel_vdd_off(intel_encoder); } static void cdv_intel_dp_commit(struct drm_encoder *encoder) { struct gma_encoder *intel_encoder = to_gma_encoder(encoder); int edp = is_edp(intel_encoder); if (edp) cdv_intel_edp_panel_on(intel_encoder); cdv_intel_dp_start_link_train(intel_encoder); cdv_intel_dp_complete_link_train(intel_encoder); if (edp) cdv_intel_edp_backlight_on(intel_encoder); } static void cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode) { struct gma_encoder *intel_encoder = to_gma_encoder(encoder); struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; struct drm_device *dev = encoder->dev; uint32_t dp_reg = REG_READ(intel_dp->output_reg); int edp = is_edp(intel_encoder); if (mode != DRM_MODE_DPMS_ON) { if (edp) { cdv_intel_edp_backlight_off(intel_encoder); cdv_intel_edp_panel_vdd_on(intel_encoder); } cdv_intel_dp_sink_dpms(intel_encoder, mode); cdv_intel_dp_link_down(intel_encoder); if (edp) { cdv_intel_edp_panel_vdd_off(intel_encoder); cdv_intel_edp_panel_off(intel_encoder); } } else { if (edp) cdv_intel_edp_panel_on(intel_encoder); cdv_intel_dp_sink_dpms(intel_encoder, mode); if (!(dp_reg & DP_PORT_EN)) { cdv_intel_dp_start_link_train(intel_encoder); cdv_intel_dp_complete_link_train(intel_encoder); } if (edp) cdv_intel_edp_backlight_on(intel_encoder); } } /* * Native read with retry for link status and receiver capability reads for * cases where the sink may still be asleep. */ static bool cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address, uint8_t *recv, int recv_bytes) { int ret, i; /* * Sinks are *supposed* to come up within 1ms from an off state, * but we're also supposed to retry 3 times per the spec. */ for (i = 0; i < 3; i++) { ret = cdv_intel_dp_aux_native_read(encoder, address, recv, recv_bytes); if (ret == recv_bytes) return true; udelay(1000); } return false; } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ static bool cdv_intel_dp_get_link_status(struct gma_encoder *encoder) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; return cdv_intel_dp_aux_native_read_retry(encoder, DP_LANE0_1_STATUS, intel_dp->link_status, DP_LINK_STATUS_SIZE); } static uint8_t cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int r) { return link_status[r - DP_LANE0_1_STATUS]; } static uint8_t cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT : DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT); uint8_t l = cdv_intel_dp_link_status(link_status, i); return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT; } static uint8_t cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1); int s = ((lane & 1) ? DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT : DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT); uint8_t l = cdv_intel_dp_link_status(link_status, i); return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT; } #if 0 static char *voltage_names[] = { "0.4V", "0.6V", "0.8V", "1.2V" }; static char *pre_emph_names[] = { "0dB", "3.5dB", "6dB", "9.5dB" }; static char *link_train_names[] = { "pattern 1", "pattern 2", "idle", "off" }; #endif #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_LEVEL_3 /* static uint8_t cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_400: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_600: return DP_TRAIN_PRE_EMPHASIS_6; case DP_TRAIN_VOLTAGE_SWING_800: return DP_TRAIN_PRE_EMPHASIS_3_5; case DP_TRAIN_VOLTAGE_SWING_1200: default: return DP_TRAIN_PRE_EMPHASIS_0; } } */ static void cdv_intel_get_adjust_train(struct gma_encoder *encoder) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; uint8_t v = 0; uint8_t p = 0; int lane; for (lane = 0; lane < intel_dp->lane_count; lane++) { uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane); uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane); if (this_v > v) v = this_v; if (this_p > p) p = this_p; } if (v >= CDV_DP_VOLTAGE_MAX) v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED; if (p == DP_TRAIN_PRE_EMPHASIS_MASK) p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED; for (lane = 0; lane < 4; lane++) intel_dp->train_set[lane] = v | p; } static uint8_t cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane) { int i = DP_LANE0_1_STATUS + (lane >> 1); int s = (lane & 1) * 4; uint8_t l = cdv_intel_dp_link_status(link_status, i); return (l >> s) & 0xf; } /* Check for clock recovery is done on all channels */ static bool cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count) { int lane; uint8_t lane_status; for (lane = 0; lane < lane_count; lane++) { lane_status = cdv_intel_get_lane_status(link_status, lane); if ((lane_status & DP_LANE_CR_DONE) == 0) return false; } return true; } /* Check to see if channel eq is done on all channels */ #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\ DP_LANE_CHANNEL_EQ_DONE|\ DP_LANE_SYMBOL_LOCKED) static bool cdv_intel_channel_eq_ok(struct gma_encoder *encoder) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; uint8_t lane_align; uint8_t lane_status; int lane; lane_align = cdv_intel_dp_link_status(intel_dp->link_status, DP_LANE_ALIGN_STATUS_UPDATED); if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0) return false; for (lane = 0; lane < intel_dp->lane_count; lane++) { lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane); if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS) return false; } return true; } static bool cdv_intel_dp_set_link_train(struct gma_encoder *encoder, uint32_t dp_reg_value, uint8_t dp_train_pat) { struct drm_device *dev = encoder->base.dev; int ret; struct cdv_intel_dp *intel_dp = encoder->dev_priv; REG_WRITE(intel_dp->output_reg, dp_reg_value); REG_READ(intel_dp->output_reg); ret = cdv_intel_dp_aux_native_write_1(encoder, DP_TRAINING_PATTERN_SET, dp_train_pat); if (ret != 1) { DRM_DEBUG_KMS("Failure in setting link pattern %x\n", dp_train_pat); return false; } return true; } static bool cdv_intel_dplink_set_level(struct gma_encoder *encoder, uint8_t dp_train_pat) { int ret; struct cdv_intel_dp *intel_dp = encoder->dev_priv; ret = cdv_intel_dp_aux_native_write(encoder, DP_TRAINING_LANE0_SET, intel_dp->train_set, intel_dp->lane_count); if (ret != intel_dp->lane_count) { DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n", intel_dp->train_set[0], intel_dp->lane_count); return false; } return true; } static void cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level) { struct drm_device *dev = encoder->base.dev; struct cdv_intel_dp *intel_dp = encoder->dev_priv; struct ddi_regoff *ddi_reg; int vswing, premph, index; if (intel_dp->output_reg == DP_B) ddi_reg = &ddi_DP_train_table[0]; else ddi_reg = &ddi_DP_train_table[1]; vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK); premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >> DP_TRAIN_PRE_EMPHASIS_SHIFT; if (vswing + premph > 3) return; #ifdef CDV_FAST_LINK_TRAIN return; #endif DRM_DEBUG_KMS("Test2\n"); //return ; cdv_sb_reset(dev); /* ;Swing voltage programming ;gfx_dpio_set_reg(0xc058, 0x0505313A) */ cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A); /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */ cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055); /* ;gfx_dpio_set_reg(0x8148, 0x55338954) * The VSwing_PreEmph table is also considered based on the vswing/premp */ index = (vswing + premph) * 2; if (premph == 1 && vswing == 1) { cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954); } else cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]); /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */ if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3) cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040); else cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040); /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */ /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */ /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */ cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055); /* ;Pre emphasis programming * ;gfx_dpio_set_reg(0xc02c, 0x1f030040) */ cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040); /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */ index = 2 * premph + 1; cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]); return; } /* Enable corresponding port and start training pattern 1 */ static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct cdv_intel_dp *intel_dp = encoder->dev_priv; int i; uint8_t voltage; bool clock_recovery = false; int tries; u32 reg; uint32_t DP = intel_dp->DP; DP |= DP_PORT_EN; DP &= ~DP_LINK_TRAIN_MASK; reg = DP; reg |= DP_LINK_TRAIN_PAT_1; /* Enable output, wait for it to become active */ REG_WRITE(intel_dp->output_reg, reg); REG_READ(intel_dp->output_reg); gma_wait_for_vblank(dev); DRM_DEBUG_KMS("Link config\n"); /* Write the link configuration data */ cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET, intel_dp->link_configuration, 2); memset(intel_dp->train_set, 0, 4); voltage = 0; tries = 0; clock_recovery = false; DRM_DEBUG_KMS("Start train\n"); reg = DP | DP_LINK_TRAIN_PAT_1; for (;;) { /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", intel_dp->train_set[0], intel_dp->link_configuration[0], intel_dp->link_configuration[1]); if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) { DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n"); } cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); /* Set training pattern 1 */ cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1); udelay(200); if (!cdv_intel_dp_get_link_status(encoder)) break; DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { DRM_DEBUG_KMS("PT1 train is done\n"); clock_recovery = true; break; } /* Check to see if we've tried the max voltage */ for (i = 0; i < intel_dp->lane_count; i++) if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0) break; if (i == intel_dp->lane_count) break; /* Check to see if we've tried the same voltage 5 times */ if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) { ++tries; if (tries == 5) break; } else tries = 0; voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK; /* Compute new intel_dp->train_set as requested by target */ cdv_intel_get_adjust_train(encoder); } if (!clock_recovery) { DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]); } intel_dp->DP = DP; } static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct cdv_intel_dp *intel_dp = encoder->dev_priv; bool channel_eq = false; int tries, cr_tries; u32 reg; uint32_t DP = intel_dp->DP; /* channel equalization */ tries = 0; cr_tries = 0; channel_eq = false; DRM_DEBUG_KMS("\n"); reg = DP | DP_LINK_TRAIN_PAT_2; for (;;) { DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n", intel_dp->train_set[0], intel_dp->link_configuration[0], intel_dp->link_configuration[1]); /* channel eq pattern */ if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_2)) { DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n"); } /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */ if (cr_tries > 5) { DRM_ERROR("failed to train DP, aborting\n"); cdv_intel_dp_link_down(encoder); break; } cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]); cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2); udelay(1000); if (!cdv_intel_dp_get_link_status(encoder)) break; DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n", intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2], intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]); /* Make sure clock is still ok */ if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) { cdv_intel_dp_start_link_train(encoder); cr_tries++; continue; } if (cdv_intel_channel_eq_ok(encoder)) { DRM_DEBUG_KMS("PT2 train is done\n"); channel_eq = true; break; } /* Try 5 times, then try clock recovery if that fails */ if (tries > 5) { cdv_intel_dp_link_down(encoder); cdv_intel_dp_start_link_train(encoder); tries = 0; cr_tries++; continue; } /* Compute new intel_dp->train_set as requested by target */ cdv_intel_get_adjust_train(encoder); ++tries; } reg = DP | DP_LINK_TRAIN_OFF; REG_WRITE(intel_dp->output_reg, reg); REG_READ(intel_dp->output_reg); cdv_intel_dp_aux_native_write_1(encoder, DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE); } static void cdv_intel_dp_link_down(struct gma_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct cdv_intel_dp *intel_dp = encoder->dev_priv; uint32_t DP = intel_dp->DP; if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0) return; DRM_DEBUG_KMS("\n"); { DP &= ~DP_LINK_TRAIN_MASK; REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE); } REG_READ(intel_dp->output_reg); msleep(17); REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); REG_READ(intel_dp->output_reg); } static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder) { struct cdv_intel_dp *intel_dp = encoder->dev_priv; enum drm_connector_status status; status = connector_status_disconnected; if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd, sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd)) { if (intel_dp->dpcd[DP_DPCD_REV] != 0) status = connector_status_connected; } if (status == connector_status_connected) DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]); return status; } /** * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection. * * \return true if DP port is connected. * \return false if DP port is disconnected. */ static enum drm_connector_status cdv_intel_dp_detect(struct drm_connector *connector, bool force) { struct gma_encoder *encoder = gma_attached_encoder(connector); struct cdv_intel_dp *intel_dp = encoder->dev_priv; enum drm_connector_status status; struct edid *edid = NULL; int edp = is_edp(encoder); intel_dp->has_audio = false; if (edp) cdv_intel_edp_panel_vdd_on(encoder); status = cdv_dp_detect(encoder); if (status != connector_status_connected) { if (edp) cdv_intel_edp_panel_vdd_off(encoder); return status; } if (intel_dp->force_audio) { intel_dp->has_audio = intel_dp->force_audio > 0; } else { edid = drm_get_edid(connector, &intel_dp->adapter); if (edid) { intel_dp->has_audio = drm_detect_monitor_audio(edid); kfree(edid); } } if (edp) cdv_intel_edp_panel_vdd_off(encoder); return connector_status_connected; } static int cdv_intel_dp_get_modes(struct drm_connector *connector) { struct gma_encoder *intel_encoder = gma_attached_encoder(connector); struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv; struct edid *edid = NULL; int ret = 0; int edp = is_edp(intel_encoder); edid = drm_get_edid(connector, &intel_dp->adapter); if (edid) { drm_connector_update_edid_property(connector, edid); ret = drm_add_edid_modes(connector, edid); kfree(edid); } if (is_edp(intel_encoder)) { struct drm_device *dev = connector->dev; struct drm_psb_private *dev_priv = dev->dev_private; cdv_intel_edp_panel_vdd_off(intel_encoder); if (ret) { if (edp && !intel_dp->panel_fixed_mode) { struct drm_display_mode *newmode; list_for_each_entry(newmode, &connector->probed_modes, head) { if (newmode->type & DRM_MODE_TYPE_PREFERRED) { intel_dp->panel_fixed_mode = drm_mode_duplicate(dev, newmode); break; } } } return ret; } if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) { intel_dp->panel_fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode); if (intel_dp->panel_fixed_mode) { intel_dp->panel_fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; } } if (intel_dp->panel_fixed_mode != NULL) { struct drm_display_mode *mode; mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode); drm_mode_probed_add(connector, mode); return 1; } } return ret; } static bool cdv_intel_dp_detect_audio(struct drm_connector *connector) { struct gma_encoder *encoder = gma_attached_encoder(connector); struct cdv_intel_dp *intel_dp = encoder->dev_priv; struct edid *edid; bool has_audio = false; int edp = is_edp(encoder); if (edp) cdv_intel_edp_panel_vdd_on(encoder); edid = drm_get_edid(connector, &intel_dp->adapter); if (edid) { has_audio = drm_detect_monitor_audio(edid); kfree(edid); } if (edp) cdv_intel_edp_panel_vdd_off(encoder); return has_audio; } static int cdv_intel_dp_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct drm_psb_private *dev_priv = connector->dev->dev_private; struct gma_encoder *encoder = gma_attached_encoder(connector); struct cdv_intel_dp *intel_dp = encoder->dev_priv; int ret; ret = drm_object_property_set_value(&connector->base, property, val); if (ret) return ret; if (property == dev_priv->force_audio_property) { int i = val; bool has_audio; if (i == intel_dp->force_audio) return 0; intel_dp->force_audio = i; if (i == 0) has_audio = cdv_intel_dp_detect_audio(connector); else has_audio = i > 0; if (has_audio == intel_dp->has_audio) return 0; intel_dp->has_audio = has_audio; goto done; } if (property == dev_priv->broadcast_rgb_property) { if (val == !!intel_dp->color_range) return 0; intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0; goto done; } return -EINVAL; done: if (encoder->base.crtc) { struct drm_crtc *crtc = encoder->base.crtc; drm_crtc_helper_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb); } return 0; } static void cdv_intel_dp_destroy(struct drm_connector *connector) { struct gma_encoder *gma_encoder = gma_attached_encoder(connector); struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv; if (is_edp(gma_encoder)) { /* cdv_intel_panel_destroy_backlight(connector->dev); */ kfree(intel_dp->panel_fixed_mode); intel_dp->panel_fixed_mode = NULL; } i2c_del_adapter(&intel_dp->adapter); drm_connector_unregister(connector); drm_connector_cleanup(connector); kfree(connector); } static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = { .dpms = cdv_intel_dp_dpms, .mode_fixup = cdv_intel_dp_mode_fixup, .prepare = cdv_intel_dp_prepare, .mode_set = cdv_intel_dp_mode_set, .commit = cdv_intel_dp_commit, }; static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = { .dpms = drm_helper_connector_dpms, .detect = cdv_intel_dp_detect, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = cdv_intel_dp_set_property, .destroy = cdv_intel_dp_destroy, }; static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = { .get_modes = cdv_intel_dp_get_modes, .mode_valid = cdv_intel_dp_mode_valid, .best_encoder = gma_best_encoder, }; static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = { .destroy = cdv_intel_dp_encoder_destroy, }; static void cdv_intel_dp_add_properties(struct drm_connector *connector) { cdv_intel_attach_force_audio_property(connector); cdv_intel_attach_broadcast_rgb_property(connector); } /* check the VBT to see whether the eDP is on DP-D port */ static bool cdv_intel_dpc_is_edp(struct drm_device *dev) { struct drm_psb_private *dev_priv = dev->dev_private; struct child_device_config *p_child; int i; if (!dev_priv->child_dev_num) return false; for (i = 0; i < dev_priv->child_dev_num; i++) { p_child = dev_priv->child_dev + i; if (p_child->dvo_port == PORT_IDPC && p_child->device_type == DEVICE_TYPE_eDP) return true; } return false; } /* Cedarview display clock gating We need this disable dot get correct behaviour while enabling DP/eDP. TODO - investigate if we can turn it back to normality after enabling */ static void cdv_disable_intel_clock_gating(struct drm_device *dev) { u32 reg_value; reg_value = REG_READ(DSPCLK_GATE_D); reg_value |= (DPUNIT_PIPEB_GATE_DISABLE | DPUNIT_PIPEA_GATE_DISABLE | DPCUNIT_CLOCK_GATE_DISABLE | DPLSUNIT_CLOCK_GATE_DISABLE | DPOUNIT_CLOCK_GATE_DISABLE | DPIOUNIT_CLOCK_GATE_DISABLE); REG_WRITE(DSPCLK_GATE_D, reg_value); udelay(500); } void cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg) { struct gma_encoder *gma_encoder; struct gma_connector *gma_connector; struct drm_connector *connector; struct drm_encoder *encoder; struct cdv_intel_dp *intel_dp; const char *name = NULL; int type = DRM_MODE_CONNECTOR_DisplayPort; gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL); if (!gma_encoder) return; gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL); if (!gma_connector) goto err_connector; intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL); if (!intel_dp) goto err_priv; if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev)) type = DRM_MODE_CONNECTOR_eDP; connector = &gma_connector->base; encoder = &gma_encoder->base; drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type); drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, NULL); gma_connector_attach_encoder(gma_connector, gma_encoder); if (type == DRM_MODE_CONNECTOR_DisplayPort) gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT; else gma_encoder->type = INTEL_OUTPUT_EDP; gma_encoder->dev_priv=intel_dp; intel_dp->encoder = gma_encoder; intel_dp->output_reg = output_reg; drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs); drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs); connector->polled = DRM_CONNECTOR_POLL_HPD; connector->interlace_allowed = false; connector->doublescan_allowed = false; drm_connector_register(connector); /* Set up the DDC bus. */ switch (output_reg) { case DP_B: name = "DPDDC-B"; gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT); break; case DP_C: name = "DPDDC-C"; gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT); break; } cdv_disable_intel_clock_gating(dev); cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name); /* FIXME:fail check */ cdv_intel_dp_add_properties(connector); if (is_edp(gma_encoder)) { int ret; struct edp_power_seq cur; u32 pp_on, pp_off, pp_div; u32 pwm_ctrl; pp_on = REG_READ(PP_CONTROL); pp_on &= ~PANEL_UNLOCK_MASK; pp_on |= PANEL_UNLOCK_REGS; REG_WRITE(PP_CONTROL, pp_on); pwm_ctrl = REG_READ(BLC_PWM_CTL2); pwm_ctrl |= PWM_PIPE_B; REG_WRITE(BLC_PWM_CTL2, pwm_ctrl); pp_on = REG_READ(PP_ON_DELAYS); pp_off = REG_READ(PP_OFF_DELAYS); pp_div = REG_READ(PP_DIVISOR); /* Pull timing values out of registers */ cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> PANEL_POWER_UP_DELAY_SHIFT; cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> PANEL_LIGHT_ON_DELAY_SHIFT; cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> PANEL_LIGHT_OFF_DELAY_SHIFT; cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> PANEL_POWER_DOWN_DELAY_SHIFT; cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> PANEL_POWER_CYCLE_DELAY_SHIFT); DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12); intel_dp->panel_power_up_delay = cur.t1_t3 / 10; intel_dp->backlight_on_delay = cur.t8 / 10; intel_dp->backlight_off_delay = cur.t9 / 10; intel_dp->panel_power_down_delay = cur.t10 / 10; intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100; DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, intel_dp->panel_power_cycle_delay); DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); cdv_intel_edp_panel_vdd_on(gma_encoder); ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV, intel_dp->dpcd, sizeof(intel_dp->dpcd)); cdv_intel_edp_panel_vdd_off(gma_encoder); if (ret == 0) { /* if this fails, presume the device is a ghost */ DRM_INFO("failed to retrieve link info, disabling eDP\n"); cdv_intel_dp_encoder_destroy(encoder); cdv_intel_dp_destroy(connector); goto err_priv; } else { DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n", intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]); } /* The CDV reference driver moves pnale backlight setup into the displays that have a backlight: this is a good idea and one we should probably adopt, however we need to migrate all the drivers before we can do that */ /*cdv_intel_panel_setup_backlight(dev); */ } return; err_priv: kfree(gma_connector); err_connector: kfree(gma_encoder); }