/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "amdgpu.h" #include "amdgpu_smu.h" #include "smu_internal.h" #include "atomfirmware.h" #include "amdgpu_atomfirmware.h" #include "smu_v11_0.h" #include "smu11_driver_if_arcturus.h" #include "soc15_common.h" #include "atom.h" #include "power_state.h" #include "arcturus_ppt.h" #include "smu_v11_0_pptable.h" #include "arcturus_ppsmc.h" #include "nbio/nbio_7_4_offset.h" #include "nbio/nbio_7_4_sh_mask.h" #include "thm/thm_11_0_2_offset.h" #include "thm/thm_11_0_2_sh_mask.h" #include "amdgpu_xgmi.h" #include #include #include "amdgpu_ras.h" /* * DO NOT use these for err/warn/info/debug messages. * Use dev_err, dev_warn, dev_info and dev_dbg instead. * They are more MGPU friendly. */ #undef pr_err #undef pr_warn #undef pr_info #undef pr_debug #define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c)) #define CTF_OFFSET_EDGE 5 #define CTF_OFFSET_HOTSPOT 5 #define CTF_OFFSET_HBM 5 #define MSG_MAP(msg, index, valid_in_vf) \ [SMU_MSG_##msg] = {1, (index), (valid_in_vf)} #define ARCTURUS_FEA_MAP(smu_feature, arcturus_feature) \ [smu_feature] = {1, (arcturus_feature)} #define SMU_FEATURES_LOW_MASK 0x00000000FFFFFFFF #define SMU_FEATURES_LOW_SHIFT 0 #define SMU_FEATURES_HIGH_MASK 0xFFFFFFFF00000000 #define SMU_FEATURES_HIGH_SHIFT 32 #define SMC_DPM_FEATURE ( \ FEATURE_DPM_PREFETCHER_MASK | \ FEATURE_DPM_GFXCLK_MASK | \ FEATURE_DPM_UCLK_MASK | \ FEATURE_DPM_SOCCLK_MASK | \ FEATURE_DPM_MP0CLK_MASK | \ FEATURE_DPM_FCLK_MASK | \ FEATURE_DPM_XGMI_MASK) /* possible frequency drift (1Mhz) */ #define EPSILON 1 static struct smu_11_0_msg_mapping arcturus_message_map[SMU_MSG_MAX_COUNT] = { MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 0), MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1), MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1), MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0), MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0), MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0), MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0), MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1), MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1), MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 0), MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 0), MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow, 0), MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh, 0), MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1), MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1), MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0), MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0), MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1), MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0), MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0), MSG_MAP(UseBackupPPTable, PPSMC_MSG_UseBackupPPTable, 0), MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh, 0), MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow, 0), MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0), MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0), MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0), MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 0), MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 0), MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 0), MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0), MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 0), MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 0), MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1), MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1), MSG_MAP(SetDfSwitchType, PPSMC_MSG_SetDfSwitchType, 0), MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm, 0), MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive, 0), MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0), MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 1), MSG_MAP(PowerUpVcn0, PPSMC_MSG_PowerUpVcn0, 0), MSG_MAP(PowerDownVcn0, PPSMC_MSG_PowerDownVcn0, 0), MSG_MAP(PowerUpVcn1, PPSMC_MSG_PowerUpVcn1, 0), MSG_MAP(PowerDownVcn1, PPSMC_MSG_PowerDownVcn1, 0), MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 0), MSG_MAP(PrepareMp1ForReset, PPSMC_MSG_PrepareMp1ForReset, 0), MSG_MAP(PrepareMp1ForShutdown, PPSMC_MSG_PrepareMp1ForShutdown, 0), MSG_MAP(SoftReset, PPSMC_MSG_SoftReset, 0), MSG_MAP(RunAfllBtc, PPSMC_MSG_RunAfllBtc, 0), MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0), MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0), MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0), MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0), MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData, 0), MSG_MAP(WaflTest, PPSMC_MSG_WaflTest, 0), MSG_MAP(SetXgmiMode, PPSMC_MSG_SetXgmiMode, 0), MSG_MAP(SetMemoryChannelEnable, PPSMC_MSG_SetMemoryChannelEnable, 0), MSG_MAP(DFCstateControl, PPSMC_MSG_DFCstateControl, 0), MSG_MAP(GmiPwrDnControl, PPSMC_MSG_GmiPwrDnControl, 0), MSG_MAP(ReadSerialNumTop32, PPSMC_MSG_ReadSerialNumTop32, 1), MSG_MAP(ReadSerialNumBottom32, PPSMC_MSG_ReadSerialNumBottom32, 1), }; static struct smu_11_0_cmn2aisc_mapping arcturus_clk_map[SMU_CLK_COUNT] = { CLK_MAP(GFXCLK, PPCLK_GFXCLK), CLK_MAP(SCLK, PPCLK_GFXCLK), CLK_MAP(SOCCLK, PPCLK_SOCCLK), CLK_MAP(FCLK, PPCLK_FCLK), CLK_MAP(UCLK, PPCLK_UCLK), CLK_MAP(MCLK, PPCLK_UCLK), CLK_MAP(DCLK, PPCLK_DCLK), CLK_MAP(VCLK, PPCLK_VCLK), }; static struct smu_11_0_cmn2aisc_mapping arcturus_feature_mask_map[SMU_FEATURE_COUNT] = { FEA_MAP(DPM_PREFETCHER), FEA_MAP(DPM_GFXCLK), FEA_MAP(DPM_UCLK), FEA_MAP(DPM_SOCCLK), FEA_MAP(DPM_FCLK), FEA_MAP(DPM_MP0CLK), ARCTURUS_FEA_MAP(SMU_FEATURE_XGMI_BIT, FEATURE_DPM_XGMI_BIT), FEA_MAP(DS_GFXCLK), FEA_MAP(DS_SOCCLK), FEA_MAP(DS_LCLK), FEA_MAP(DS_FCLK), FEA_MAP(DS_UCLK), FEA_MAP(GFX_ULV), ARCTURUS_FEA_MAP(SMU_FEATURE_VCN_PG_BIT, FEATURE_DPM_VCN_BIT), FEA_MAP(RSMU_SMN_CG), FEA_MAP(WAFL_CG), FEA_MAP(PPT), FEA_MAP(TDC), FEA_MAP(APCC_PLUS), FEA_MAP(VR0HOT), FEA_MAP(VR1HOT), FEA_MAP(FW_CTF), FEA_MAP(FAN_CONTROL), FEA_MAP(THERMAL), FEA_MAP(OUT_OF_BAND_MONITOR), FEA_MAP(TEMP_DEPENDENT_VMIN), }; static struct smu_11_0_cmn2aisc_mapping arcturus_table_map[SMU_TABLE_COUNT] = { TAB_MAP(PPTABLE), TAB_MAP(AVFS), TAB_MAP(AVFS_PSM_DEBUG), TAB_MAP(AVFS_FUSE_OVERRIDE), TAB_MAP(PMSTATUSLOG), TAB_MAP(SMU_METRICS), TAB_MAP(DRIVER_SMU_CONFIG), TAB_MAP(OVERDRIVE), TAB_MAP(I2C_COMMANDS), TAB_MAP(ACTIVITY_MONITOR_COEFF), }; static struct smu_11_0_cmn2aisc_mapping arcturus_pwr_src_map[SMU_POWER_SOURCE_COUNT] = { PWR_MAP(AC), PWR_MAP(DC), }; static struct smu_11_0_cmn2aisc_mapping arcturus_workload_map[PP_SMC_POWER_PROFILE_COUNT] = { WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT), WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT), }; static int arcturus_get_smu_msg_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_msg_mapping mapping; if (index >= SMU_MSG_MAX_COUNT) return -EINVAL; mapping = arcturus_message_map[index]; if (!(mapping.valid_mapping)) return -EINVAL; if (amdgpu_sriov_vf(smc->adev) && !mapping.valid_in_vf) return -EACCES; return mapping.map_to; } static int arcturus_get_smu_clk_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_CLK_COUNT) return -EINVAL; mapping = arcturus_clk_map[index]; if (!(mapping.valid_mapping)) { dev_warn(smc->adev->dev, "Unsupported SMU clk: %d\n", index); return -EINVAL; } return mapping.map_to; } static int arcturus_get_smu_feature_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_FEATURE_COUNT) return -EINVAL; mapping = arcturus_feature_mask_map[index]; if (!(mapping.valid_mapping)) { return -EINVAL; } return mapping.map_to; } static int arcturus_get_smu_table_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_TABLE_COUNT) return -EINVAL; mapping = arcturus_table_map[index]; if (!(mapping.valid_mapping)) { dev_warn(smc->adev->dev, "Unsupported SMU table: %d\n", index); return -EINVAL; } return mapping.map_to; } static int arcturus_get_pwr_src_index(struct smu_context *smc, uint32_t index) { struct smu_11_0_cmn2aisc_mapping mapping; if (index >= SMU_POWER_SOURCE_COUNT) return -EINVAL; mapping = arcturus_pwr_src_map[index]; if (!(mapping.valid_mapping)) { dev_warn(smc->adev->dev, "Unsupported SMU power source: %d\n", index); return -EINVAL; } return mapping.map_to; } static int arcturus_get_workload_type(struct smu_context *smu, enum PP_SMC_POWER_PROFILE profile) { struct smu_11_0_cmn2aisc_mapping mapping; if (profile > PP_SMC_POWER_PROFILE_CUSTOM) return -EINVAL; mapping = arcturus_workload_map[profile]; if (!(mapping.valid_mapping)) return -EINVAL; return mapping.map_to; } static int arcturus_tables_init(struct smu_context *smu, struct smu_table *tables) { struct smu_table_context *smu_table = &smu->smu_table; SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF, sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM); smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL); if (!smu_table->metrics_table) return -ENOMEM; smu_table->metrics_time = 0; return 0; } static int arcturus_allocate_dpm_context(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; if (smu_dpm->dpm_context) return -EINVAL; smu_dpm->dpm_context = kzalloc(sizeof(struct arcturus_dpm_table), GFP_KERNEL); if (!smu_dpm->dpm_context) return -ENOMEM; if (smu_dpm->golden_dpm_context) return -EINVAL; smu_dpm->golden_dpm_context = kzalloc(sizeof(struct arcturus_dpm_table), GFP_KERNEL); if (!smu_dpm->golden_dpm_context) return -ENOMEM; smu_dpm->dpm_context_size = sizeof(struct arcturus_dpm_table); smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state), GFP_KERNEL); if (!smu_dpm->dpm_current_power_state) return -ENOMEM; smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state), GFP_KERNEL); if (!smu_dpm->dpm_request_power_state) return -ENOMEM; return 0; } static int arcturus_get_allowed_feature_mask(struct smu_context *smu, uint32_t *feature_mask, uint32_t num) { if (num > 2) return -EINVAL; /* pptable will handle the features to enable */ memset(feature_mask, 0xFF, sizeof(uint32_t) * num); return 0; } static int arcturus_set_single_dpm_table(struct smu_context *smu, struct arcturus_single_dpm_table *single_dpm_table, PPCLK_e clk_id) { int ret = 0; uint32_t i, num_of_levels = 0, clk; ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex, (clk_id << 16 | 0xFF), &num_of_levels); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get dpm levels!\n", __func__); return ret; } single_dpm_table->count = num_of_levels; for (i = 0; i < num_of_levels; i++) { ret = smu_send_smc_msg_with_param(smu, SMU_MSG_GetDpmFreqByIndex, (clk_id << 16 | i), &clk); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get dpm freq by index!\n", __func__); return ret; } single_dpm_table->dpm_levels[i].value = clk; single_dpm_table->dpm_levels[i].enabled = true; } return 0; } static void arcturus_init_single_dpm_state(struct arcturus_dpm_state *dpm_state) { dpm_state->soft_min_level = 0x0; dpm_state->soft_max_level = 0xffff; dpm_state->hard_min_level = 0x0; dpm_state->hard_max_level = 0xffff; } static int arcturus_set_default_dpm_table(struct smu_context *smu) { int ret; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct arcturus_dpm_table *dpm_table = NULL; struct arcturus_single_dpm_table *single_dpm_table; dpm_table = smu_dpm->dpm_context; /* socclk */ single_dpm_table = &(dpm_table->soc_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) { ret = arcturus_set_single_dpm_table(smu, single_dpm_table, PPCLK_SOCCLK); if (ret) { dev_err(smu->adev->dev, "[%s] failed to get socclk dpm levels!\n", __func__); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100; } arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* gfxclk */ single_dpm_table = &(dpm_table->gfx_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) { ret = arcturus_set_single_dpm_table(smu, single_dpm_table, PPCLK_GFXCLK); if (ret) { dev_err(smu->adev->dev, "[SetupDefaultDpmTable] failed to get gfxclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100; } arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* memclk */ single_dpm_table = &(dpm_table->mem_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) { ret = arcturus_set_single_dpm_table(smu, single_dpm_table, PPCLK_UCLK); if (ret) { dev_err(smu->adev->dev, "[SetupDefaultDpmTable] failed to get memclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100; } arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state)); /* fclk */ single_dpm_table = &(dpm_table->fclk_table); if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) { ret = arcturus_set_single_dpm_table(smu, single_dpm_table, PPCLK_FCLK); if (ret) { dev_err(smu->adev->dev, "[SetupDefaultDpmTable] failed to get fclk dpm levels!"); return ret; } } else { single_dpm_table->count = 1; single_dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100; } arcturus_init_single_dpm_state(&(single_dpm_table->dpm_state)); memcpy(smu_dpm->golden_dpm_context, dpm_table, sizeof(struct arcturus_dpm_table)); return 0; } static int arcturus_check_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; struct smu_baco_context *smu_baco = &smu->smu_baco; mutex_lock(&smu_baco->mutex); if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_BACO || powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_MACO) smu_baco->platform_support = true; mutex_unlock(&smu_baco->mutex); table_context->thermal_controller_type = powerplay_table->thermal_controller_type; return 0; } static int arcturus_store_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable, sizeof(PPTable_t)); return 0; } static int arcturus_append_powerplay_table(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *smc_pptable = table_context->driver_pptable; struct atom_smc_dpm_info_v4_6 *smc_dpm_table; int index, ret; index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1, smc_dpm_info); ret = smu_get_atom_data_table(smu, index, NULL, NULL, NULL, (uint8_t **)&smc_dpm_table); if (ret) return ret; dev_info(smu->adev->dev, "smc_dpm_info table revision(format.content): %d.%d\n", smc_dpm_table->table_header.format_revision, smc_dpm_table->table_header.content_revision); if ((smc_dpm_table->table_header.format_revision == 4) && (smc_dpm_table->table_header.content_revision == 6)) memcpy(&smc_pptable->MaxVoltageStepGfx, &smc_dpm_table->maxvoltagestepgfx, sizeof(*smc_dpm_table) - offsetof(struct atom_smc_dpm_info_v4_6, maxvoltagestepgfx)); return 0; } static int arcturus_setup_pptable(struct smu_context *smu) { int ret = 0; ret = smu_v11_0_setup_pptable(smu); if (ret) return ret; ret = arcturus_store_powerplay_table(smu); if (ret) return ret; ret = arcturus_append_powerplay_table(smu); if (ret) return ret; ret = arcturus_check_powerplay_table(smu); if (ret) return ret; return ret; } static int arcturus_run_btc(struct smu_context *smu) { int ret = 0; ret = smu_send_smc_msg(smu, SMU_MSG_RunAfllBtc, NULL); if (ret) { dev_err(smu->adev->dev, "RunAfllBtc failed!\n"); return ret; } return smu_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL); } static int arcturus_populate_umd_state_clk(struct smu_context *smu) { struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct arcturus_dpm_table *dpm_table = NULL; struct arcturus_single_dpm_table *gfx_table = NULL; struct arcturus_single_dpm_table *mem_table = NULL; dpm_table = smu_dpm->dpm_context; gfx_table = &(dpm_table->gfx_table); mem_table = &(dpm_table->mem_table); smu->pstate_sclk = gfx_table->dpm_levels[0].value; smu->pstate_mclk = mem_table->dpm_levels[0].value; if (gfx_table->count > ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL && mem_table->count > ARCTURUS_UMD_PSTATE_MCLK_LEVEL) { smu->pstate_sclk = gfx_table->dpm_levels[ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL].value; smu->pstate_mclk = mem_table->dpm_levels[ARCTURUS_UMD_PSTATE_MCLK_LEVEL].value; } smu->pstate_sclk = smu->pstate_sclk * 100; smu->pstate_mclk = smu->pstate_mclk * 100; return 0; } static int arcturus_get_clk_table(struct smu_context *smu, struct pp_clock_levels_with_latency *clocks, struct arcturus_single_dpm_table *dpm_table) { int i, count; count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count; clocks->num_levels = count; for (i = 0; i < count; i++) { clocks->data[i].clocks_in_khz = dpm_table->dpm_levels[i].value * 1000; clocks->data[i].latency_in_us = 0; } return 0; } static int arcturus_freqs_in_same_level(int32_t frequency1, int32_t frequency2) { return (abs(frequency1 - frequency2) <= EPSILON); } static int arcturus_get_smu_metrics_data(struct smu_context *smu, MetricsMember_t member, uint32_t *value) { struct smu_table_context *smu_table= &smu->smu_table; SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table; int ret = 0; mutex_lock(&smu->metrics_lock); if (!smu_table->metrics_time || time_after(jiffies, smu_table->metrics_time + msecs_to_jiffies(1))) { ret = smu_update_table(smu, SMU_TABLE_SMU_METRICS, 0, smu_table->metrics_table, false); if (ret) { dev_info(smu->adev->dev, "Failed to export SMU metrics table!\n"); mutex_unlock(&smu->metrics_lock); return ret; } smu_table->metrics_time = jiffies; } switch (member) { case METRICS_CURR_GFXCLK: *value = metrics->CurrClock[PPCLK_GFXCLK]; break; case METRICS_CURR_SOCCLK: *value = metrics->CurrClock[PPCLK_SOCCLK]; break; case METRICS_CURR_UCLK: *value = metrics->CurrClock[PPCLK_UCLK]; break; case METRICS_CURR_VCLK: *value = metrics->CurrClock[PPCLK_VCLK]; break; case METRICS_CURR_DCLK: *value = metrics->CurrClock[PPCLK_DCLK]; break; case METRICS_CURR_FCLK: *value = metrics->CurrClock[PPCLK_FCLK]; break; case METRICS_AVERAGE_GFXCLK: *value = metrics->AverageGfxclkFrequency; break; case METRICS_AVERAGE_SOCCLK: *value = metrics->AverageSocclkFrequency; break; case METRICS_AVERAGE_UCLK: *value = metrics->AverageUclkFrequency; break; case METRICS_AVERAGE_VCLK: *value = metrics->AverageVclkFrequency; break; case METRICS_AVERAGE_DCLK: *value = metrics->AverageDclkFrequency; break; case METRICS_AVERAGE_GFXACTIVITY: *value = metrics->AverageGfxActivity; break; case METRICS_AVERAGE_MEMACTIVITY: *value = metrics->AverageUclkActivity; break; case METRICS_AVERAGE_VCNACTIVITY: *value = metrics->VcnActivityPercentage; break; case METRICS_AVERAGE_SOCKETPOWER: *value = metrics->AverageSocketPower << 8; break; case METRICS_TEMPERATURE_EDGE: *value = metrics->TemperatureEdge * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_HOTSPOT: *value = metrics->TemperatureHotspot * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_MEM: *value = metrics->TemperatureHBM * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRGFX: *value = metrics->TemperatureVrGfx * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRSOC: *value = metrics->TemperatureVrSoc * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_TEMPERATURE_VRMEM: *value = metrics->TemperatureVrMem * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; break; case METRICS_THROTTLER_STATUS: *value = metrics->ThrottlerStatus; break; case METRICS_CURR_FANSPEED: *value = metrics->CurrFanSpeed; break; default: *value = UINT_MAX; break; } mutex_unlock(&smu->metrics_lock); return ret; } static int arcturus_get_current_clk_freq_by_table(struct smu_context *smu, enum smu_clk_type clk_type, uint32_t *value) { MetricsMember_t member_type; int clk_id = 0; if (!value) return -EINVAL; clk_id = smu_clk_get_index(smu, clk_type); if (clk_id < 0) return -EINVAL; switch (clk_id) { case PPCLK_GFXCLK: /* * CurrClock[clk_id] can provide accurate * output only when the dpm feature is enabled. * We can use Average_* for dpm disabled case. * But this is available for gfxclk/uclk/socclk/vclk/dclk. */ if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) member_type = METRICS_CURR_GFXCLK; else member_type = METRICS_AVERAGE_GFXCLK; break; case PPCLK_UCLK: if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) member_type = METRICS_CURR_UCLK; else member_type = METRICS_AVERAGE_UCLK; break; case PPCLK_SOCCLK: if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) member_type = METRICS_CURR_SOCCLK; else member_type = METRICS_AVERAGE_SOCCLK; break; case PPCLK_VCLK: if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) member_type = METRICS_CURR_VCLK; else member_type = METRICS_AVERAGE_VCLK; break; case PPCLK_DCLK: if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) member_type = METRICS_CURR_DCLK; else member_type = METRICS_AVERAGE_DCLK; break; case PPCLK_FCLK: member_type = METRICS_CURR_FCLK; break; default: return -EINVAL; } return arcturus_get_smu_metrics_data(smu, member_type, value); } static int arcturus_print_clk_levels(struct smu_context *smu, enum smu_clk_type type, char *buf) { int i, now, size = 0; int ret = 0; struct pp_clock_levels_with_latency clocks; struct arcturus_single_dpm_table *single_dpm_table; struct smu_dpm_context *smu_dpm = &smu->smu_dpm; struct arcturus_dpm_table *dpm_table = NULL; if (amdgpu_ras_intr_triggered()) return snprintf(buf, PAGE_SIZE, "unavailable\n"); dpm_table = smu_dpm->dpm_context; switch (type) { case SMU_SCLK: ret = arcturus_get_current_clk_freq_by_table(smu, SMU_GFXCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current gfx clk Failed!"); return ret; } single_dpm_table = &(dpm_table->gfx_table); ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get gfx clk levels Failed!"); return ret; } /* * For DPM disabled case, there will be only one clock level. * And it's safe to assume that is always the current clock. */ for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.num_levels == 1) ? "*" : (arcturus_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; case SMU_MCLK: ret = arcturus_get_current_clk_freq_by_table(smu, SMU_UCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current mclk Failed!"); return ret; } single_dpm_table = &(dpm_table->mem_table); ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get memory clk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.num_levels == 1) ? "*" : (arcturus_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; case SMU_SOCCLK: ret = arcturus_get_current_clk_freq_by_table(smu, SMU_SOCCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current socclk Failed!"); return ret; } single_dpm_table = &(dpm_table->soc_table); ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get socclk levels Failed!"); return ret; } for (i = 0; i < clocks.num_levels; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, clocks.data[i].clocks_in_khz / 1000, (clocks.num_levels == 1) ? "*" : (arcturus_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; case SMU_FCLK: ret = arcturus_get_current_clk_freq_by_table(smu, SMU_FCLK, &now); if (ret) { dev_err(smu->adev->dev, "Attempt to get current fclk Failed!"); return ret; } single_dpm_table = &(dpm_table->fclk_table); ret = arcturus_get_clk_table(smu, &clocks, single_dpm_table); if (ret) { dev_err(smu->adev->dev, "Attempt to get fclk levels Failed!"); return ret; } for (i = 0; i < single_dpm_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, single_dpm_table->dpm_levels[i].value, (clocks.num_levels == 1) ? "*" : (arcturus_freqs_in_same_level( clocks.data[i].clocks_in_khz / 1000, now) ? "*" : "")); break; default: break; } return size; } static int arcturus_upload_dpm_level(struct smu_context *smu, bool max, uint32_t feature_mask) { struct arcturus_single_dpm_table *single_dpm_table; struct arcturus_dpm_table *dpm_table = smu->smu_dpm.dpm_context; uint32_t freq; int ret = 0; if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) && (feature_mask & FEATURE_DPM_GFXCLK_MASK)) { single_dpm_table = &(dpm_table->gfx_table); freq = max ? single_dpm_table->dpm_state.soft_max_level : single_dpm_table->dpm_state.soft_min_level; ret = smu_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_GFXCLK << 16) | (freq & 0xffff), NULL); if (ret) { dev_err(smu->adev->dev, "Failed to set soft %s gfxclk !\n", max ? "max" : "min"); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) && (feature_mask & FEATURE_DPM_UCLK_MASK)) { single_dpm_table = &(dpm_table->mem_table); freq = max ? single_dpm_table->dpm_state.soft_max_level : single_dpm_table->dpm_state.soft_min_level; ret = smu_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_UCLK << 16) | (freq & 0xffff), NULL); if (ret) { dev_err(smu->adev->dev, "Failed to set soft %s memclk !\n", max ? "max" : "min"); return ret; } } if (smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) && (feature_mask & FEATURE_DPM_SOCCLK_MASK)) { single_dpm_table = &(dpm_table->soc_table); freq = max ? single_dpm_table->dpm_state.soft_max_level : single_dpm_table->dpm_state.soft_min_level; ret = smu_send_smc_msg_with_param(smu, (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq), (PPCLK_SOCCLK << 16) | (freq & 0xffff), NULL); if (ret) { dev_err(smu->adev->dev, "Failed to set soft %s socclk !\n", max ? "max" : "min"); return ret; } } return ret; } static int arcturus_force_clk_levels(struct smu_context *smu, enum smu_clk_type type, uint32_t mask) { struct arcturus_dpm_table *dpm_table; struct arcturus_single_dpm_table *single_dpm_table; uint32_t soft_min_level, soft_max_level; uint32_t smu_version; int ret = 0; ret = smu_get_smc_version(smu, NULL, &smu_version); if (ret) { dev_err(smu->adev->dev, "Failed to get smu version!\n"); return ret; } if (smu_version >= 0x361200) { dev_err(smu->adev->dev, "Forcing clock level is not supported with " "54.18 and onwards SMU firmwares\n"); return -EOPNOTSUPP; } soft_min_level = mask ? (ffs(mask) - 1) : 0; soft_max_level = mask ? (fls(mask) - 1) : 0; dpm_table = smu->smu_dpm.dpm_context; switch (type) { case SMU_SCLK: single_dpm_table = &(dpm_table->gfx_table); if (soft_max_level >= single_dpm_table->count) { dev_err(smu->adev->dev, "Clock level specified %d is over max allowed %d\n", soft_max_level, single_dpm_table->count - 1); ret = -EINVAL; break; } single_dpm_table->dpm_state.soft_min_level = single_dpm_table->dpm_levels[soft_min_level].value; single_dpm_table->dpm_state.soft_max_level = single_dpm_table->dpm_levels[soft_max_level].value; ret = arcturus_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK); if (ret) { dev_err(smu->adev->dev, "Failed to upload boot level to lowest!\n"); break; } ret = arcturus_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK); if (ret) dev_err(smu->adev->dev, "Failed to upload dpm max level to highest!\n"); break; case SMU_MCLK: case SMU_SOCCLK: case SMU_FCLK: /* * Should not arrive here since Arcturus does not * support mclk/socclk/fclk softmin/softmax settings */ ret = -EINVAL; break; default: break; } return ret; } static int arcturus_get_thermal_temperature_range(struct smu_context *smu, struct smu_temperature_range *range) { PPTable_t *pptable = smu->smu_table.driver_pptable; if (!range) return -EINVAL; range->max = pptable->TedgeLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_crit_max = pptable->ThotspotLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_crit_max = pptable->TmemLimit * SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_HBM)* SMU_TEMPERATURE_UNITS_PER_CENTIGRADES; return 0; } static int arcturus_get_current_activity_percent(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; if (!value) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_GPU_LOAD: ret = arcturus_get_smu_metrics_data(smu, METRICS_AVERAGE_GFXACTIVITY, value); break; case AMDGPU_PP_SENSOR_MEM_LOAD: ret = arcturus_get_smu_metrics_data(smu, METRICS_AVERAGE_MEMACTIVITY, value); break; default: dev_err(smu->adev->dev, "Invalid sensor for retrieving clock activity\n"); return -EINVAL; } return ret; } static int arcturus_get_gpu_power(struct smu_context *smu, uint32_t *value) { if (!value) return -EINVAL; return arcturus_get_smu_metrics_data(smu, METRICS_AVERAGE_SOCKETPOWER, value); } static int arcturus_thermal_get_temperature(struct smu_context *smu, enum amd_pp_sensors sensor, uint32_t *value) { int ret = 0; if (!value) return -EINVAL; switch (sensor) { case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: ret = arcturus_get_smu_metrics_data(smu, METRICS_TEMPERATURE_HOTSPOT, value); break; case AMDGPU_PP_SENSOR_EDGE_TEMP: ret = arcturus_get_smu_metrics_data(smu, METRICS_TEMPERATURE_EDGE, value); break; case AMDGPU_PP_SENSOR_MEM_TEMP: ret = arcturus_get_smu_metrics_data(smu, METRICS_TEMPERATURE_MEM, value); break; default: dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n"); return -EINVAL; } return ret; } static int arcturus_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor, void *data, uint32_t *size) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; int ret = 0; if (amdgpu_ras_intr_triggered()) return 0; if (!data || !size) return -EINVAL; mutex_lock(&smu->sensor_lock); switch (sensor) { case AMDGPU_PP_SENSOR_MAX_FAN_RPM: *(uint32_t *)data = pptable->FanMaximumRpm; *size = 4; break; case AMDGPU_PP_SENSOR_MEM_LOAD: case AMDGPU_PP_SENSOR_GPU_LOAD: ret = arcturus_get_current_activity_percent(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: ret = arcturus_get_gpu_power(smu, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: case AMDGPU_PP_SENSOR_EDGE_TEMP: case AMDGPU_PP_SENSOR_MEM_TEMP: ret = arcturus_thermal_get_temperature(smu, sensor, (uint32_t *)data); *size = 4; break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = arcturus_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data); /* the output clock frequency in 10K unit */ *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_GFX_SCLK: ret = arcturus_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data); *(uint32_t *)data *= 100; *size = 4; break; case AMDGPU_PP_SENSOR_VDDGFX: ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data); *size = 4; break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&smu->sensor_lock); return ret; } static int arcturus_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed) { if (!speed) return -EINVAL; return arcturus_get_smu_metrics_data(smu, METRICS_CURR_FANSPEED, speed); } static int arcturus_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed) { PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t percent, current_rpm; int ret = 0; if (!speed) return -EINVAL; ret = arcturus_get_fan_speed_rpm(smu, ¤t_rpm); if (ret) return ret; percent = current_rpm * 100 / pptable->FanMaximumRpm; *speed = percent > 100 ? 100 : percent; return ret; } static uint32_t arcturus_find_lowest_dpm_level(struct arcturus_single_dpm_table *table) { uint32_t i; for (i = 0; i < table->count; i++) { if (table->dpm_levels[i].enabled) break; } if (i >= table->count) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static uint32_t arcturus_find_highest_dpm_level(struct smu_context *smu, struct arcturus_single_dpm_table *table) { int i = 0; if (table->count <= 0) { dev_err(smu->adev->dev, "[%s] DPM Table has no entry!", __func__); return 0; } if (table->count > MAX_DPM_NUMBER) { dev_err(smu->adev->dev, "[%s] DPM Table has too many entries!", __func__); return MAX_DPM_NUMBER - 1; } for (i = table->count - 1; i >= 0; i--) { if (table->dpm_levels[i].enabled) break; } if (i < 0) { i = 0; table->dpm_levels[i].enabled = true; } return i; } static int arcturus_force_dpm_limit_value(struct smu_context *smu, bool highest) { struct arcturus_dpm_table *dpm_table = (struct arcturus_dpm_table *)smu->smu_dpm.dpm_context; struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(smu->adev, 0); uint32_t soft_level; int ret = 0; /* gfxclk */ if (highest) soft_level = arcturus_find_highest_dpm_level(smu, &(dpm_table->gfx_table)); else soft_level = arcturus_find_lowest_dpm_level(&(dpm_table->gfx_table)); dpm_table->gfx_table.dpm_state.soft_min_level = dpm_table->gfx_table.dpm_state.soft_max_level = dpm_table->gfx_table.dpm_levels[soft_level].value; ret = arcturus_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK); if (ret) { dev_err(smu->adev->dev, "Failed to upload boot level to %s!\n", highest ? "highest" : "lowest"); return ret; } ret = arcturus_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK); if (ret) { dev_err(smu->adev->dev, "Failed to upload dpm max level to %s!\n!", highest ? "highest" : "lowest"); return ret; } if (hive) /* * Force XGMI Pstate to highest or lowest * TODO: revise this when xgmi dpm is functional */ ret = smu_v11_0_set_xgmi_pstate(smu, highest ? 1 : 0); return ret; } static int arcturus_unforce_dpm_levels(struct smu_context *smu) { struct arcturus_dpm_table *dpm_table = (struct arcturus_dpm_table *)smu->smu_dpm.dpm_context; struct amdgpu_hive_info *hive = amdgpu_get_xgmi_hive(smu->adev, 0); uint32_t soft_min_level, soft_max_level; int ret = 0; /* gfxclk */ soft_min_level = arcturus_find_lowest_dpm_level(&(dpm_table->gfx_table)); soft_max_level = arcturus_find_highest_dpm_level(smu, &(dpm_table->gfx_table)); dpm_table->gfx_table.dpm_state.soft_min_level = dpm_table->gfx_table.dpm_levels[soft_min_level].value; dpm_table->gfx_table.dpm_state.soft_max_level = dpm_table->gfx_table.dpm_levels[soft_max_level].value; ret = arcturus_upload_dpm_level(smu, false, FEATURE_DPM_GFXCLK_MASK); if (ret) { dev_err(smu->adev->dev, "Failed to upload DPM Bootup Levels!"); return ret; } ret = arcturus_upload_dpm_level(smu, true, FEATURE_DPM_GFXCLK_MASK); if (ret) { dev_err(smu->adev->dev, "Failed to upload DPM Max Levels!"); return ret; } if (hive) /* * Reset XGMI Pstate back to default * TODO: revise this when xgmi dpm is functional */ ret = smu_v11_0_set_xgmi_pstate(smu, 0); return ret; } static int arcturus_get_profiling_clk_mask(struct smu_context *smu, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { struct arcturus_dpm_table *dpm_table = (struct arcturus_dpm_table *)smu->smu_dpm.dpm_context; struct arcturus_single_dpm_table *gfx_dpm_table; struct arcturus_single_dpm_table *mem_dpm_table; struct arcturus_single_dpm_table *soc_dpm_table; if (!smu->smu_dpm.dpm_context) return -EINVAL; gfx_dpm_table = &dpm_table->gfx_table; mem_dpm_table = &dpm_table->mem_table; soc_dpm_table = &dpm_table->soc_table; *sclk_mask = 0; *mclk_mask = 0; *soc_mask = 0; if (gfx_dpm_table->count > ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL && mem_dpm_table->count > ARCTURUS_UMD_PSTATE_MCLK_LEVEL && soc_dpm_table->count > ARCTURUS_UMD_PSTATE_SOCCLK_LEVEL) { *sclk_mask = ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL; *mclk_mask = ARCTURUS_UMD_PSTATE_MCLK_LEVEL; *soc_mask = ARCTURUS_UMD_PSTATE_SOCCLK_LEVEL; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { *sclk_mask = gfx_dpm_table->count - 1; *mclk_mask = mem_dpm_table->count - 1; *soc_mask = soc_dpm_table->count - 1; } return 0; } static int arcturus_get_power_limit(struct smu_context *smu) { struct smu_11_0_powerplay_table *powerplay_table = (struct smu_11_0_powerplay_table *)smu->smu_table.power_play_table; PPTable_t *pptable = smu->smu_table.driver_pptable; uint32_t power_limit, od_percent; if (smu_v11_0_get_current_power_limit(smu, &power_limit)) { /* the last hope to figure out the ppt limit */ if (!pptable) { dev_err(smu->adev->dev, "Cannot get PPT limit due to pptable missing!"); return -EINVAL; } power_limit = pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0]; } smu->current_power_limit = power_limit; if (smu->od_enabled) { od_percent = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]); dev_dbg(smu->adev->dev, "ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_percent, power_limit); power_limit *= (100 + od_percent); power_limit /= 100; } smu->max_power_limit = power_limit; return 0; } static int arcturus_get_power_profile_mode(struct smu_context *smu, char *buf) { DpmActivityMonitorCoeffInt_t activity_monitor; static const char *profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM"}; static const char *title[] = { "PROFILE_INDEX(NAME)", "CLOCK_TYPE(NAME)", "FPS", "UseRlcBusy", "MinActiveFreqType", "MinActiveFreq", "BoosterFreqType", "BoosterFreq", "PD_Data_limit_c", "PD_Data_error_coeff", "PD_Data_error_rate_coeff"}; uint32_t i, size = 0; int16_t workload_type = 0; int result = 0; uint32_t smu_version; if (!buf) return -EINVAL; result = smu_get_smc_version(smu, NULL, &smu_version); if (result) return result; if (smu_version >= 0x360d00) size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n", title[0], title[1], title[2], title[3], title[4], title[5], title[6], title[7], title[8], title[9], title[10]); else size += sprintf(buf + size, "%16s\n", title[0]); for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) { /* * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT * Not all profile modes are supported on arcturus. */ workload_type = smu_workload_get_type(smu, i); if (workload_type < 0) continue; if (smu_version >= 0x360d00) { result = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type, (void *)(&activity_monitor), false); if (result) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return result; } } size += sprintf(buf + size, "%2d %14s%s\n", i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " "); if (smu_version >= 0x360d00) { size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 0, "GFXCLK", activity_monitor.Gfx_FPS, activity_monitor.Gfx_UseRlcBusy, activity_monitor.Gfx_MinActiveFreqType, activity_monitor.Gfx_MinActiveFreq, activity_monitor.Gfx_BoosterFreqType, activity_monitor.Gfx_BoosterFreq, activity_monitor.Gfx_PD_Data_limit_c, activity_monitor.Gfx_PD_Data_error_coeff, activity_monitor.Gfx_PD_Data_error_rate_coeff); size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n", " ", 1, "UCLK", activity_monitor.Mem_FPS, activity_monitor.Mem_UseRlcBusy, activity_monitor.Mem_MinActiveFreqType, activity_monitor.Mem_MinActiveFreq, activity_monitor.Mem_BoosterFreqType, activity_monitor.Mem_BoosterFreq, activity_monitor.Mem_PD_Data_limit_c, activity_monitor.Mem_PD_Data_error_coeff, activity_monitor.Mem_PD_Data_error_rate_coeff); } } return size; } static int arcturus_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size) { DpmActivityMonitorCoeffInt_t activity_monitor; int workload_type = 0; uint32_t profile_mode = input[size]; int ret = 0; uint32_t smu_version; if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) { dev_err(smu->adev->dev, "Invalid power profile mode %d\n", profile_mode); return -EINVAL; } ret = smu_get_smc_version(smu, NULL, &smu_version); if (ret) return ret; if ((profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) && (smu_version >=0x360d00)) { ret = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), false); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__); return ret; } switch (input[0]) { case 0: /* Gfxclk */ activity_monitor.Gfx_FPS = input[1]; activity_monitor.Gfx_UseRlcBusy = input[2]; activity_monitor.Gfx_MinActiveFreqType = input[3]; activity_monitor.Gfx_MinActiveFreq = input[4]; activity_monitor.Gfx_BoosterFreqType = input[5]; activity_monitor.Gfx_BoosterFreq = input[6]; activity_monitor.Gfx_PD_Data_limit_c = input[7]; activity_monitor.Gfx_PD_Data_error_coeff = input[8]; activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9]; break; case 1: /* Uclk */ activity_monitor.Mem_FPS = input[1]; activity_monitor.Mem_UseRlcBusy = input[2]; activity_monitor.Mem_MinActiveFreqType = input[3]; activity_monitor.Mem_MinActiveFreq = input[4]; activity_monitor.Mem_BoosterFreqType = input[5]; activity_monitor.Mem_BoosterFreq = input[6]; activity_monitor.Mem_PD_Data_limit_c = input[7]; activity_monitor.Mem_PD_Data_error_coeff = input[8]; activity_monitor.Mem_PD_Data_error_rate_coeff = input[9]; break; } ret = smu_update_table(smu, SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT, (void *)(&activity_monitor), true); if (ret) { dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__); return ret; } } /* * Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT * Not all profile modes are supported on arcturus. */ workload_type = smu_workload_get_type(smu, profile_mode); if (workload_type < 0) { dev_err(smu->adev->dev, "Unsupported power profile mode %d on arcturus\n", profile_mode); return -EINVAL; } ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask, 1 << workload_type, NULL); if (ret) { dev_err(smu->adev->dev, "Fail to set workload type %d\n", workload_type); return ret; } smu->power_profile_mode = profile_mode; return 0; } static int arcturus_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level) { uint32_t smu_version; int ret; ret = smu_get_smc_version(smu, NULL, &smu_version); if (ret) { dev_err(smu->adev->dev, "Failed to get smu version!\n"); return ret; } switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: case AMD_DPM_FORCED_LEVEL_LOW: case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: if (smu_version >= 0x361200) { dev_err(smu->adev->dev, "Forcing clock level is not supported with " "54.18 and onwards SMU firmwares\n"); return -EOPNOTSUPP; } break; default: break; } return smu_v11_0_set_performance_level(smu, level); } static void arcturus_dump_pptable(struct smu_context *smu) { struct smu_table_context *table_context = &smu->smu_table; PPTable_t *pptable = table_context->driver_pptable; int i; dev_info(smu->adev->dev, "Dumped PPTable:\n"); dev_info(smu->adev->dev, "Version = 0x%08x\n", pptable->Version); dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]); dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]); for (i = 0; i < PPT_THROTTLER_COUNT; i++) { dev_info(smu->adev->dev, "SocketPowerLimitAc[%d] = %d\n", i, pptable->SocketPowerLimitAc[i]); dev_info(smu->adev->dev, "SocketPowerLimitAcTau[%d] = %d\n", i, pptable->SocketPowerLimitAcTau[i]); } dev_info(smu->adev->dev, "TdcLimitSoc = %d\n", pptable->TdcLimitSoc); dev_info(smu->adev->dev, "TdcLimitSocTau = %d\n", pptable->TdcLimitSocTau); dev_info(smu->adev->dev, "TdcLimitGfx = %d\n", pptable->TdcLimitGfx); dev_info(smu->adev->dev, "TdcLimitGfxTau = %d\n", pptable->TdcLimitGfxTau); dev_info(smu->adev->dev, "TedgeLimit = %d\n", pptable->TedgeLimit); dev_info(smu->adev->dev, "ThotspotLimit = %d\n", pptable->ThotspotLimit); dev_info(smu->adev->dev, "TmemLimit = %d\n", pptable->TmemLimit); dev_info(smu->adev->dev, "Tvr_gfxLimit = %d\n", pptable->Tvr_gfxLimit); dev_info(smu->adev->dev, "Tvr_memLimit = %d\n", pptable->Tvr_memLimit); dev_info(smu->adev->dev, "Tvr_socLimit = %d\n", pptable->Tvr_socLimit); dev_info(smu->adev->dev, "FitLimit = %d\n", pptable->FitLimit); dev_info(smu->adev->dev, "PpmPowerLimit = %d\n", pptable->PpmPowerLimit); dev_info(smu->adev->dev, "PpmTemperatureThreshold = %d\n", pptable->PpmTemperatureThreshold); dev_info(smu->adev->dev, "ThrottlerControlMask = %d\n", pptable->ThrottlerControlMask); dev_info(smu->adev->dev, "UlvVoltageOffsetGfx = %d\n", pptable->UlvVoltageOffsetGfx); dev_info(smu->adev->dev, "UlvPadding = 0x%08x\n", pptable->UlvPadding); dev_info(smu->adev->dev, "UlvGfxclkBypass = %d\n", pptable->UlvGfxclkBypass); dev_info(smu->adev->dev, "Padding234[0] = 0x%02x\n", pptable->Padding234[0]); dev_info(smu->adev->dev, "Padding234[1] = 0x%02x\n", pptable->Padding234[1]); dev_info(smu->adev->dev, "Padding234[2] = 0x%02x\n", pptable->Padding234[2]); dev_info(smu->adev->dev, "MinVoltageGfx = %d\n", pptable->MinVoltageGfx); dev_info(smu->adev->dev, "MinVoltageSoc = %d\n", pptable->MinVoltageSoc); dev_info(smu->adev->dev, "MaxVoltageGfx = %d\n", pptable->MaxVoltageGfx); dev_info(smu->adev->dev, "MaxVoltageSoc = %d\n", pptable->MaxVoltageSoc); dev_info(smu->adev->dev, "LoadLineResistanceGfx = %d\n", pptable->LoadLineResistanceGfx); dev_info(smu->adev->dev, "LoadLineResistanceSoc = %d\n", pptable->LoadLineResistanceSoc); dev_info(smu->adev->dev, "[PPCLK_GFXCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_GFXCLK].padding, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_GFXCLK].SsFmin, pptable->DpmDescriptor[PPCLK_GFXCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_VCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_VCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_VCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_VCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_VCLK].padding, pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_VCLK].SsFmin, pptable->DpmDescriptor[PPCLK_VCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_DCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_DCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_DCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_DCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_DCLK].padding, pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_DCLK].SsFmin, pptable->DpmDescriptor[PPCLK_DCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_SOCCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_SOCCLK].padding, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_SOCCLK].SsFmin, pptable->DpmDescriptor[PPCLK_SOCCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_UCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_UCLK].padding, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_UCLK].SsFmin, pptable->DpmDescriptor[PPCLK_UCLK].Padding16); dev_info(smu->adev->dev, "[PPCLK_FCLK]\n" " .VoltageMode = 0x%02x\n" " .SnapToDiscrete = 0x%02x\n" " .NumDiscreteLevels = 0x%02x\n" " .padding = 0x%02x\n" " .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n" " .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n" " .SsFmin = 0x%04x\n" " .Padding_16 = 0x%04x\n", pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode, pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete, pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels, pptable->DpmDescriptor[PPCLK_FCLK].padding, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m, pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b, pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c, pptable->DpmDescriptor[PPCLK_FCLK].SsFmin, pptable->DpmDescriptor[PPCLK_FCLK].Padding16); dev_info(smu->adev->dev, "FreqTableGfx\n"); for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableGfx[i]); dev_info(smu->adev->dev, "FreqTableVclk\n"); for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableVclk[i]); dev_info(smu->adev->dev, "FreqTableDclk\n"); for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableDclk[i]); dev_info(smu->adev->dev, "FreqTableSocclk\n"); for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableSocclk[i]); dev_info(smu->adev->dev, "FreqTableUclk\n"); for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableUclk[i]); dev_info(smu->adev->dev, "FreqTableFclk\n"); for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableFclk[i]); dev_info(smu->adev->dev, "Mp0clkFreq\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->Mp0clkFreq[i]); dev_info(smu->adev->dev, "Mp0DpmVoltage\n"); for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->Mp0DpmVoltage[i]); dev_info(smu->adev->dev, "GfxclkFidle = 0x%x\n", pptable->GfxclkFidle); dev_info(smu->adev->dev, "GfxclkSlewRate = 0x%x\n", pptable->GfxclkSlewRate); dev_info(smu->adev->dev, "Padding567[0] = 0x%x\n", pptable->Padding567[0]); dev_info(smu->adev->dev, "Padding567[1] = 0x%x\n", pptable->Padding567[1]); dev_info(smu->adev->dev, "Padding567[2] = 0x%x\n", pptable->Padding567[2]); dev_info(smu->adev->dev, "Padding567[3] = 0x%x\n", pptable->Padding567[3]); dev_info(smu->adev->dev, "GfxclkDsMaxFreq = %d\n", pptable->GfxclkDsMaxFreq); dev_info(smu->adev->dev, "GfxclkSource = 0x%x\n", pptable->GfxclkSource); dev_info(smu->adev->dev, "Padding456 = 0x%x\n", pptable->Padding456); dev_info(smu->adev->dev, "EnableTdpm = %d\n", pptable->EnableTdpm); dev_info(smu->adev->dev, "TdpmHighHystTemperature = %d\n", pptable->TdpmHighHystTemperature); dev_info(smu->adev->dev, "TdpmLowHystTemperature = %d\n", pptable->TdpmLowHystTemperature); dev_info(smu->adev->dev, "GfxclkFreqHighTempLimit = %d\n", pptable->GfxclkFreqHighTempLimit); dev_info(smu->adev->dev, "FanStopTemp = %d\n", pptable->FanStopTemp); dev_info(smu->adev->dev, "FanStartTemp = %d\n", pptable->FanStartTemp); dev_info(smu->adev->dev, "FanGainEdge = %d\n", pptable->FanGainEdge); dev_info(smu->adev->dev, "FanGainHotspot = %d\n", pptable->FanGainHotspot); dev_info(smu->adev->dev, "FanGainVrGfx = %d\n", pptable->FanGainVrGfx); dev_info(smu->adev->dev, "FanGainVrSoc = %d\n", pptable->FanGainVrSoc); dev_info(smu->adev->dev, "FanGainVrMem = %d\n", pptable->FanGainVrMem); dev_info(smu->adev->dev, "FanGainHbm = %d\n", pptable->FanGainHbm); dev_info(smu->adev->dev, "FanPwmMin = %d\n", pptable->FanPwmMin); dev_info(smu->adev->dev, "FanAcousticLimitRpm = %d\n", pptable->FanAcousticLimitRpm); dev_info(smu->adev->dev, "FanThrottlingRpm = %d\n", pptable->FanThrottlingRpm); dev_info(smu->adev->dev, "FanMaximumRpm = %d\n", pptable->FanMaximumRpm); dev_info(smu->adev->dev, "FanTargetTemperature = %d\n", pptable->FanTargetTemperature); dev_info(smu->adev->dev, "FanTargetGfxclk = %d\n", pptable->FanTargetGfxclk); dev_info(smu->adev->dev, "FanZeroRpmEnable = %d\n", pptable->FanZeroRpmEnable); dev_info(smu->adev->dev, "FanTachEdgePerRev = %d\n", pptable->FanTachEdgePerRev); dev_info(smu->adev->dev, "FanTempInputSelect = %d\n", pptable->FanTempInputSelect); dev_info(smu->adev->dev, "FuzzyFan_ErrorSetDelta = %d\n", pptable->FuzzyFan_ErrorSetDelta); dev_info(smu->adev->dev, "FuzzyFan_ErrorRateSetDelta = %d\n", pptable->FuzzyFan_ErrorRateSetDelta); dev_info(smu->adev->dev, "FuzzyFan_PwmSetDelta = %d\n", pptable->FuzzyFan_PwmSetDelta); dev_info(smu->adev->dev, "FuzzyFan_Reserved = %d\n", pptable->FuzzyFan_Reserved); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "Padding8_Avfs[0] = %d\n", pptable->Padding8_Avfs[0]); dev_info(smu->adev->dev, "Padding8_Avfs[1] = %d\n", pptable->Padding8_Avfs[1]); dev_info(smu->adev->dev, "dBtcGbGfxPll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxPll.a, pptable->dBtcGbGfxPll.b, pptable->dBtcGbGfxPll.c); dev_info(smu->adev->dev, "dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbGfxAfll.a, pptable->dBtcGbGfxAfll.b, pptable->dBtcGbGfxAfll.c); dev_info(smu->adev->dev, "dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->dBtcGbSoc.a, pptable->dBtcGbSoc.b, pptable->dBtcGbSoc.c); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_GFX].m, pptable->qAgingGb[AVFS_VOLTAGE_GFX].b); dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n", pptable->qAgingGb[AVFS_VOLTAGE_SOC].m, pptable->qAgingGb[AVFS_VOLTAGE_SOC].b); dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c); dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b, pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]); dev_info(smu->adev->dev, "Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]); dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]); dev_info(smu->adev->dev, "XgmiDpmPstates\n"); for (i = 0; i < NUM_XGMI_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiDpmPstates[i]); dev_info(smu->adev->dev, "XgmiDpmSpare[0] = 0x%02x\n", pptable->XgmiDpmSpare[0]); dev_info(smu->adev->dev, "XgmiDpmSpare[1] = 0x%02x\n", pptable->XgmiDpmSpare[1]); dev_info(smu->adev->dev, "VDDGFX_TVmin = %d\n", pptable->VDDGFX_TVmin); dev_info(smu->adev->dev, "VDDSOC_TVmin = %d\n", pptable->VDDSOC_TVmin); dev_info(smu->adev->dev, "VDDGFX_Vmin_HiTemp = %d\n", pptable->VDDGFX_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDGFX_Vmin_LoTemp = %d\n", pptable->VDDGFX_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_HiTemp = %d\n", pptable->VDDSOC_Vmin_HiTemp); dev_info(smu->adev->dev, "VDDSOC_Vmin_LoTemp = %d\n", pptable->VDDSOC_Vmin_LoTemp); dev_info(smu->adev->dev, "VDDGFX_TVminHystersis = %d\n", pptable->VDDGFX_TVminHystersis); dev_info(smu->adev->dev, "VDDSOC_TVminHystersis = %d\n", pptable->VDDSOC_TVminHystersis); dev_info(smu->adev->dev, "DebugOverrides = 0x%x\n", pptable->DebugOverrides); dev_info(smu->adev->dev, "ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation0.a, pptable->ReservedEquation0.b, pptable->ReservedEquation0.c); dev_info(smu->adev->dev, "ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation1.a, pptable->ReservedEquation1.b, pptable->ReservedEquation1.c); dev_info(smu->adev->dev, "ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation2.a, pptable->ReservedEquation2.b, pptable->ReservedEquation2.c); dev_info(smu->adev->dev, "ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n", pptable->ReservedEquation3.a, pptable->ReservedEquation3.b, pptable->ReservedEquation3.c); dev_info(smu->adev->dev, "MinVoltageUlvGfx = %d\n", pptable->MinVoltageUlvGfx); dev_info(smu->adev->dev, "PaddingUlv = %d\n", pptable->PaddingUlv); dev_info(smu->adev->dev, "TotalPowerConfig = %d\n", pptable->TotalPowerConfig); dev_info(smu->adev->dev, "TotalPowerSpare1 = %d\n", pptable->TotalPowerSpare1); dev_info(smu->adev->dev, "TotalPowerSpare2 = %d\n", pptable->TotalPowerSpare2); dev_info(smu->adev->dev, "PccThresholdLow = %d\n", pptable->PccThresholdLow); dev_info(smu->adev->dev, "PccThresholdHigh = %d\n", pptable->PccThresholdHigh); dev_info(smu->adev->dev, "Board Parameters:\n"); dev_info(smu->adev->dev, "MaxVoltageStepGfx = 0x%x\n", pptable->MaxVoltageStepGfx); dev_info(smu->adev->dev, "MaxVoltageStepSoc = 0x%x\n", pptable->MaxVoltageStepSoc); dev_info(smu->adev->dev, "VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping); dev_info(smu->adev->dev, "VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping); dev_info(smu->adev->dev, "VddMemVrMapping = 0x%x\n", pptable->VddMemVrMapping); dev_info(smu->adev->dev, "BoardVrMapping = 0x%x\n", pptable->BoardVrMapping); dev_info(smu->adev->dev, "GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask); dev_info(smu->adev->dev, "ExternalSensorPresent = 0x%x\n", pptable->ExternalSensorPresent); dev_info(smu->adev->dev, "GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent); dev_info(smu->adev->dev, "GfxOffset = 0x%x\n", pptable->GfxOffset); dev_info(smu->adev->dev, "Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx); dev_info(smu->adev->dev, "SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent); dev_info(smu->adev->dev, "SocOffset = 0x%x\n", pptable->SocOffset); dev_info(smu->adev->dev, "Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc); dev_info(smu->adev->dev, "MemMaxCurrent = 0x%x\n", pptable->MemMaxCurrent); dev_info(smu->adev->dev, "MemOffset = 0x%x\n", pptable->MemOffset); dev_info(smu->adev->dev, "Padding_TelemetryMem = 0x%x\n", pptable->Padding_TelemetryMem); dev_info(smu->adev->dev, "BoardMaxCurrent = 0x%x\n", pptable->BoardMaxCurrent); dev_info(smu->adev->dev, "BoardOffset = 0x%x\n", pptable->BoardOffset); dev_info(smu->adev->dev, "Padding_TelemetryBoardInput = 0x%x\n", pptable->Padding_TelemetryBoardInput); dev_info(smu->adev->dev, "VR0HotGpio = %d\n", pptable->VR0HotGpio); dev_info(smu->adev->dev, "VR0HotPolarity = %d\n", pptable->VR0HotPolarity); dev_info(smu->adev->dev, "VR1HotGpio = %d\n", pptable->VR1HotGpio); dev_info(smu->adev->dev, "VR1HotPolarity = %d\n", pptable->VR1HotPolarity); dev_info(smu->adev->dev, "PllGfxclkSpreadEnabled = %d\n", pptable->PllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "PllGfxclkSpreadPercent = %d\n", pptable->PllGfxclkSpreadPercent); dev_info(smu->adev->dev, "PllGfxclkSpreadFreq = %d\n", pptable->PllGfxclkSpreadFreq); dev_info(smu->adev->dev, "UclkSpreadEnabled = %d\n", pptable->UclkSpreadEnabled); dev_info(smu->adev->dev, "UclkSpreadPercent = %d\n", pptable->UclkSpreadPercent); dev_info(smu->adev->dev, "UclkSpreadFreq = %d\n", pptable->UclkSpreadFreq); dev_info(smu->adev->dev, "FclkSpreadEnabled = %d\n", pptable->FclkSpreadEnabled); dev_info(smu->adev->dev, "FclkSpreadPercent = %d\n", pptable->FclkSpreadPercent); dev_info(smu->adev->dev, "FclkSpreadFreq = %d\n", pptable->FclkSpreadFreq); dev_info(smu->adev->dev, "FllGfxclkSpreadEnabled = %d\n", pptable->FllGfxclkSpreadEnabled); dev_info(smu->adev->dev, "FllGfxclkSpreadPercent = %d\n", pptable->FllGfxclkSpreadPercent); dev_info(smu->adev->dev, "FllGfxclkSpreadFreq = %d\n", pptable->FllGfxclkSpreadFreq); for (i = 0; i < NUM_I2C_CONTROLLERS; i++) { dev_info(smu->adev->dev, "I2cControllers[%d]:\n", i); dev_info(smu->adev->dev, " .Enabled = %d\n", pptable->I2cControllers[i].Enabled); dev_info(smu->adev->dev, " .SlaveAddress = 0x%x\n", pptable->I2cControllers[i].SlaveAddress); dev_info(smu->adev->dev, " .ControllerPort = %d\n", pptable->I2cControllers[i].ControllerPort); dev_info(smu->adev->dev, " .ControllerName = %d\n", pptable->I2cControllers[i].ControllerName); dev_info(smu->adev->dev, " .ThermalThrottler = %d\n", pptable->I2cControllers[i].ThermalThrotter); dev_info(smu->adev->dev, " .I2cProtocol = %d\n", pptable->I2cControllers[i].I2cProtocol); dev_info(smu->adev->dev, " .Speed = %d\n", pptable->I2cControllers[i].Speed); } dev_info(smu->adev->dev, "MemoryChannelEnabled = %d\n", pptable->MemoryChannelEnabled); dev_info(smu->adev->dev, "DramBitWidth = %d\n", pptable->DramBitWidth); dev_info(smu->adev->dev, "TotalBoardPower = %d\n", pptable->TotalBoardPower); dev_info(smu->adev->dev, "XgmiLinkSpeed\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiLinkSpeed[i]); dev_info(smu->adev->dev, "XgmiLinkWidth\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiLinkWidth[i]); dev_info(smu->adev->dev, "XgmiFclkFreq\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiFclkFreq[i]); dev_info(smu->adev->dev, "XgmiSocVoltage\n"); for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++) dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiSocVoltage[i]); } static bool arcturus_is_dpm_running(struct smu_context *smu) { int ret = 0; uint32_t feature_mask[2]; unsigned long feature_enabled; ret = smu_feature_get_enabled_mask(smu, feature_mask, 2); feature_enabled = (unsigned long)((uint64_t)feature_mask[0] | ((uint64_t)feature_mask[1] << 32)); return !!(feature_enabled & SMC_DPM_FEATURE); } static int arcturus_dpm_set_vcn_enable(struct smu_context *smu, bool enable) { struct smu_power_context *smu_power = &smu->smu_power; struct smu_power_gate *power_gate = &smu_power->power_gate; int ret = 0; if (enable) { if (!smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_feature_set_enabled(smu, SMU_FEATURE_VCN_PG_BIT, 1); if (ret) { dev_err(smu->adev->dev, "[EnableVCNDPM] failed!\n"); return ret; } } power_gate->vcn_gated = false; } else { if (smu_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) { ret = smu_feature_set_enabled(smu, SMU_FEATURE_VCN_PG_BIT, 0); if (ret) { dev_err(smu->adev->dev, "[DisableVCNDPM] failed!\n"); return ret; } } power_gate->vcn_gated = true; } return ret; } static void arcturus_fill_eeprom_i2c_req(SwI2cRequest_t *req, bool write, uint8_t address, uint32_t numbytes, uint8_t *data) { int i; BUG_ON(numbytes > MAX_SW_I2C_COMMANDS); req->I2CcontrollerPort = 0; req->I2CSpeed = 2; req->SlaveAddress = address; req->NumCmds = numbytes; for (i = 0; i < numbytes; i++) { SwI2cCmd_t *cmd = &req->SwI2cCmds[i]; /* First 2 bytes are always write for lower 2b EEPROM address */ if (i < 2) cmd->Cmd = 1; else cmd->Cmd = write; /* Add RESTART for read after address filled */ cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0; /* Add STOP in the end */ cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0; /* Fill with data regardless if read or write to simplify code */ cmd->RegisterAddr = data[i]; } } static int arcturus_i2c_eeprom_read_data(struct i2c_adapter *control, uint8_t address, uint8_t *data, uint32_t numbytes) { uint32_t i, ret = 0; SwI2cRequest_t req; struct amdgpu_device *adev = to_amdgpu_device(control); struct smu_table_context *smu_table = &adev->smu.smu_table; struct smu_table *table = &smu_table->driver_table; memset(&req, 0, sizeof(req)); arcturus_fill_eeprom_i2c_req(&req, false, address, numbytes, data); mutex_lock(&adev->smu.mutex); /* Now read data starting with that address */ ret = smu_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true); mutex_unlock(&adev->smu.mutex); if (!ret) { SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr; /* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */ for (i = 0; i < numbytes; i++) data[i] = res->SwI2cCmds[i].Data; dev_dbg(adev->dev, "arcturus_i2c_eeprom_read_data, address = %x, bytes = %d, data :", (uint16_t)address, numbytes); print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 8, 1, data, numbytes, false); } else dev_err(adev->dev, "arcturus_i2c_eeprom_read_data - error occurred :%x", ret); return ret; } static int arcturus_i2c_eeprom_write_data(struct i2c_adapter *control, uint8_t address, uint8_t *data, uint32_t numbytes) { uint32_t ret; SwI2cRequest_t req; struct amdgpu_device *adev = to_amdgpu_device(control); memset(&req, 0, sizeof(req)); arcturus_fill_eeprom_i2c_req(&req, true, address, numbytes, data); mutex_lock(&adev->smu.mutex); ret = smu_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true); mutex_unlock(&adev->smu.mutex); if (!ret) { dev_dbg(adev->dev, "arcturus_i2c_write(), address = %x, bytes = %d , data: ", (uint16_t)address, numbytes); print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE, 8, 1, data, numbytes, false); /* * According to EEPROM spec there is a MAX of 10 ms required for * EEPROM to flush internal RX buffer after STOP was issued at the * end of write transaction. During this time the EEPROM will not be * responsive to any more commands - so wait a bit more. */ msleep(10); } else dev_err(adev->dev, "arcturus_i2c_write- error occurred :%x", ret); return ret; } static int arcturus_i2c_eeprom_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num) { uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0; uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 }; for (i = 0; i < num; i++) { /* * SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at * once and hence the data needs to be spliced into chunks and sent each * chunk separately */ data_size = msgs[i].len - 2; data_chunk_size = MAX_SW_I2C_COMMANDS - 2; next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff); data_ptr = msgs[i].buf + 2; for (j = 0; j < data_size / data_chunk_size; j++) { /* Insert the EEPROM dest addess, bits 0-15 */ data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff); data_chunk[1] = (next_eeprom_addr & 0xff); if (msgs[i].flags & I2C_M_RD) { ret = arcturus_i2c_eeprom_read_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, MAX_SW_I2C_COMMANDS); memcpy(data_ptr, data_chunk + 2, data_chunk_size); } else { memcpy(data_chunk + 2, data_ptr, data_chunk_size); ret = arcturus_i2c_eeprom_write_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, MAX_SW_I2C_COMMANDS); } if (ret) { num = -EIO; goto fail; } next_eeprom_addr += data_chunk_size; data_ptr += data_chunk_size; } if (data_size % data_chunk_size) { data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff); data_chunk[1] = (next_eeprom_addr & 0xff); if (msgs[i].flags & I2C_M_RD) { ret = arcturus_i2c_eeprom_read_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, (data_size % data_chunk_size) + 2); memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size); } else { memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size); ret = arcturus_i2c_eeprom_write_data(i2c_adap, (uint8_t)msgs[i].addr, data_chunk, (data_size % data_chunk_size) + 2); } if (ret) { num = -EIO; goto fail; } } } fail: return num; } static u32 arcturus_i2c_eeprom_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static const struct i2c_algorithm arcturus_i2c_eeprom_i2c_algo = { .master_xfer = arcturus_i2c_eeprom_i2c_xfer, .functionality = arcturus_i2c_eeprom_i2c_func, }; static bool arcturus_i2c_adapter_is_added(struct i2c_adapter *control) { struct amdgpu_device *adev = to_amdgpu_device(control); return control->dev.parent == &adev->pdev->dev; } static int arcturus_i2c_eeprom_control_init(struct smu_context *smu, struct i2c_adapter *control) { struct amdgpu_device *adev = to_amdgpu_device(control); int res; /* smu_i2c_eeprom_init may be called twice in sriov */ if (arcturus_i2c_adapter_is_added(control)) return 0; control->owner = THIS_MODULE; control->class = I2C_CLASS_SPD; control->dev.parent = &adev->pdev->dev; control->algo = &arcturus_i2c_eeprom_i2c_algo; snprintf(control->name, sizeof(control->name), "AMDGPU EEPROM"); res = i2c_add_adapter(control); if (res) DRM_ERROR("Failed to register hw i2c, err: %d\n", res); return res; } static void arcturus_i2c_eeprom_control_fini(struct smu_context *smu, struct i2c_adapter *control) { if (!arcturus_i2c_adapter_is_added(control)) return; i2c_del_adapter(control); } static void arcturus_get_unique_id(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t top32 = 0, bottom32 = 0, smu_version; uint64_t id; if (smu_get_smc_version(smu, NULL, &smu_version)) { dev_warn(adev->dev, "Failed to get smu version, cannot get unique_id or serial_number\n"); return; } /* PPSMC_MSG_ReadSerial* is supported by 54.23.0 and onwards */ if (smu_version < 0x361700) { dev_warn(adev->dev, "ReadSerial is only supported by PMFW 54.23.0 and onwards\n"); return; } /* Get the SN to turn into a Unique ID */ smu_send_smc_msg(smu, SMU_MSG_ReadSerialNumTop32, &top32); smu_send_smc_msg(smu, SMU_MSG_ReadSerialNumBottom32, &bottom32); id = ((uint64_t)bottom32 << 32) | top32; adev->unique_id = id; /* For Arcturus-and-later, unique_id == serial_number, so convert it to a * 16-digit HEX string for convenience and backwards-compatibility */ sprintf(adev->serial, "%llx", id); } static bool arcturus_is_baco_supported(struct smu_context *smu) { struct amdgpu_device *adev = smu->adev; uint32_t val; if (!smu_v11_0_baco_is_support(smu) || amdgpu_sriov_vf(adev)) return false; val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0); return (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) ? true : false; } static int arcturus_set_df_cstate(struct smu_context *smu, enum pp_df_cstate state) { uint32_t smu_version; int ret; ret = smu_get_smc_version(smu, NULL, &smu_version); if (ret) { dev_err(smu->adev->dev, "Failed to get smu version!\n"); return ret; } /* PPSMC_MSG_DFCstateControl is supported by 54.15.0 and onwards */ if (smu_version < 0x360F00) { dev_err(smu->adev->dev, "DFCstateControl is only supported by PMFW 54.15.0 and onwards\n"); return -EINVAL; } return smu_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl, state, NULL); } static int arcturus_allow_xgmi_power_down(struct smu_context *smu, bool en) { uint32_t smu_version; int ret; ret = smu_get_smc_version(smu, NULL, &smu_version); if (ret) { dev_err(smu->adev->dev, "Failed to get smu version!\n"); return ret; } /* PPSMC_MSG_GmiPwrDnControl is supported by 54.23.0 and onwards */ if (smu_version < 0x00361700) { dev_err(smu->adev->dev, "XGMI power down control is only supported by PMFW 54.23.0 and onwards\n"); return -EINVAL; } if (en) return smu_send_smc_msg_with_param(smu, SMU_MSG_GmiPwrDnControl, 1, NULL); return smu_send_smc_msg_with_param(smu, SMU_MSG_GmiPwrDnControl, 0, NULL); } static const struct throttling_logging_label { uint32_t feature_mask; const char *label; } logging_label[] = { {(1U << THROTTLER_TEMP_HOTSPOT_BIT), "GPU"}, {(1U << THROTTLER_TEMP_MEM_BIT), "HBM"}, {(1U << THROTTLER_TEMP_VR_GFX_BIT), "VR of GFX rail"}, {(1U << THROTTLER_TEMP_VR_MEM_BIT), "VR of HBM rail"}, {(1U << THROTTLER_TEMP_VR_SOC_BIT), "VR of SOC rail"}, {(1U << THROTTLER_VRHOT0_BIT), "VR0 HOT"}, {(1U << THROTTLER_VRHOT1_BIT), "VR1 HOT"}, }; static void arcturus_log_thermal_throttling_event(struct smu_context *smu) { int throttler_idx, throtting_events = 0, buf_idx = 0; struct amdgpu_device *adev = smu->adev; uint32_t throttler_status; char log_buf[256]; arcturus_get_smu_metrics_data(smu, METRICS_THROTTLER_STATUS, &throttler_status); memset(log_buf, 0, sizeof(log_buf)); for (throttler_idx = 0; throttler_idx < ARRAY_SIZE(logging_label); throttler_idx++) { if (throttler_status & logging_label[throttler_idx].feature_mask) { throtting_events++; buf_idx += snprintf(log_buf + buf_idx, sizeof(log_buf) - buf_idx, "%s%s", throtting_events > 1 ? " and " : "", logging_label[throttler_idx].label); if (buf_idx >= sizeof(log_buf)) { dev_err(adev->dev, "buffer overflow!\n"); log_buf[sizeof(log_buf) - 1] = '\0'; break; } } } dev_warn(adev->dev, "WARN: GPU thermal throttling temperature reached, expect performance decrease. %s.\n", log_buf); } static int arcturus_set_thermal_range(struct smu_context *smu, struct smu_temperature_range range) { struct amdgpu_device *adev = smu->adev; int low = SMU_THERMAL_MINIMUM_ALERT_TEMP; int high = SMU_THERMAL_MAXIMUM_ALERT_TEMP; uint32_t val; struct smu_table_context *table_context = &smu->smu_table; struct smu_11_0_powerplay_table *powerplay_table = table_context->power_play_table; low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP, range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES); high = min((uint16_t)SMU_THERMAL_MAXIMUM_ALERT_TEMP, powerplay_table->software_shutdown_temp); if (low > high) return -EINVAL; val = RREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff)); val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff)); val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK); WREG32_SOC15(THM, 0, mmTHM_THERMAL_INT_CTRL, val); return 0; } static const struct pptable_funcs arcturus_ppt_funcs = { /* translate smu index into arcturus specific index */ .get_smu_msg_index = arcturus_get_smu_msg_index, .get_smu_clk_index = arcturus_get_smu_clk_index, .get_smu_feature_index = arcturus_get_smu_feature_index, .get_smu_table_index = arcturus_get_smu_table_index, .get_smu_power_index= arcturus_get_pwr_src_index, .get_workload_type = arcturus_get_workload_type, /* internal structurs allocations */ .tables_init = arcturus_tables_init, .alloc_dpm_context = arcturus_allocate_dpm_context, /* init dpm */ .get_allowed_feature_mask = arcturus_get_allowed_feature_mask, /* btc */ .run_btc = arcturus_run_btc, /* dpm/clk tables */ .set_default_dpm_table = arcturus_set_default_dpm_table, .populate_umd_state_clk = arcturus_populate_umd_state_clk, .get_thermal_temperature_range = arcturus_get_thermal_temperature_range, .print_clk_levels = arcturus_print_clk_levels, .force_clk_levels = arcturus_force_clk_levels, .read_sensor = arcturus_read_sensor, .get_fan_speed_percent = arcturus_get_fan_speed_percent, .get_fan_speed_rpm = arcturus_get_fan_speed_rpm, .force_dpm_limit_value = arcturus_force_dpm_limit_value, .unforce_dpm_levels = arcturus_unforce_dpm_levels, .get_profiling_clk_mask = arcturus_get_profiling_clk_mask, .get_power_profile_mode = arcturus_get_power_profile_mode, .set_power_profile_mode = arcturus_set_power_profile_mode, .set_performance_level = arcturus_set_performance_level, /* debug (internal used) */ .dump_pptable = arcturus_dump_pptable, .get_power_limit = arcturus_get_power_limit, .is_dpm_running = arcturus_is_dpm_running, .dpm_set_vcn_enable = arcturus_dpm_set_vcn_enable, .i2c_eeprom_init = arcturus_i2c_eeprom_control_init, .i2c_eeprom_fini = arcturus_i2c_eeprom_control_fini, .get_unique_id = arcturus_get_unique_id, .init_microcode = smu_v11_0_init_microcode, .load_microcode = smu_v11_0_load_microcode, .fini_microcode = smu_v11_0_fini_microcode, .init_smc_tables = smu_v11_0_init_smc_tables, .fini_smc_tables = smu_v11_0_fini_smc_tables, .init_power = smu_v11_0_init_power, .fini_power = smu_v11_0_fini_power, .check_fw_status = smu_v11_0_check_fw_status, /* pptable related */ .setup_pptable = arcturus_setup_pptable, .get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values, .check_fw_version = smu_v11_0_check_fw_version, .write_pptable = smu_v11_0_write_pptable, .set_driver_table_location = smu_v11_0_set_driver_table_location, .set_tool_table_location = smu_v11_0_set_tool_table_location, .notify_memory_pool_location = smu_v11_0_notify_memory_pool_location, .system_features_control = smu_v11_0_system_features_control, .send_smc_msg_with_param = smu_v11_0_send_msg_with_param, .init_display_count = NULL, .set_allowed_mask = smu_v11_0_set_allowed_mask, .get_enabled_mask = smu_v11_0_get_enabled_mask, .notify_display_change = NULL, .set_power_limit = smu_v11_0_set_power_limit, .init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks, .enable_thermal_alert = smu_v11_0_enable_thermal_alert, .disable_thermal_alert = smu_v11_0_disable_thermal_alert, .set_min_dcef_deep_sleep = NULL, .display_clock_voltage_request = smu_v11_0_display_clock_voltage_request, .get_fan_control_mode = smu_v11_0_get_fan_control_mode, .set_fan_control_mode = smu_v11_0_set_fan_control_mode, .set_fan_speed_percent = smu_v11_0_set_fan_speed_percent, .set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm, .set_xgmi_pstate = smu_v11_0_set_xgmi_pstate, .gfx_off_control = smu_v11_0_gfx_off_control, .register_irq_handler = smu_v11_0_register_irq_handler, .set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme, .get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc, .baco_is_support= arcturus_is_baco_supported, .baco_get_state = smu_v11_0_baco_get_state, .baco_set_state = smu_v11_0_baco_set_state, .baco_enter = smu_v11_0_baco_enter, .baco_exit = smu_v11_0_baco_exit, .get_dpm_ultimate_freq = smu_v11_0_get_dpm_ultimate_freq, .set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range, .override_pcie_parameters = NULL, .set_df_cstate = arcturus_set_df_cstate, .allow_xgmi_power_down = arcturus_allow_xgmi_power_down, .log_thermal_throttling_event = arcturus_log_thermal_throttling_event, .set_thermal_range = arcturus_set_thermal_range, }; void arcturus_set_ppt_funcs(struct smu_context *smu) { smu->ppt_funcs = &arcturus_ppt_funcs; }