/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD * */ #include "amdgpu_dm_hdcp.h" #include "amdgpu.h" #include "amdgpu_dm.h" #include "dm_helpers.h" #include #include "hdcp_psp.h" /* * If the SRM version being loaded is less than or equal to the * currently loaded SRM, psp will return 0xFFFF as the version */ #define PSP_SRM_VERSION_MAX 0xFFFF static bool lp_write_i2c(void *handle, uint32_t address, const uint8_t *data, uint32_t size) { struct dc_link *link = handle; struct i2c_payload i2c_payloads[] = {{true, address, size, (void *)data} }; struct i2c_command cmd = {i2c_payloads, 1, I2C_COMMAND_ENGINE_HW, link->dc->caps.i2c_speed_in_khz}; return dm_helpers_submit_i2c(link->ctx, link, &cmd); } static bool lp_read_i2c(void *handle, uint32_t address, uint8_t offset, uint8_t *data, uint32_t size) { struct dc_link *link = handle; struct i2c_payload i2c_payloads[] = {{true, address, 1, &offset}, {false, address, size, data} }; struct i2c_command cmd = {i2c_payloads, 2, I2C_COMMAND_ENGINE_HW, link->dc->caps.i2c_speed_in_khz}; return dm_helpers_submit_i2c(link->ctx, link, &cmd); } static bool lp_write_dpcd(void *handle, uint32_t address, const uint8_t *data, uint32_t size) { struct dc_link *link = handle; return dm_helpers_dp_write_dpcd(link->ctx, link, address, data, size); } static bool lp_read_dpcd(void *handle, uint32_t address, uint8_t *data, uint32_t size) { struct dc_link *link = handle; return dm_helpers_dp_read_dpcd(link->ctx, link, address, data, size); } static uint8_t *psp_get_srm(struct psp_context *psp, uint32_t *srm_version, uint32_t *srm_size) { struct ta_hdcp_shared_memory *hdcp_cmd; if (!psp->hdcp_context.hdcp_initialized) { DRM_WARN("Failed to get hdcp srm. HDCP TA is not initialized."); return NULL; } hdcp_cmd = (struct ta_hdcp_shared_memory *)psp->hdcp_context.hdcp_shared_buf; memset(hdcp_cmd, 0, sizeof(struct ta_hdcp_shared_memory)); hdcp_cmd->cmd_id = TA_HDCP_COMMAND__HDCP_GET_SRM; psp_hdcp_invoke(psp, hdcp_cmd->cmd_id); if (hdcp_cmd->hdcp_status != TA_HDCP_STATUS__SUCCESS) return NULL; *srm_version = hdcp_cmd->out_msg.hdcp_get_srm.srm_version; *srm_size = hdcp_cmd->out_msg.hdcp_get_srm.srm_buf_size; return hdcp_cmd->out_msg.hdcp_get_srm.srm_buf; } static int psp_set_srm(struct psp_context *psp, uint8_t *srm, uint32_t srm_size, uint32_t *srm_version) { struct ta_hdcp_shared_memory *hdcp_cmd; if (!psp->hdcp_context.hdcp_initialized) { DRM_WARN("Failed to get hdcp srm. HDCP TA is not initialized."); return -EINVAL; } hdcp_cmd = (struct ta_hdcp_shared_memory *)psp->hdcp_context.hdcp_shared_buf; memset(hdcp_cmd, 0, sizeof(struct ta_hdcp_shared_memory)); memcpy(hdcp_cmd->in_msg.hdcp_set_srm.srm_buf, srm, srm_size); hdcp_cmd->in_msg.hdcp_set_srm.srm_buf_size = srm_size; hdcp_cmd->cmd_id = TA_HDCP_COMMAND__HDCP_SET_SRM; psp_hdcp_invoke(psp, hdcp_cmd->cmd_id); if (hdcp_cmd->hdcp_status != TA_HDCP_STATUS__SUCCESS || hdcp_cmd->out_msg.hdcp_set_srm.valid_signature != 1 || hdcp_cmd->out_msg.hdcp_set_srm.srm_version == PSP_SRM_VERSION_MAX) return -EINVAL; *srm_version = hdcp_cmd->out_msg.hdcp_set_srm.srm_version; return 0; } static void process_output(struct hdcp_workqueue *hdcp_work) { struct mod_hdcp_output output = hdcp_work->output; if (output.callback_stop) cancel_delayed_work(&hdcp_work->callback_dwork); if (output.callback_needed) schedule_delayed_work(&hdcp_work->callback_dwork, msecs_to_jiffies(output.callback_delay)); if (output.watchdog_timer_stop) cancel_delayed_work(&hdcp_work->watchdog_timer_dwork); if (output.watchdog_timer_needed) schedule_delayed_work(&hdcp_work->watchdog_timer_dwork, msecs_to_jiffies(output.watchdog_timer_delay)); schedule_delayed_work(&hdcp_work->property_validate_dwork, msecs_to_jiffies(0)); } static void link_lock(struct hdcp_workqueue *work, bool lock) { int i = 0; for (i = 0; i < work->max_link; i++) { if (lock) mutex_lock(&work[i].mutex); else mutex_unlock(&work[i].mutex); } } void hdcp_update_display(struct hdcp_workqueue *hdcp_work, unsigned int link_index, struct amdgpu_dm_connector *aconnector, uint8_t content_type, bool enable_encryption) { struct hdcp_workqueue *hdcp_w = &hdcp_work[link_index]; struct mod_hdcp_display *display = &hdcp_work[link_index].display; struct mod_hdcp_link *link = &hdcp_work[link_index].link; struct mod_hdcp_display_query query; mutex_lock(&hdcp_w->mutex); hdcp_w->aconnector = aconnector; query.display = NULL; mod_hdcp_query_display(&hdcp_w->hdcp, aconnector->base.index, &query); if (query.display != NULL) { memcpy(display, query.display, sizeof(struct mod_hdcp_display)); mod_hdcp_remove_display(&hdcp_w->hdcp, aconnector->base.index, &hdcp_w->output); hdcp_w->link.adjust.hdcp2.force_type = MOD_HDCP_FORCE_TYPE_0; if (enable_encryption) { /* Explicitly set the saved SRM as sysfs call will be after we already enabled hdcp * (s3 resume case) */ if (hdcp_work->srm_size > 0) psp_set_srm(hdcp_work->hdcp.config.psp.handle, hdcp_work->srm, hdcp_work->srm_size, &hdcp_work->srm_version); display->adjust.disable = 0; if (content_type == DRM_MODE_HDCP_CONTENT_TYPE0) { hdcp_w->link.adjust.hdcp1.disable = 0; hdcp_w->link.adjust.hdcp2.force_type = MOD_HDCP_FORCE_TYPE_0; } else if (content_type == DRM_MODE_HDCP_CONTENT_TYPE1) { hdcp_w->link.adjust.hdcp1.disable = 1; hdcp_w->link.adjust.hdcp2.force_type = MOD_HDCP_FORCE_TYPE_1; } schedule_delayed_work(&hdcp_w->property_validate_dwork, msecs_to_jiffies(DRM_HDCP_CHECK_PERIOD_MS)); } else { display->adjust.disable = 1; hdcp_w->encryption_status = MOD_HDCP_ENCRYPTION_STATUS_HDCP_OFF; cancel_delayed_work(&hdcp_w->property_validate_dwork); } display->state = MOD_HDCP_DISPLAY_ACTIVE; } mod_hdcp_add_display(&hdcp_w->hdcp, link, display, &hdcp_w->output); process_output(hdcp_w); mutex_unlock(&hdcp_w->mutex); } static void hdcp_remove_display(struct hdcp_workqueue *hdcp_work, unsigned int link_index, struct amdgpu_dm_connector *aconnector) { struct hdcp_workqueue *hdcp_w = &hdcp_work[link_index]; mutex_lock(&hdcp_w->mutex); hdcp_w->aconnector = aconnector; mod_hdcp_remove_display(&hdcp_w->hdcp, aconnector->base.index, &hdcp_w->output); process_output(hdcp_w); mutex_unlock(&hdcp_w->mutex); } void hdcp_reset_display(struct hdcp_workqueue *hdcp_work, unsigned int link_index) { struct hdcp_workqueue *hdcp_w = &hdcp_work[link_index]; mutex_lock(&hdcp_w->mutex); mod_hdcp_reset_connection(&hdcp_w->hdcp, &hdcp_w->output); cancel_delayed_work(&hdcp_w->property_validate_dwork); hdcp_w->encryption_status = MOD_HDCP_ENCRYPTION_STATUS_HDCP_OFF; process_output(hdcp_w); mutex_unlock(&hdcp_w->mutex); } void hdcp_handle_cpirq(struct hdcp_workqueue *hdcp_work, unsigned int link_index) { struct hdcp_workqueue *hdcp_w = &hdcp_work[link_index]; schedule_work(&hdcp_w->cpirq_work); } static void event_callback(struct work_struct *work) { struct hdcp_workqueue *hdcp_work; hdcp_work = container_of(to_delayed_work(work), struct hdcp_workqueue, callback_dwork); mutex_lock(&hdcp_work->mutex); cancel_delayed_work(&hdcp_work->callback_dwork); mod_hdcp_process_event(&hdcp_work->hdcp, MOD_HDCP_EVENT_CALLBACK, &hdcp_work->output); process_output(hdcp_work); mutex_unlock(&hdcp_work->mutex); } static void event_property_update(struct work_struct *work) { struct hdcp_workqueue *hdcp_work = container_of(work, struct hdcp_workqueue, property_update_work); struct amdgpu_dm_connector *aconnector = hdcp_work->aconnector; struct drm_device *dev = hdcp_work->aconnector->base.dev; long ret; drm_modeset_lock(&dev->mode_config.connection_mutex, NULL); mutex_lock(&hdcp_work->mutex); if (aconnector->base.state->commit) { ret = wait_for_completion_interruptible_timeout(&aconnector->base.state->commit->hw_done, 10 * HZ); if (ret == 0) { DRM_ERROR("HDCP state unknown! Setting it to DESIRED"); hdcp_work->encryption_status = MOD_HDCP_ENCRYPTION_STATUS_HDCP_OFF; } } if (hdcp_work->encryption_status != MOD_HDCP_ENCRYPTION_STATUS_HDCP_OFF) { if (aconnector->base.state->hdcp_content_type == DRM_MODE_HDCP_CONTENT_TYPE0 && hdcp_work->encryption_status <= MOD_HDCP_ENCRYPTION_STATUS_HDCP2_TYPE0_ON) drm_hdcp_update_content_protection(&aconnector->base, DRM_MODE_CONTENT_PROTECTION_ENABLED); else if (aconnector->base.state->hdcp_content_type == DRM_MODE_HDCP_CONTENT_TYPE1 && hdcp_work->encryption_status == MOD_HDCP_ENCRYPTION_STATUS_HDCP2_TYPE1_ON) drm_hdcp_update_content_protection(&aconnector->base, DRM_MODE_CONTENT_PROTECTION_ENABLED); } else { drm_hdcp_update_content_protection(&aconnector->base, DRM_MODE_CONTENT_PROTECTION_DESIRED); } mutex_unlock(&hdcp_work->mutex); drm_modeset_unlock(&dev->mode_config.connection_mutex); } static void event_property_validate(struct work_struct *work) { struct hdcp_workqueue *hdcp_work = container_of(to_delayed_work(work), struct hdcp_workqueue, property_validate_dwork); struct mod_hdcp_display_query query; struct amdgpu_dm_connector *aconnector = hdcp_work->aconnector; if (!aconnector) return; mutex_lock(&hdcp_work->mutex); query.encryption_status = MOD_HDCP_ENCRYPTION_STATUS_HDCP_OFF; mod_hdcp_query_display(&hdcp_work->hdcp, aconnector->base.index, &query); if (query.encryption_status != hdcp_work->encryption_status) { hdcp_work->encryption_status = query.encryption_status; schedule_work(&hdcp_work->property_update_work); } mutex_unlock(&hdcp_work->mutex); } static void event_watchdog_timer(struct work_struct *work) { struct hdcp_workqueue *hdcp_work; hdcp_work = container_of(to_delayed_work(work), struct hdcp_workqueue, watchdog_timer_dwork); mutex_lock(&hdcp_work->mutex); cancel_delayed_work(&hdcp_work->watchdog_timer_dwork); mod_hdcp_process_event(&hdcp_work->hdcp, MOD_HDCP_EVENT_WATCHDOG_TIMEOUT, &hdcp_work->output); process_output(hdcp_work); mutex_unlock(&hdcp_work->mutex); } static void event_cpirq(struct work_struct *work) { struct hdcp_workqueue *hdcp_work; hdcp_work = container_of(work, struct hdcp_workqueue, cpirq_work); mutex_lock(&hdcp_work->mutex); mod_hdcp_process_event(&hdcp_work->hdcp, MOD_HDCP_EVENT_CPIRQ, &hdcp_work->output); process_output(hdcp_work); mutex_unlock(&hdcp_work->mutex); } void hdcp_destroy(struct hdcp_workqueue *hdcp_work) { int i = 0; for (i = 0; i < hdcp_work->max_link; i++) { cancel_delayed_work_sync(&hdcp_work[i].callback_dwork); cancel_delayed_work_sync(&hdcp_work[i].watchdog_timer_dwork); } kfree(hdcp_work->srm); kfree(hdcp_work->srm_temp); kfree(hdcp_work); } static bool enable_assr(void *handle, struct dc_link *link) { struct hdcp_workqueue *hdcp_work = handle; struct mod_hdcp hdcp = hdcp_work->hdcp; struct psp_context *psp = hdcp.config.psp.handle; struct ta_dtm_shared_memory *dtm_cmd; bool res = true; if (!psp->dtm_context.dtm_initialized) { DRM_INFO("Failed to enable ASSR, DTM TA is not initialized."); return false; } dtm_cmd = (struct ta_dtm_shared_memory *)psp->dtm_context.dtm_shared_buf; mutex_lock(&psp->dtm_context.mutex); memset(dtm_cmd, 0, sizeof(struct ta_dtm_shared_memory)); dtm_cmd->cmd_id = TA_DTM_COMMAND__TOPOLOGY_ASSR_ENABLE; dtm_cmd->dtm_in_message.topology_assr_enable.display_topology_dig_be_index = link->link_enc_hw_inst; dtm_cmd->dtm_status = TA_DTM_STATUS__GENERIC_FAILURE; psp_dtm_invoke(psp, dtm_cmd->cmd_id); if (dtm_cmd->dtm_status != TA_DTM_STATUS__SUCCESS) { DRM_INFO("Failed to enable ASSR"); res = false; } mutex_unlock(&psp->dtm_context.mutex); return res; } static void update_config(void *handle, struct cp_psp_stream_config *config) { struct hdcp_workqueue *hdcp_work = handle; struct amdgpu_dm_connector *aconnector = config->dm_stream_ctx; int link_index = aconnector->dc_link->link_index; struct mod_hdcp_display *display = &hdcp_work[link_index].display; struct mod_hdcp_link *link = &hdcp_work[link_index].link; if (config->dpms_off) { hdcp_remove_display(hdcp_work, link_index, aconnector); return; } memset(display, 0, sizeof(*display)); memset(link, 0, sizeof(*link)); display->index = aconnector->base.index; display->state = MOD_HDCP_DISPLAY_ACTIVE; if (aconnector->dc_sink != NULL) link->mode = mod_hdcp_signal_type_to_operation_mode(aconnector->dc_sink->sink_signal); display->controller = CONTROLLER_ID_D0 + config->otg_inst; display->dig_fe = config->stream_enc_inst; link->dig_be = config->link_enc_inst; link->ddc_line = aconnector->dc_link->ddc_hw_inst + 1; link->dp.rev = aconnector->dc_link->dpcd_caps.dpcd_rev.raw; link->dp.mst_supported = config->mst_supported; display->adjust.disable = 1; link->adjust.auth_delay = 3; link->adjust.hdcp1.disable = 0; hdcp_update_display(hdcp_work, link_index, aconnector, DRM_MODE_HDCP_CONTENT_TYPE0, false); } /* NOTE: From the usermodes prospective you only need to call write *ONCE*, the kernel * will automatically call once or twice depending on the size * * call: "cat file > /sys/class/drm/card0/device/hdcp_srm" from usermode no matter what the size is * * The kernel can only send PAGE_SIZE at once and since MAX_SRM_FILE(5120) > PAGE_SIZE(4096), * srm_data_write can be called multiple times. * * sysfs interface doesn't tell us the size we will get so we are sending partial SRMs to psp and on * the last call we will send the full SRM. PSP will fail on every call before the last. * * This means we don't know if the SRM is good until the last call. And because of this limitation we * cannot throw errors early as it will stop the kernel from writing to sysfs * * Example 1: * Good SRM size = 5096 * first call to write 4096 -> PSP fails * Second call to write 1000 -> PSP Pass -> SRM is set * * Example 2: * Bad SRM size = 4096 * first call to write 4096 -> PSP fails (This is the same as above, but we don't know if this * is the last call) * * Solution?: * 1: Parse the SRM? -> It is signed so we don't know the EOF * 2: We can have another sysfs that passes the size before calling set. -> simpler solution * below * * Easy Solution: * Always call get after Set to verify if set was successful. * +----------------------+ * | Why it works: | * +----------------------+ * PSP will only update its srm if its older than the one we are trying to load. * Always do set first than get. * -if we try to "1. SET" a older version PSP will reject it and we can "2. GET" the newer * version and save it * * -if we try to "1. SET" a newer version PSP will accept it and we can "2. GET" the * same(newer) version back and save it * * -if we try to "1. SET" a newer version and PSP rejects it. That means the format is * incorrect/corrupted and we should correct our SRM by getting it from PSP */ static ssize_t srm_data_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buffer, loff_t pos, size_t count) { struct hdcp_workqueue *work; uint32_t srm_version = 0; work = container_of(bin_attr, struct hdcp_workqueue, attr); link_lock(work, true); memcpy(work->srm_temp + pos, buffer, count); if (!psp_set_srm(work->hdcp.config.psp.handle, work->srm_temp, pos + count, &srm_version)) { DRM_DEBUG_DRIVER("HDCP SRM SET version 0x%X", srm_version); memcpy(work->srm, work->srm_temp, pos + count); work->srm_size = pos + count; work->srm_version = srm_version; } link_lock(work, false); return count; } static ssize_t srm_data_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buffer, loff_t pos, size_t count) { struct hdcp_workqueue *work; uint8_t *srm = NULL; uint32_t srm_version; uint32_t srm_size; size_t ret = count; work = container_of(bin_attr, struct hdcp_workqueue, attr); link_lock(work, true); srm = psp_get_srm(work->hdcp.config.psp.handle, &srm_version, &srm_size); if (!srm) { ret = -EINVAL; goto ret; } if (pos >= srm_size) ret = 0; if (srm_size - pos < count) { memcpy(buffer, srm + pos, srm_size - pos); ret = srm_size - pos; goto ret; } memcpy(buffer, srm + pos, count); ret: link_lock(work, false); return ret; } /* From the hdcp spec (5.Renewability) SRM needs to be stored in a non-volatile memory. * * For example, * if Application "A" sets the SRM (ver 2) and we reboot/suspend and later when Application "B" * needs to use HDCP, the version in PSP should be SRM(ver 2). So SRM should be persistent * across boot/reboots/suspend/resume/shutdown * * Currently when the system goes down (suspend/shutdown) the SRM is cleared from PSP. For HDCP we need * to make the SRM persistent. * * -PSP owns the checking of SRM but doesn't have the ability to store it in a non-volatile memory. * -The kernel cannot write to the file systems. * -So we need usermode to do this for us, which is why an interface for usermode is needed * * * * Usermode can read/write to/from PSP using the sysfs interface * For example: * to save SRM from PSP to storage : cat /sys/class/drm/card0/device/hdcp_srm > srmfile * to load from storage to PSP: cat srmfile > /sys/class/drm/card0/device/hdcp_srm */ static const struct bin_attribute data_attr = { .attr = {.name = "hdcp_srm", .mode = 0664}, .size = PSP_HDCP_SRM_FIRST_GEN_MAX_SIZE, /* Limit SRM size */ .write = srm_data_write, .read = srm_data_read, }; struct hdcp_workqueue *hdcp_create_workqueue(struct amdgpu_device *adev, struct cp_psp *cp_psp, struct dc *dc) { int max_caps = dc->caps.max_links; struct hdcp_workqueue *hdcp_work; int i = 0; hdcp_work = kcalloc(max_caps, sizeof(*hdcp_work), GFP_KERNEL); if (hdcp_work == NULL) return NULL; hdcp_work->srm = kcalloc(PSP_HDCP_SRM_FIRST_GEN_MAX_SIZE, sizeof(*hdcp_work->srm), GFP_KERNEL); if (hdcp_work->srm == NULL) goto fail_alloc_context; hdcp_work->srm_temp = kcalloc(PSP_HDCP_SRM_FIRST_GEN_MAX_SIZE, sizeof(*hdcp_work->srm_temp), GFP_KERNEL); if (hdcp_work->srm_temp == NULL) goto fail_alloc_context; hdcp_work->max_link = max_caps; for (i = 0; i < max_caps; i++) { mutex_init(&hdcp_work[i].mutex); INIT_WORK(&hdcp_work[i].cpirq_work, event_cpirq); INIT_WORK(&hdcp_work[i].property_update_work, event_property_update); INIT_DELAYED_WORK(&hdcp_work[i].callback_dwork, event_callback); INIT_DELAYED_WORK(&hdcp_work[i].watchdog_timer_dwork, event_watchdog_timer); INIT_DELAYED_WORK(&hdcp_work[i].property_validate_dwork, event_property_validate); hdcp_work[i].hdcp.config.psp.handle = &adev->psp; hdcp_work[i].hdcp.config.ddc.handle = dc_get_link_at_index(dc, i); hdcp_work[i].hdcp.config.ddc.funcs.write_i2c = lp_write_i2c; hdcp_work[i].hdcp.config.ddc.funcs.read_i2c = lp_read_i2c; hdcp_work[i].hdcp.config.ddc.funcs.write_dpcd = lp_write_dpcd; hdcp_work[i].hdcp.config.ddc.funcs.read_dpcd = lp_read_dpcd; } cp_psp->funcs.update_stream_config = update_config; cp_psp->funcs.enable_assr = enable_assr; cp_psp->handle = hdcp_work; /* File created at /sys/class/drm/card0/device/hdcp_srm*/ hdcp_work[0].attr = data_attr; if (sysfs_create_bin_file(&adev->dev->kobj, &hdcp_work[0].attr)) DRM_WARN("Failed to create device file hdcp_srm"); return hdcp_work; fail_alloc_context: kfree(hdcp_work->srm); kfree(hdcp_work->srm_temp); kfree(hdcp_work); return NULL; }