// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2020-2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "amdgpu_sync.h" #include "amdgpu_object.h" #include "amdgpu_vm.h" #include "amdgpu_mn.h" #include "amdgpu_res_cursor.h" #include "kfd_priv.h" #include "kfd_svm.h" #include "kfd_migrate.h" #ifdef dev_fmt #undef dev_fmt #endif #define dev_fmt(fmt) "kfd_migrate: " fmt static uint64_t svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) { return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); } static int svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) { struct amdgpu_device *adev = ring->adev; struct amdgpu_job *job; unsigned int num_dw, num_bytes; struct dma_fence *fence; uint64_t src_addr, dst_addr; uint64_t pte_flags; void *cpu_addr; int r; /* use gart window 0 */ *gart_addr = adev->gmc.gart_start; num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); num_bytes = npages * 8; r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, AMDGPU_IB_POOL_DELAYED, &job); if (r) return r; src_addr = num_dw * 4; src_addr += job->ibs[0].gpu_addr; dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr, num_bytes, false); amdgpu_ring_pad_ib(ring, &job->ibs[0]); WARN_ON(job->ibs[0].length_dw > num_dw); pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) pte_flags |= AMDGPU_PTE_WRITEABLE; pte_flags |= adev->gart.gart_pte_flags; cpu_addr = &job->ibs[0].ptr[num_dw]; amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); r = amdgpu_job_submit(job, &adev->mman.entity, AMDGPU_FENCE_OWNER_UNDEFINED, &fence); if (r) goto error_free; dma_fence_put(fence); return r; error_free: amdgpu_job_free(job); return r; } /** * svm_migrate_copy_memory_gart - sdma copy data between ram and vram * * @adev: amdgpu device the sdma ring running * @sys: system DMA pointer to be copied * @vram: vram destination DMA pointer * @npages: number of pages to copy * @direction: enum MIGRATION_COPY_DIR * @mfence: output, sdma fence to signal after sdma is done * * ram address uses GART table continuous entries mapping to ram pages, * vram address uses direct mapping of vram pages, which must have npages * number of continuous pages. * GART update and sdma uses same buf copy function ring, sdma is splited to * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for * the last sdma finish fence which is returned to check copy memory is done. * * Context: Process context, takes and releases gtt_window_lock * * Return: * 0 - OK, otherwise error code */ static int svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, uint64_t *vram, uint64_t npages, enum MIGRATION_COPY_DIR direction, struct dma_fence **mfence) { const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; uint64_t gart_s, gart_d; struct dma_fence *next; uint64_t size; int r; mutex_lock(&adev->mman.gtt_window_lock); while (npages) { size = min(GTT_MAX_PAGES, npages); if (direction == FROM_VRAM_TO_RAM) { gart_s = svm_migrate_direct_mapping_addr(adev, *vram); r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); } else if (direction == FROM_RAM_TO_VRAM) { r = svm_migrate_gart_map(ring, size, sys, &gart_s, KFD_IOCTL_SVM_FLAG_GPU_RO); gart_d = svm_migrate_direct_mapping_addr(adev, *vram); } if (r) { dev_err(adev->dev, "fail %d create gart mapping\n", r); goto out_unlock; } r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, NULL, &next, false, true, false); if (r) { dev_err(adev->dev, "fail %d to copy memory\n", r); goto out_unlock; } dma_fence_put(*mfence); *mfence = next; npages -= size; if (npages) { sys += size; vram += size; } } out_unlock: mutex_unlock(&adev->mman.gtt_window_lock); return r; } /** * svm_migrate_copy_done - wait for memory copy sdma is done * * @adev: amdgpu device the sdma memory copy is executing on * @mfence: migrate fence * * Wait for dma fence is signaled, if the copy ssplit into multiple sdma * operations, this is the last sdma operation fence. * * Context: called after svm_migrate_copy_memory * * Return: * 0 - success * otherwise - error code from dma fence signal */ static int svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) { int r = 0; if (mfence) { r = dma_fence_wait(mfence, false); dma_fence_put(mfence); pr_debug("sdma copy memory fence done\n"); } return r; } unsigned long svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) { return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT; } static void svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) { struct page *page; page = pfn_to_page(pfn); svm_range_bo_ref(prange->svm_bo); page->zone_device_data = prange->svm_bo; get_page(page); lock_page(page); } static void svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) { struct page *page; page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); unlock_page(page); put_page(page); } static unsigned long svm_migrate_addr(struct amdgpu_device *adev, struct page *page) { unsigned long addr; addr = page_to_pfn(page) << PAGE_SHIFT; return (addr - adev->kfd.dev->pgmap.range.start); } static struct page * svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) { struct page *page; page = alloc_page_vma(GFP_HIGHUSER, vma, addr); if (page) lock_page(page); return page; } static void svm_migrate_put_sys_page(unsigned long addr) { struct page *page; page = pfn_to_page(addr >> PAGE_SHIFT); unlock_page(page); put_page(page); } static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) { unsigned long cpages = 0; unsigned long i; for (i = 0; i < migrate->npages; i++) { if (migrate->src[i] & MIGRATE_PFN_VALID && migrate->src[i] & MIGRATE_PFN_MIGRATE) cpages++; } return cpages; } static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) { unsigned long upages = 0; unsigned long i; for (i = 0; i < migrate->npages; i++) { if (migrate->src[i] & MIGRATE_PFN_VALID && !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) upages++; } return upages; } static int svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange, struct migrate_vma *migrate, struct dma_fence **mfence, dma_addr_t *scratch) { uint64_t npages = migrate->cpages; struct device *dev = adev->dev; struct amdgpu_res_cursor cursor; dma_addr_t *src; uint64_t *dst; uint64_t i, j; int r; pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); src = scratch; dst = (uint64_t *)(scratch + npages); r = svm_range_vram_node_new(adev, prange, true); if (r) { dev_dbg(adev->dev, "fail %d to alloc vram\n", r); goto out; } amdgpu_res_first(prange->ttm_res, prange->offset << PAGE_SHIFT, npages << PAGE_SHIFT, &cursor); for (i = j = 0; i < npages; i++) { struct page *spage; spage = migrate_pfn_to_page(migrate->src[i]); if (spage && !is_zone_device_page(spage)) { dst[i] = cursor.start + (j << PAGE_SHIFT); migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); svm_migrate_get_vram_page(prange, migrate->dst[i]); migrate->dst[i] = migrate_pfn(migrate->dst[i]); src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, DMA_TO_DEVICE); r = dma_mapping_error(dev, src[i]); if (r) { dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); goto out_free_vram_pages; } } else { if (j) { r = svm_migrate_copy_memory_gart( adev, src + i - j, dst + i - j, j, FROM_RAM_TO_VRAM, mfence); if (r) goto out_free_vram_pages; amdgpu_res_next(&cursor, j << PAGE_SHIFT); j = 0; } else { amdgpu_res_next(&cursor, PAGE_SIZE); } continue; } pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", src[i] >> PAGE_SHIFT, page_to_pfn(spage)); if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j + 1, FROM_RAM_TO_VRAM, mfence); if (r) goto out_free_vram_pages; amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); j = 0; } else { j++; } } r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, FROM_RAM_TO_VRAM, mfence); out_free_vram_pages: if (r) { pr_debug("failed %d to copy memory to vram\n", r); while (i--) { svm_migrate_put_vram_page(adev, dst[i]); migrate->dst[i] = 0; } } #ifdef DEBUG_FORCE_MIXED_DOMAINS for (i = 0, j = 0; i < npages; i += 4, j++) { if (j & 1) continue; svm_migrate_put_vram_page(adev, dst[i]); migrate->dst[i] = 0; svm_migrate_put_vram_page(adev, dst[i + 1]); migrate->dst[i + 1] = 0; svm_migrate_put_vram_page(adev, dst[i + 2]); migrate->dst[i + 2] = 0; svm_migrate_put_vram_page(adev, dst[i + 3]); migrate->dst[i + 3] = 0; } #endif out: return r; } static long svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange, struct vm_area_struct *vma, uint64_t start, uint64_t end) { uint64_t npages = (end - start) >> PAGE_SHIFT; struct kfd_process_device *pdd; struct dma_fence *mfence = NULL; struct migrate_vma migrate; unsigned long cpages = 0; dma_addr_t *scratch; size_t size; void *buf; int r = -ENOMEM; memset(&migrate, 0, sizeof(migrate)); migrate.vma = vma; migrate.start = start; migrate.end = end; migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t); size *= npages; buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO); if (!buf) goto out; migrate.src = buf; migrate.dst = migrate.src + npages; scratch = (dma_addr_t *)(migrate.dst + npages); r = migrate_vma_setup(&migrate); if (r) { dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", __func__, r, prange->start, prange->last); goto out_free; } cpages = migrate.cpages; if (!cpages) { pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", prange->start, prange->last); goto out_free; } if (cpages != npages) pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", cpages, npages); else pr_debug("0x%lx pages migrated\n", cpages); r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, scratch); migrate_vma_pages(&migrate); pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", svm_migrate_successful_pages(&migrate), cpages, migrate.npages); svm_migrate_copy_done(adev, mfence); migrate_vma_finalize(&migrate); svm_range_dma_unmap(adev->dev, scratch, 0, npages); svm_range_free_dma_mappings(prange); out_free: kvfree(buf); out: if (!r && cpages) { pdd = svm_range_get_pdd_by_adev(prange, adev); if (pdd) WRITE_ONCE(pdd->page_in, pdd->page_in + cpages); return cpages; } return r; } /** * svm_migrate_ram_to_vram - migrate svm range from system to device * @prange: range structure * @best_loc: the device to migrate to * @mm: the process mm structure * * Context: Process context, caller hold mmap read lock, svms lock, prange lock * * Return: * 0 - OK, otherwise error code */ static int svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, struct mm_struct *mm) { unsigned long addr, start, end; struct vm_area_struct *vma; struct amdgpu_device *adev; unsigned long cpages = 0; long r = 0; if (prange->actual_loc == best_loc) { pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", prange->svms, prange->start, prange->last, best_loc); return 0; } adev = svm_range_get_adev_by_id(prange, best_loc); if (!adev) { pr_debug("failed to get device by id 0x%x\n", best_loc); return -ENODEV; } pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, prange->start, prange->last, best_loc); /* FIXME: workaround for page locking bug with invalid pages */ svm_range_prefault(prange, mm, SVM_ADEV_PGMAP_OWNER(adev)); start = prange->start << PAGE_SHIFT; end = (prange->last + 1) << PAGE_SHIFT; for (addr = start; addr < end;) { unsigned long next; vma = find_vma(mm, addr); if (!vma || addr < vma->vm_start) break; next = min(vma->vm_end, end); r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next); if (r < 0) { pr_debug("failed %ld to migrate\n", r); break; } else { cpages += r; } addr = next; } if (cpages) prange->actual_loc = best_loc; return r < 0 ? r : 0; } static void svm_migrate_page_free(struct page *page) { struct svm_range_bo *svm_bo = page->zone_device_data; if (svm_bo) { pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); svm_range_bo_unref_async(svm_bo); } } static int svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, struct migrate_vma *migrate, struct dma_fence **mfence, dma_addr_t *scratch, uint64_t npages) { struct device *dev = adev->dev; uint64_t *src; dma_addr_t *dst; struct page *dpage; uint64_t i = 0, j; uint64_t addr; int r = 0; pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); addr = prange->start << PAGE_SHIFT; src = (uint64_t *)(scratch + npages); dst = scratch; for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { struct page *spage; spage = migrate_pfn_to_page(migrate->src[i]); if (!spage || !is_zone_device_page(spage)) { pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); if (j) { r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, FROM_VRAM_TO_RAM, mfence); if (r) goto out_oom; j = 0; } continue; } src[i] = svm_migrate_addr(adev, spage); if (i > 0 && src[i] != src[i - 1] + PAGE_SIZE) { r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, FROM_VRAM_TO_RAM, mfence); if (r) goto out_oom; j = 0; } dpage = svm_migrate_get_sys_page(migrate->vma, addr); if (!dpage) { pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); r = -ENOMEM; goto out_oom; } dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); r = dma_mapping_error(dev, dst[i]); if (r) { dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); goto out_oom; } pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); j++; } r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, FROM_VRAM_TO_RAM, mfence); out_oom: if (r) { pr_debug("failed %d copy to ram\n", r); while (i--) { svm_migrate_put_sys_page(dst[i]); migrate->dst[i] = 0; } } return r; } static long svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange, struct vm_area_struct *vma, uint64_t start, uint64_t end) { uint64_t npages = (end - start) >> PAGE_SHIFT; unsigned long upages = npages; unsigned long cpages = 0; struct kfd_process_device *pdd; struct dma_fence *mfence = NULL; struct migrate_vma migrate; dma_addr_t *scratch; size_t size; void *buf; int r = -ENOMEM; memset(&migrate, 0, sizeof(migrate)); migrate.vma = vma; migrate.start = start; migrate.end = end; migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t); size *= npages; buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO); if (!buf) goto out; migrate.src = buf; migrate.dst = migrate.src + npages; scratch = (dma_addr_t *)(migrate.dst + npages); r = migrate_vma_setup(&migrate); if (r) { dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", __func__, r, prange->start, prange->last); goto out_free; } cpages = migrate.cpages; if (!cpages) { pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", prange->start, prange->last); upages = svm_migrate_unsuccessful_pages(&migrate); goto out_free; } if (cpages != npages) pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", cpages, npages); else pr_debug("0x%lx pages migrated\n", cpages); r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, scratch, npages); migrate_vma_pages(&migrate); upages = svm_migrate_unsuccessful_pages(&migrate); pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", upages, cpages, migrate.npages); svm_migrate_copy_done(adev, mfence); migrate_vma_finalize(&migrate); svm_range_dma_unmap(adev->dev, scratch, 0, npages); out_free: kvfree(buf); out: if (!r && cpages) { pdd = svm_range_get_pdd_by_adev(prange, adev); if (pdd) WRITE_ONCE(pdd->page_out, pdd->page_out + cpages); return upages; } return r ? r : upages; } /** * svm_migrate_vram_to_ram - migrate svm range from device to system * @prange: range structure * @mm: process mm, use current->mm if NULL * * Context: Process context, caller hold mmap read lock, svms lock, prange lock * * Return: * 0 - OK, otherwise error code */ int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm) { struct amdgpu_device *adev; struct vm_area_struct *vma; unsigned long addr; unsigned long start; unsigned long end; unsigned long upages = 0; long r = 0; if (!prange->actual_loc) { pr_debug("[0x%lx 0x%lx] already migrated to ram\n", prange->start, prange->last); return 0; } adev = svm_range_get_adev_by_id(prange, prange->actual_loc); if (!adev) { pr_debug("failed to get device by id 0x%x\n", prange->actual_loc); return -ENODEV; } pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", prange->svms, prange, prange->start, prange->last, prange->actual_loc); start = prange->start << PAGE_SHIFT; end = (prange->last + 1) << PAGE_SHIFT; for (addr = start; addr < end;) { unsigned long next; vma = find_vma(mm, addr); if (!vma || addr < vma->vm_start) break; next = min(vma->vm_end, end); r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next); if (r < 0) { pr_debug("failed %ld to migrate\n", r); break; } else { upages += r; } addr = next; } if (!upages) { svm_range_vram_node_free(prange); prange->actual_loc = 0; } return r < 0 ? r : 0; } /** * svm_migrate_vram_to_vram - migrate svm range from device to device * @prange: range structure * @best_loc: the device to migrate to * @mm: process mm, use current->mm if NULL * * Context: Process context, caller hold mmap read lock, svms lock, prange lock * * Return: * 0 - OK, otherwise error code */ static int svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, struct mm_struct *mm) { int r, retries = 3; /* * TODO: for both devices with PCIe large bar or on same xgmi hive, skip * system memory as migration bridge */ pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); do { r = svm_migrate_vram_to_ram(prange, mm); if (r) return r; } while (prange->actual_loc && --retries); if (prange->actual_loc) return -EDEADLK; return svm_migrate_ram_to_vram(prange, best_loc, mm); } int svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, struct mm_struct *mm) { if (!prange->actual_loc) return svm_migrate_ram_to_vram(prange, best_loc, mm); else return svm_migrate_vram_to_vram(prange, best_loc, mm); } /** * svm_migrate_to_ram - CPU page fault handler * @vmf: CPU vm fault vma, address * * Context: vm fault handler, caller holds the mmap read lock * * Return: * 0 - OK * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault */ static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) { unsigned long addr = vmf->address; struct vm_area_struct *vma; enum svm_work_list_ops op; struct svm_range *parent; struct svm_range *prange; struct kfd_process *p; struct mm_struct *mm; int r = 0; vma = vmf->vma; mm = vma->vm_mm; p = kfd_lookup_process_by_mm(vma->vm_mm); if (!p) { pr_debug("failed find process at fault address 0x%lx\n", addr); return VM_FAULT_SIGBUS; } if (READ_ONCE(p->svms.faulting_task) == current) { pr_debug("skipping ram migration\n"); kfd_unref_process(p); return 0; } addr >>= PAGE_SHIFT; pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); mutex_lock(&p->svms.lock); prange = svm_range_from_addr(&p->svms, addr, &parent); if (!prange) { pr_debug("cannot find svm range at 0x%lx\n", addr); r = -EFAULT; goto out; } mutex_lock(&parent->migrate_mutex); if (prange != parent) mutex_lock_nested(&prange->migrate_mutex, 1); if (!prange->actual_loc) goto out_unlock_prange; svm_range_lock(parent); if (prange != parent) mutex_lock_nested(&prange->lock, 1); r = svm_range_split_by_granularity(p, mm, addr, parent, prange); if (prange != parent) mutex_unlock(&prange->lock); svm_range_unlock(parent); if (r) { pr_debug("failed %d to split range by granularity\n", r); goto out_unlock_prange; } r = svm_migrate_vram_to_ram(prange, mm); if (r) pr_debug("failed %d migrate 0x%p [0x%lx 0x%lx] to ram\n", r, prange, prange->start, prange->last); /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ if (p->xnack_enabled && parent == prange) op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; else op = SVM_OP_UPDATE_RANGE_NOTIFIER; svm_range_add_list_work(&p->svms, parent, mm, op); schedule_deferred_list_work(&p->svms); out_unlock_prange: if (prange != parent) mutex_unlock(&prange->migrate_mutex); mutex_unlock(&parent->migrate_mutex); out: mutex_unlock(&p->svms.lock); kfd_unref_process(p); pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); return r ? VM_FAULT_SIGBUS : 0; } static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { .page_free = svm_migrate_page_free, .migrate_to_ram = svm_migrate_to_ram, }; /* Each VRAM page uses sizeof(struct page) on system memory */ #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) int svm_migrate_init(struct amdgpu_device *adev) { struct kfd_dev *kfddev = adev->kfd.dev; struct dev_pagemap *pgmap; struct resource *res; unsigned long size; void *r; /* Page migration works on Vega10 or newer */ if (!KFD_IS_SOC15(kfddev)) return -EINVAL; pgmap = &kfddev->pgmap; memset(pgmap, 0, sizeof(*pgmap)); /* TODO: register all vram to HMM for now. * should remove reserved size */ size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); if (IS_ERR(res)) return -ENOMEM; pgmap->type = MEMORY_DEVICE_PRIVATE; pgmap->nr_range = 1; pgmap->range.start = res->start; pgmap->range.end = res->end; pgmap->ops = &svm_migrate_pgmap_ops; pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); pgmap->flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; /* Device manager releases device-specific resources, memory region and * pgmap when driver disconnects from device. */ r = devm_memremap_pages(adev->dev, pgmap); if (IS_ERR(r)) { pr_err("failed to register HMM device memory\n"); /* Disable SVM support capability */ pgmap->type = 0; devm_release_mem_region(adev->dev, res->start, resource_size(res)); return PTR_ERR(r); } pr_debug("reserve %ldMB system memory for VRAM pages struct\n", SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); pr_info("HMM registered %ldMB device memory\n", size >> 20); return 0; }