/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include "pp_debug.h" #include "amdgpu.h" #include "amdgpu_smu.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "smu_v11_0.h" #include "soc15_common.h" #include "atom.h" #include "vega20_ppt.h" #include "navi10_ppt.h" #include "asic_reg/thm/thm_11_0_2_offset.h" #include "asic_reg/thm/thm_11_0_2_sh_mask.h" #include "asic_reg/mp/mp_11_0_offset.h" #include "asic_reg/mp/mp_11_0_sh_mask.h" #include "asic_reg/nbio/nbio_7_4_offset.h" #include "asic_reg/nbio/nbio_7_4_sh_mask.h" #include "asic_reg/smuio/smuio_11_0_0_offset.h" #include "asic_reg/smuio/smuio_11_0_0_sh_mask.h" MODULE_FIRMWARE("amdgpu/vega20_smc.bin"); MODULE_FIRMWARE("amdgpu/navi10_smc.bin"); #define SMU11_VOLTAGE_SCALE 4 static int smu_v11_0_send_msg_without_waiting(struct smu_context *smu, uint16_t msg) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_66, msg); return 0; } static int smu_v11_0_read_arg(struct smu_context *smu, uint32_t *arg) { struct amdgpu_device *adev = smu->adev; *arg = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82); return 0; } static int smu_v11_0_wait_for_response(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t cur_value, i, timeout = adev->usec_timeout * 10; for (i = 0; i < timeout; i++) { cur_value = RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90); if ((cur_value & MP1_C2PMSG_90__CONTENT_MASK) != 0) break; udelay(1); } /* timeout means wrong logic */ if (i == timeout) return -ETIME; return RREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90) == 0x1 ? 0 : -EIO; } static int smu_v11_0_send_msg(struct smu_context *smu, uint16_t msg) { struct amdgpu_device *adev = smu->adev; int ret = 0, index = 0; index = smu_msg_get_index(smu, msg); if (index < 0) return index; smu_v11_0_wait_for_response(smu); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0); smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index); ret = smu_v11_0_wait_for_response(smu); if (ret) pr_err("Failed to send message 0x%x, response 0x%x\n", index, ret); return ret; } static int smu_v11_0_send_msg_with_param(struct smu_context *smu, uint16_t msg, uint32_t param) { struct amdgpu_device *adev = smu->adev; int ret = 0, index = 0; index = smu_msg_get_index(smu, msg); if (index < 0) return index; ret = smu_v11_0_wait_for_response(smu); if (ret) pr_err("Failed to send message 0x%x, response 0x%x, param 0x%x\n", index, ret, param); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_90, 0); WREG32_SOC15(MP1, 0, mmMP1_SMN_C2PMSG_82, param); smu_v11_0_send_msg_without_waiting(smu, (uint16_t)index); ret = smu_v11_0_wait_for_response(smu); if (ret) pr_err("Failed to send message 0x%x, response 0x%x param 0x%x\n", index, ret, param); return ret; } static int smu_v11_0_init_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const char *chip_name; char fw_name[30]; int err = 0; const struct smc_firmware_header_v1_0 *hdr; const struct common_firmware_header *header; struct amdgpu_firmware_info *ucode = NULL; switch (adev->asic_type) { case CHIP_VEGA20: chip_name = "vega20"; break; case CHIP_NAVI10: chip_name = "navi10"; break; default: BUG(); } snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name); err = request_firmware(&adev->pm.fw, fw_name, adev->dev); if (err) goto out; err = amdgpu_ucode_validate(adev->pm.fw); if (err) goto out; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; amdgpu_ucode_print_smc_hdr(&hdr->header); adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version); if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) { ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC]; ucode->ucode_id = AMDGPU_UCODE_ID_SMC; ucode->fw = adev->pm.fw; header = (const struct common_firmware_header *)ucode->fw->data; adev->firmware.fw_size += ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE); } out: if (err) { DRM_ERROR("smu_v11_0: Failed to load firmware \"%s\"\n", fw_name); release_firmware(adev->pm.fw); adev->pm.fw = NULL; } return err; } static int smu_v11_0_load_microcode(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const uint32_t *src; const struct smc_firmware_header_v1_0 *hdr; uint32_t addr_start = MP1_SRAM; uint32_t i; uint32_t mp1_fw_flags; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; src = (const uint32_t *)(adev->pm.fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); for (i = 1; i < MP1_SMC_SIZE/4 - 1; i++) { WREG32_PCIE(addr_start, src[i]); addr_start += 4; } WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & MP1_SMN_PUB_CTRL__RESET_MASK); WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff), 1 & ~MP1_SMN_PUB_CTRL__RESET_MASK); for (i = 0; i < adev->usec_timeout; i++) { mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) break; udelay(1); } if (i == adev->usec_timeout) return -ETIME; return 0; } static int smu_v11_0_check_fw_status(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t mp1_fw_flags; mp1_fw_flags = RREG32_PCIE(MP1_Public | (smnMP1_FIRMWARE_FLAGS & 0xffffffff)); if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >> MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT) return 0; return -EIO; } static int smu_v11_0_check_fw_version(struct smu_context *smu) { uint32_t if_version = 0xff, smu_version = 0xff; uint16_t smu_major; uint8_t smu_minor, smu_debug; int ret = 0; ret = smu_get_smc_version(smu, &if_version, &smu_version); if (ret) return ret; smu_major = (smu_version >> 16) & 0xffff; smu_minor = (smu_version >> 8) & 0xff; smu_debug = (smu_version >> 0) & 0xff; /* * 1. if_version mismatch is not critical as our fw is designed * to be backward compatible. * 2. New fw usually brings some optimizations. But that's visible * only on the paired driver. * Considering above, we just leave user a warning message instead * of halt driver loading. */ if (if_version != smu->smc_if_version) { pr_info("smu driver if version = 0x%08x, smu fw if version = 0x%08x, " "smu fw version = 0x%08x (%d.%d.%d)\n", smu->smc_if_version, if_version, smu_version, smu_major, smu_minor, smu_debug); pr_warn("SMU driver if version not matched\n"); } return ret; } static int smu_v11_0_set_pptable_v2_0(struct smu_context *smu, void **table, uint32_t *size) { struct amdgpu_device *adev = smu->adev; uint32_t ppt_offset_bytes; const struct smc_firmware_header_v2_0 *v2; v2 = (const struct smc_firmware_header_v2_0 *) adev->pm.fw->data; ppt_offset_bytes = le32_to_cpu(v2->ppt_offset_bytes); *size = le32_to_cpu(v2->ppt_size_bytes); *table = (uint8_t *)v2 + ppt_offset_bytes; return 0; } static int smu_v11_0_set_pptable_v2_1(struct smu_context *smu, void **table, uint32_t *size, uint32_t pptable_id) { struct amdgpu_device *adev = smu->adev; const struct smc_firmware_header_v2_1 *v2_1; struct smc_soft_pptable_entry *entries; uint32_t pptable_count = 0; int i = 0; v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data; entries = (struct smc_soft_pptable_entry *) ((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset)); pptable_count = le32_to_cpu(v2_1->pptable_count); for (i = 0; i < pptable_count; i++) { if (le32_to_cpu(entries[i].id) == pptable_id) { *table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes)); *size = le32_to_cpu(entries[i].ppt_size_bytes); break; } } if (i == pptable_count) return -EINVAL; return 0; } static int smu_v11_0_setup_pptable(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; const struct smc_firmware_header_v1_0 *hdr; int ret, index; uint32_t size; uint16_t atom_table_size; uint8_t frev, crev; void *table; uint16_t version_major, version_minor; hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data; version_major = le16_to_cpu(hdr->header.header_version_major); version_minor = le16_to_cpu(hdr->header.header_version_minor); if (version_major == 2 && smu->smu_table.boot_values.pp_table_id > 0) { switch (version_minor) { case 0: ret = smu_v11_0_set_pptable_v2_0(smu, &table, &size); break; case 1: ret = smu_v11_0_set_pptable_v2_1(smu, &table, &size, smu->smu_table.boot_values.pp_table_id); break; default: ret = -EINVAL; break; } if (ret) return ret; } else { index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, powerplayinfo); ret = smu_get_atom_data_table(smu, index, &atom_table_size, &frev, &crev, (uint8_t **)&table); if (ret) return ret; size = atom_table_size; } if (!smu->smu_table.power_play_table) smu->smu_table.power_play_table = table; if (!smu->smu_table.power_play_table_size) smu->smu_table.power_play_table_size = size; return 0; } static int smu_v11_0_init_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (smu_dpm->dpm_context || smu_dpm->dpm_context_size != 0) return -EINVAL; return smu_alloc_dpm_context(smu); } static int smu_v11_0_fini_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (!smu_dpm->dpm_context || smu_dpm->dpm_context_size == 0) return -EINVAL; kfree(smu_dpm->dpm_context); kfree(smu_dpm->golden_dpm_context); kfree(smu_dpm->dpm_current_power_state); kfree(smu_dpm->dpm_request_power_state); smu_dpm->dpm_context = NULL; smu_dpm->golden_dpm_context = NULL; smu_dpm->dpm_context_size = 0; smu_dpm->dpm_current_power_state = NULL; smu_dpm->dpm_request_power_state = NULL; return 0; } static int smu_v11_0_init_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *tables = NULL; int ret = 0; if (smu_table->tables || smu_table->table_count == 0) return -EINVAL; tables = kcalloc(SMU_TABLE_COUNT, sizeof(struct smu_table), GFP_KERNEL); if (!tables) return -ENOMEM; smu_table->tables = tables; ret = smu_tables_init(smu, tables); if (ret) return ret; ret = smu_v11_0_init_dpm_context(smu); if (ret) return ret; return 0; } static int smu_v11_0_fini_smc_tables(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; int ret = 0; if (!smu_table->tables || smu_table->table_count == 0) return -EINVAL; kfree(smu_table->tables); kfree(smu_table->metrics_table); smu_table->tables = NULL; smu_table->table_count = 0; smu_table->metrics_table = NULL; smu_table->metrics_time = 0; ret = smu_v11_0_fini_dpm_context(smu); if (ret) return ret; return 0; } static int smu_v11_0_init_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (!smu->pm_enabled) return 0; if (smu_power->power_context || smu_power->power_context_size != 0) return -EINVAL; smu_power->power_context = kzalloc(sizeof(struct smu_11_0_dpm_context), GFP_KERNEL); if (!smu_power->power_context) return -ENOMEM; smu_power->power_context_size = sizeof(struct smu_11_0_dpm_context); return 0; } static int smu_v11_0_fini_power(struct smu_context *smu) { struct smu_power_context *smu_power = &smu->smu_power; if (!smu->pm_enabled) return 0; if (!smu_power->power_context || smu_power->power_context_size == 0) return -EINVAL; kfree(smu_power->power_context); smu_power->power_context = NULL; smu_power->power_context_size = 0; return 0; } int smu_v11_0_get_vbios_bootup_values(struct smu_context *smu) { int ret, index; uint16_t size; uint8_t frev, crev; struct atom_common_table_header *header; struct atom_firmware_info_v3_3 *v_3_3; struct atom_firmware_info_v3_1 *v_3_1; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, firmwareinfo); ret = smu_get_atom_data_table(smu, index, &size, &frev, &crev, (uint8_t **)&header); if (ret) return ret; if (header->format_revision != 3) { pr_err("unknown atom_firmware_info version! for smu11\n"); return -EINVAL; } switch (header->content_revision) { case 0: case 1: case 2: v_3_1 = (struct atom_firmware_info_v3_1 *)header; smu->smu_table.boot_values.revision = v_3_1->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = 0; break; case 3: default: v_3_3 = (struct atom_firmware_info_v3_3 *)header; smu->smu_table.boot_values.revision = v_3_3->firmware_revision; smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz; smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz; smu->smu_table.boot_values.socclk = 0; smu->smu_table.boot_values.dcefclk = 0; smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv; smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv; smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv; smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv; smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id; smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id; } return 0; } static int smu_v11_0_get_clk_info_from_vbios(struct smu_context *smu) { int ret, index; struct amdgpu_device *adev = smu->adev; struct atom_get_smu_clock_info_parameters_v3_1 input = {0}; struct atom_get_smu_clock_info_output_parameters_v3_1 *output; input.clk_id = SMU11_SYSPLL0_SOCCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.socclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_DCEFCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.dcefclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_ECLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.eclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_VCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.vclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; memset(&input, 0, sizeof(input)); input.clk_id = SMU11_SYSPLL0_DCLK_ID; input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ; index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1, getsmuclockinfo); ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index, (uint32_t *)&input); if (ret) return -EINVAL; output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input; smu->smu_table.boot_values.dclk = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000; return 0; } static int smu_v11_0_notify_memory_pool_location(struct smu_context *smu) { struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *memory_pool = &smu_table->memory_pool; int ret = 0; uint64_t address; uint32_t address_low, address_high; if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL) return ret; address = (uintptr_t)memory_pool->cpu_addr; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSystemVirtualDramAddrHigh, address_high); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetSystemVirtualDramAddrLow, address_low); if (ret) return ret; address = memory_pool->mc_address; address_high = (uint32_t)upper_32_bits(address); address_low = (uint32_t)lower_32_bits(address); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh, address_high); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow, address_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize, (uint32_t)memory_pool->size); if (ret) return ret; return ret; } static int smu_v11_0_check_pptable(struct smu_context *smu) { int ret; ret = smu_check_powerplay_table(smu); return ret; } static int smu_v11_0_parse_pptable(struct smu_context *smu) { int ret; struct smu_table_context *table_context = &smu->smu_table; struct smu_table *table = &table_context->tables[SMU_TABLE_PPTABLE]; if (table_context->driver_pptable) return -EINVAL; table_context->driver_pptable = kzalloc(table->size, GFP_KERNEL); if (!table_context->driver_pptable) return -ENOMEM; ret = smu_store_powerplay_table(smu); if (ret) return -EINVAL; ret = smu_append_powerplay_table(smu); return ret; } static int smu_v11_0_populate_smc_pptable(struct smu_context *smu) { int ret; ret = smu_set_default_dpm_table(smu); return ret; } static int smu_v11_0_write_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; int ret = 0; ret = smu_update_table(smu, SMU_TABLE_PPTABLE, 0, table_context->driver_pptable, true); return ret; } static int smu_v11_0_write_watermarks_table(struct smu_context *smu) { int ret = 0; struct smu_table_context *smu_table = &smu->smu_table; struct smu_table *table = NULL; table = &smu_table->tables[SMU_TABLE_WATERMARKS]; if (!table) return -EINVAL; if (!table->cpu_addr) return -EINVAL; ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr, true); return ret; } static int smu_v11_0_set_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk) { int ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetMinDeepSleepDcefclk, clk); if (ret) pr_err("SMU11 attempt to set divider for DCEFCLK Failed!"); return ret; } static int smu_v11_0_set_min_dcef_deep_sleep(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; if (!smu->pm_enabled) return 0; if (!table_context) return -EINVAL; return smu_set_deep_sleep_dcefclk(smu, table_context->boot_values.dcefclk / 100); } static int smu_v11_0_set_tool_table_location(struct smu_context *smu) { int ret = 0; struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG]; if (tool_table->mc_address) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrHigh, upper_32_bits(tool_table->mc_address)); if (!ret) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetToolsDramAddrLow, lower_32_bits(tool_table->mc_address)); } return ret; } static int smu_v11_0_init_display_count(struct smu_context *smu, uint32_t count) { int ret = 0; if (!smu->pm_enabled) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count); return ret; } static int smu_v11_0_update_feature_enable_state(struct smu_context *smu, uint32_t feature_id, bool enabled) { uint32_t feature_low = 0, feature_high = 0; int ret = 0; if (!smu->pm_enabled) return ret; if (feature_id >= 0 && feature_id < 31) feature_low = (1 << feature_id); else if (feature_id > 31 && feature_id < 63) feature_high = (1 << feature_id); else return -EINVAL; if (enabled) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow, feature_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh, feature_high); if (ret) return ret; } else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow, feature_low); if (ret) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh, feature_high); if (ret) return ret; } return ret; } static int smu_v11_0_set_allowed_mask(struct smu_context *smu) { struct smu_feature *feature = &smu->smu_feature; int ret = 0; uint32_t feature_mask[2]; mutex_lock(&feature->mutex); if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) || feature->feature_num < 64) goto failed; bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh, feature_mask[1]); if (ret) goto failed; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskLow, feature_mask[0]); if (ret) goto failed; failed: mutex_unlock(&feature->mutex); return ret; } static int smu_v11_0_get_enabled_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { uint32_t feature_mask_high = 0, feature_mask_low = 0; int ret = 0; if (!feature_mask || num < 2) return -EINVAL; ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesHigh); if (ret) return ret; ret = smu_read_smc_arg(smu, &feature_mask_high); if (ret) return ret; ret = smu_send_smc_msg(smu, SMU_MSG_GetEnabledSmuFeaturesLow); if (ret) return ret; ret = smu_read_smc_arg(smu, &feature_mask_low); if (ret) return ret; feature_mask[0] = feature_mask_low; feature_mask[1] = feature_mask_high; return ret; } static int smu_v11_0_system_features_control(struct smu_context *smu, bool en) { struct smu_feature *feature = &smu->smu_feature; uint32_t feature_mask[2]; int ret = 0; if (smu->pm_enabled) { ret = smu_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures : SMU_MSG_DisableAllSmuFeatures)); if (ret) return ret; } ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); if (ret) return ret; bitmap_copy(feature->enabled, (unsigned long *)&feature_mask, feature->feature_num); bitmap_copy(feature->supported, (unsigned long *)&feature_mask, feature->feature_num); return ret; } static int smu_v11_0_notify_display_change(struct smu_context *smu) { int ret = 0; if (!smu->pm_enabled) return ret; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1); return ret; } static int smu_v11_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock, enum smu_clk_type clock_select) { int ret = 0; if (!smu->pm_enabled) return ret; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq, smu_clk_get_index(smu, clock_select) << 16); if (ret) { pr_err("[GetMaxSustainableClock] Failed to get max DC clock from SMC!"); return ret; } ret = smu_read_smc_arg(smu, clock); if (ret) return ret; if (*clock != 0) return 0; /* if DC limit is zero, return AC limit */ ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, smu_clk_get_index(smu, clock_select) << 16); if (ret) { pr_err("[GetMaxSustainableClock] failed to get max AC clock from SMC!"); return ret; } ret = smu_read_smc_arg(smu, clock); return ret; } static int smu_v11_0_init_max_sustainable_clocks(struct smu_context *smu) { struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks; int ret = 0; max_sustainable_clocks = kzalloc(sizeof(struct smu_11_0_max_sustainable_clocks), GFP_KERNEL); smu->smu_table.max_sustainable_clocks = (void *)max_sustainable_clocks; max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100; max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100; max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100; max_sustainable_clocks->display_clock = 0xFFFFFFFF; max_sustainable_clocks->phy_clock = 0xFFFFFFFF; max_sustainable_clocks->pixel_clock = 0xFFFFFFFF; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->uclock), SMU_UCLK); if (ret) { pr_err("[%s] failed to get max UCLK from SMC!", __func__); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->soc_clock), SMU_SOCCLK); if (ret) { pr_err("[%s] failed to get max SOCCLK from SMC!", __func__); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) { ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->dcef_clock), SMU_DCEFCLK); if (ret) { pr_err("[%s] failed to get max DCEFCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->display_clock), SMU_DISPCLK); if (ret) { pr_err("[%s] failed to get max DISPCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->phy_clock), SMU_PHYCLK); if (ret) { pr_err("[%s] failed to get max PHYCLK from SMC!", __func__); return ret; } ret = smu_v11_0_get_max_sustainable_clock(smu, &(max_sustainable_clocks->pixel_clock), SMU_PIXCLK); if (ret) { pr_err("[%s] failed to get max PIXCLK from SMC!", __func__); return ret; } } if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock) max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock; return 0; } static int smu_v11_0_get_power_limit(struct smu_context *smu, uint32_t *limit, bool get_default) { int ret = 0; if (get_default) { mutex_lock(&smu->mutex); *limit = smu->default_power_limit; if (smu->od_enabled) { *limit *= (100 + smu->smu_table.TDPODLimit); *limit /= 100; } mutex_unlock(&smu->mutex); } else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetPptLimit, smu_power_get_index(smu, SMU_POWER_SOURCE_AC) << 16); if (ret) { pr_err("[%s] get PPT limit failed!", __func__); return ret; } smu_read_smc_arg(smu, limit); smu->power_limit = *limit; } return ret; } static int smu_v11_0_set_power_limit(struct smu_context *smu, uint32_t n) { uint32_t max_power_limit; int ret = 0; if (n == 0) n = smu->default_power_limit; max_power_limit = smu->default_power_limit; if (smu->od_enabled) { max_power_limit *= (100 + smu->smu_table.TDPODLimit); max_power_limit /= 100; } if (smu_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, n); if (ret) { pr_err("[%s] Set power limit Failed!", __func__); return ret; } return ret; } static int smu_v11_0_get_current_clk_freq(struct smu_context *smu, enum smu_clk_type clk_id, uint32_t *value) { int ret = 0; uint32_t freq = 0; if (clk_id >= SMU_CLK_COUNT || !value) return -EINVAL; /* if don't has GetDpmClockFreq Message, try get current clock by SmuMetrics_t */ if (smu_msg_get_index(smu, SMU_MSG_GetDpmClockFreq) == 0) ret = smu_get_current_clk_freq_by_table(smu, clk_id, &freq); else { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmClockFreq, (smu_clk_get_index(smu, clk_id) << 16)); if (ret) return ret; ret = smu_read_smc_arg(smu, &freq); if (ret) return ret; } freq *= 100; *value = freq; return ret; } static int smu_v11_0_set_thermal_range(struct smu_context *smu, struct smu_temperature_range *range) { struct amdgpu_device *adev = smu->adev; int low = SMU_THERMAL_MINIMUM_ALERT_TEMP; int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP; uint32_t val; if (!range) return -EINVAL; if (low < range->min) low = range->min; if (high > range->max) high = range->max; low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, range->min); high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP, range->max); if (low > high) return -EINVAL; val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff)); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff)); val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val); return 0; } static int smu_v11_0_enable_thermal_alert(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t val = 0; val |= (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT); val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_ENA, val); return 0; } static int smu_v11_0_start_thermal_control(struct smu_context *smu) { int ret = 0; struct smu_temperature_range range = { TEMP_RANGE_MIN, TEMP_RANGE_MAX, TEMP_RANGE_MAX, TEMP_RANGE_MIN, TEMP_RANGE_MAX, TEMP_RANGE_MAX, TEMP_RANGE_MIN, TEMP_RANGE_MAX, TEMP_RANGE_MAX}; struct amdgpu_device *adev = smu->adev; if (!smu->pm_enabled) return ret; ret = smu_get_thermal_temperature_range(smu, &range); if (ret) return ret; if (smu->smu_table.thermal_controller_type) { ret = smu_v11_0_set_thermal_range(smu, &range); if (ret) return ret; ret = smu_v11_0_enable_thermal_alert(smu); if (ret) return ret; ret = smu_set_thermal_fan_table(smu); if (ret) return ret; } adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.max_edge_emergency_temp = range.edge_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.min_hotspot_temp = range.hotspot_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.max_hotspot_crit_temp = range.hotspot_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.max_hotspot_emergency_temp = range.hotspot_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.min_mem_temp = range.mem_min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.max_mem_crit_temp = range.mem_crit_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.max_mem_emergency_temp = range.mem_emergency_max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.min_temp = range.min * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; adev->pm.dpm.thermal.max_temp = range.max * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; return ret; } static uint16_t convert_to_vddc(uint8_t vid) { return (uint16_t) ((6200 - (vid * 25)) / SMU11_VOLTAGE_SCALE); } static int smu_v11_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value) { struct amdgpu_device *adev = smu->adev; uint32_t vdd = 0, val_vid = 0; if (!value) return -EINVAL; val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_TEL_PLANE0) & SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >> SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT; vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid); *value = vdd; return 0; } static int smu_v11_0_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { int ret = 0; switch (sensor) { case AMDGPU_PP_SENSOR_GFX_MCLK: ret = smu_get_current_clk_freq(smu, SMU_UCLK, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = smu_get_current_clk_freq(smu, SMU_GFXCLK, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_MIN_FAN_RPM: *(uint32_t *)data = 0; *size = 4; break; default: ret = smu_common_read_sensor(smu, sensor, data, size); break; } /* try get sensor data by asic */ if (ret) ret = smu_asic_read_sensor(smu, sensor, data, size); if (ret) *size = 0; return ret; } static int smu_v11_0_display_clock_voltage_request(struct smu_context *smu, struct pp_display_clock_request *clock_req) { enum amd_pp_clock_type clk_type = clock_req->clock_type; int ret = 0; enum smu_clk_type clk_select = 0; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; if (!smu->pm_enabled) return -EINVAL; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) || smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { switch (clk_type) { case amd_pp_dcef_clock: clk_select = SMU_DCEFCLK; break; case amd_pp_disp_clock: clk_select = SMU_DISPCLK; break; case amd_pp_pixel_clock: clk_select = SMU_PIXCLK; break; case amd_pp_phy_clock: clk_select = SMU_PHYCLK; break; case amd_pp_mem_clock: clk_select = SMU_UCLK; break; default: pr_info("[%s] Invalid Clock Type!", __func__); ret = -EINVAL; break; } if (ret) goto failed; mutex_lock(&smu->mutex); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq, (smu_clk_get_index(smu, clk_select) << 16) | clk_freq); mutex_unlock(&smu->mutex); } failed: return ret; } static int smu_v11_0_set_watermarks_for_clock_ranges(struct smu_context *smu, struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges) { int ret = 0; struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS]; void *table = watermarks->cpu_addr; if (!smu->disable_watermark && smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) && smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { smu_set_watermarks_table(smu, table, clock_ranges); smu->watermarks_bitmap |= WATERMARKS_EXIST; smu->watermarks_bitmap &= ~WATERMARKS_LOADED; } return ret; } static int smu_v11_0_gfx_off_control(struct smu_context *smu, bool enable) { int ret = 0; struct amdgpu_device *adev = smu->adev; switch (adev->asic_type) { case CHIP_VEGA20: break; case CHIP_NAVI10: if (!(adev->pm.pp_feature & PP_GFXOFF_MASK)) return 0; mutex_lock(&smu->mutex); if (enable) ret = smu_send_smc_msg(smu, SMU_MSG_AllowGfxOff); else ret = smu_send_smc_msg(smu, SMU_MSG_DisallowGfxOff); mutex_unlock(&smu->mutex); break; default: break; } return ret; } static uint32_t smu_v11_0_get_fan_control_mode(struct smu_context *smu) { if (!smu_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int smu_v11_0_smc_fan_control(struct smu_context *smu, bool start) { int ret = 0; if (!smu_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT)) return 0; ret = smu_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, start); if (ret) pr_err("[%s]%s smc FAN CONTROL feature failed!", __func__, (start ? "Start" : "Stop")); return ret; } static int smu_v11_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode) { struct amdgpu_device *adev = smu->adev; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, TMIN, 0)); WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2), CG_FDO_CTRL2, FDO_PWM_MODE, mode)); return 0; } static int smu_v11_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; uint32_t duty100; uint32_t duty; uint64_t tmp64; bool stop = 0; if (speed > 100) speed = 100; if (smu_v11_0_smc_fan_control(smu, stop)) return -EINVAL; duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1), CG_FDO_CTRL1, FMAX_DUTY100); if (!duty100) return -EINVAL; tmp64 = (uint64_t)speed * duty100; do_div(tmp64, 100); duty = (uint32_t)tmp64; WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0), CG_FDO_CTRL0, FDO_STATIC_DUTY, duty)); return smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC); } static int smu_v11_0_set_fan_control_mode(struct smu_context *smu, uint32_t mode) { int ret = 0; bool start = 1; bool stop = 0; switch (mode) { case AMD_FAN_CTRL_NONE: ret = smu_v11_0_set_fan_speed_percent(smu, 100); break; case AMD_FAN_CTRL_MANUAL: ret = smu_v11_0_smc_fan_control(smu, stop); break; case AMD_FAN_CTRL_AUTO: ret = smu_v11_0_smc_fan_control(smu, start); break; default: break; } if (ret) { pr_err("[%s]Set fan control mode failed!", __func__); return -EINVAL; } return ret; } static int smu_v11_0_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed) { struct amdgpu_device *adev = smu->adev; int ret; uint32_t tach_period, crystal_clock_freq; bool stop = 0; if (!speed) return -EINVAL; mutex_lock(&(smu->mutex)); ret = smu_v11_0_smc_fan_control(smu, stop); if (ret) goto set_fan_speed_rpm_failed; crystal_clock_freq = amdgpu_asic_get_xclk(adev); tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed); WREG32_SOC15(THM, 0, mmCG_TACH_CTRL, REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL), CG_TACH_CTRL, TARGET_PERIOD, tach_period)); ret = smu_v11_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM); set_fan_speed_rpm_failed: mutex_unlock(&(smu->mutex)); return ret; } #define XGMI_STATE_D0 1 #define XGMI_STATE_D3 0 static int smu_v11_0_set_xgmi_pstate(struct smu_context *smu, uint32_t pstate) { int ret = 0; mutex_lock(&(smu->mutex)); ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetXgmiMode, pstate ? XGMI_STATE_D0 : XGMI_STATE_D3); mutex_unlock(&(smu->mutex)); return ret; } #define THM_11_0__SRCID__THM_DIG_THERM_L2H 0 /* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH */ #define THM_11_0__SRCID__THM_DIG_THERM_H2L 1 /* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL */ static int smu_v11_0_irq_process(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { uint32_t client_id = entry->client_id; uint32_t src_id = entry->src_id; if (client_id == SOC15_IH_CLIENTID_THM) { switch (src_id) { case THM_11_0__SRCID__THM_DIG_THERM_L2H: pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n", PCI_BUS_NUM(adev->pdev->devfn), PCI_SLOT(adev->pdev->devfn), PCI_FUNC(adev->pdev->devfn)); break; case THM_11_0__SRCID__THM_DIG_THERM_H2L: pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n", PCI_BUS_NUM(adev->pdev->devfn), PCI_SLOT(adev->pdev->devfn), PCI_FUNC(adev->pdev->devfn)); break; default: pr_warn("GPU under temperature range unknown src id (%d), detected on PCIe %d:%d.%d!\n", src_id, PCI_BUS_NUM(adev->pdev->devfn), PCI_SLOT(adev->pdev->devfn), PCI_FUNC(adev->pdev->devfn)); break; } } return 0; } static const struct amdgpu_irq_src_funcs smu_v11_0_irq_funcs = { .process = smu_v11_0_irq_process, }; static int smu_v11_0_register_irq_handler(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct amdgpu_irq_src *irq_src = smu->irq_source; int ret = 0; /* already register */ if (irq_src) return 0; irq_src = kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); if (!irq_src) return -ENOMEM; smu->irq_source = irq_src; irq_src->funcs = &smu_v11_0_irq_funcs; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_L2H, irq_src); if (ret) return ret; ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM, THM_11_0__SRCID__THM_DIG_THERM_H2L, irq_src); if (ret) return ret; return ret; } static int smu_v11_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu, struct pp_smu_nv_clock_table *max_clocks) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_max_sustainable_clocks *sustainable_clocks = NULL; if (!max_clocks || !table_context->max_sustainable_clocks) return -EINVAL; sustainable_clocks = table_context->max_sustainable_clocks; max_clocks->dcfClockInKhz = (unsigned int) sustainable_clocks->dcef_clock * 1000; max_clocks->displayClockInKhz = (unsigned int) sustainable_clocks->display_clock * 1000; max_clocks->phyClockInKhz = (unsigned int) sustainable_clocks->phy_clock * 1000; max_clocks->pixelClockInKhz = (unsigned int) sustainable_clocks->pixel_clock * 1000; max_clocks->uClockInKhz = (unsigned int) sustainable_clocks->uclock * 1000; max_clocks->socClockInKhz = (unsigned int) sustainable_clocks->soc_clock * 1000; max_clocks->dscClockInKhz = 0; max_clocks->dppClockInKhz = 0; max_clocks->fabricClockInKhz = 0; return 0; } static int smu_v11_0_set_azalia_d3_pme(struct smu_context *smu) { int ret = 0; mutex_lock(&smu->mutex); ret = smu_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME); mutex_unlock(&smu->mutex); return ret; } static int smu_v11_0_baco_set_armd3_sequence(struct smu_context *smu, enum smu_v11_0_baco_seq baco_seq) { return smu_send_smc_msg_with_param(smu, SMU_MSG_ArmD3, baco_seq); } static bool smu_v11_0_baco_is_support(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; struct smu_baco_context *smu_baco = &smu->smu_baco; uint32_t val; bool baco_support; mutex_lock(&smu_baco->mutex); baco_support = smu_baco->platform_support; mutex_unlock(&smu_baco->mutex); if (!baco_support) return false; if (!smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT)) return false; val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0); if (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) return true; return false; } static enum smu_baco_state smu_v11_0_baco_get_state(struct smu_context *smu) { struct smu_baco_context *smu_baco = &smu->smu_baco; enum smu_baco_state baco_state = SMU_BACO_STATE_EXIT; mutex_lock(&smu_baco->mutex); baco_state = smu_baco->state; mutex_unlock(&smu_baco->mutex); return baco_state; } static int smu_v11_0_baco_set_state(struct smu_context *smu, enum smu_baco_state state) { struct smu_baco_context *smu_baco = &smu->smu_baco; int ret = 0; if (smu_v11_0_baco_get_state(smu) == state) return 0; mutex_lock(&smu_baco->mutex); if (state == SMU_BACO_STATE_ENTER) ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnterBaco, BACO_SEQ_BACO); else ret = smu_send_smc_msg(smu, SMU_MSG_ExitBaco); if (ret) goto out; smu_baco->state = state; out: mutex_unlock(&smu_baco->mutex); return ret; } static int smu_v11_0_baco_reset(struct smu_context *smu) { int ret = 0; ret = smu_v11_0_baco_set_armd3_sequence(smu, BACO_SEQ_BACO); if (ret) return ret; ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_ENTER); if (ret) return ret; msleep(10); ret = smu_v11_0_baco_set_state(smu, SMU_BACO_STATE_EXIT); if (ret) return ret; return ret; } static const struct smu_funcs smu_v11_0_funcs = { .init_microcode = smu_v11_0_init_microcode, .load_microcode = smu_v11_0_load_microcode, .check_fw_status = smu_v11_0_check_fw_status, .check_fw_version = smu_v11_0_check_fw_version, .send_smc_msg = smu_v11_0_send_msg, .send_smc_msg_with_param = smu_v11_0_send_msg_with_param, .read_smc_arg = smu_v11_0_read_arg, .setup_pptable = smu_v11_0_setup_pptable, .init_smc_tables = smu_v11_0_init_smc_tables, .fini_smc_tables = smu_v11_0_fini_smc_tables, .init_power = smu_v11_0_init_power, .fini_power = smu_v11_0_fini_power, .get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values, .get_clk_info_from_vbios = smu_v11_0_get_clk_info_from_vbios, .notify_memory_pool_location = smu_v11_0_notify_memory_pool_location, .check_pptable = smu_v11_0_check_pptable, .parse_pptable = smu_v11_0_parse_pptable, .populate_smc_pptable = smu_v11_0_populate_smc_pptable, .write_pptable = smu_v11_0_write_pptable, .write_watermarks_table = smu_v11_0_write_watermarks_table, .set_min_dcef_deep_sleep = smu_v11_0_set_min_dcef_deep_sleep, .set_tool_table_location = smu_v11_0_set_tool_table_location, .init_display_count = smu_v11_0_init_display_count, .set_allowed_mask = smu_v11_0_set_allowed_mask, .get_enabled_mask = smu_v11_0_get_enabled_mask, .system_features_control = smu_v11_0_system_features_control, .update_feature_enable_state = smu_v11_0_update_feature_enable_state, .notify_display_change = smu_v11_0_notify_display_change, .get_power_limit = smu_v11_0_get_power_limit, .set_power_limit = smu_v11_0_set_power_limit, .get_current_clk_freq = smu_v11_0_get_current_clk_freq, .init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks, .start_thermal_control = smu_v11_0_start_thermal_control, .read_sensor = smu_v11_0_read_sensor, .set_deep_sleep_dcefclk = smu_v11_0_set_deep_sleep_dcefclk, .display_clock_voltage_request = smu_v11_0_display_clock_voltage_request, .set_watermarks_for_clock_ranges = smu_v11_0_set_watermarks_for_clock_ranges, .get_fan_control_mode = smu_v11_0_get_fan_control_mode, .set_fan_control_mode = smu_v11_0_set_fan_control_mode, .set_fan_speed_percent = smu_v11_0_set_fan_speed_percent, .set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm, .set_xgmi_pstate = smu_v11_0_set_xgmi_pstate, .gfx_off_control = smu_v11_0_gfx_off_control, .register_irq_handler = smu_v11_0_register_irq_handler, .set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme, .get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc, .baco_is_support = smu_v11_0_baco_is_support, .baco_get_state = smu_v11_0_baco_get_state, .baco_set_state = smu_v11_0_baco_set_state, .baco_reset = smu_v11_0_baco_reset, }; void smu_v11_0_set_smu_funcs(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; smu->funcs = &smu_v11_0_funcs; switch (adev->asic_type) { case CHIP_VEGA20: vega20_set_ppt_funcs(smu); break; case CHIP_NAVI10: navi10_set_ppt_funcs(smu); break; default: pr_warn("Unknown asic for smu11\n"); } }