/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "kfd_priv.h" #include "kfd_events.h" #include "kfd_iommu.h" #include /* * Wrapper around wait_queue_entry_t */ struct kfd_event_waiter { wait_queue_entry_t wait; struct kfd_event *event; /* Event to wait for */ bool activated; /* Becomes true when event is signaled */ }; /* * Each signal event needs a 64-bit signal slot where the signaler will write * a 1 before sending an interrupt. (This is needed because some interrupts * do not contain enough spare data bits to identify an event.) * We get whole pages and map them to the process VA. * Individual signal events use their event_id as slot index. */ struct kfd_signal_page { uint64_t *kernel_address; uint64_t __user *user_address; bool need_to_free_pages; }; static uint64_t *page_slots(struct kfd_signal_page *page) { return page->kernel_address; } static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) { void *backing_store; struct kfd_signal_page *page; page = kzalloc(sizeof(*page), GFP_KERNEL); if (!page) return NULL; backing_store = (void *) __get_free_pages(GFP_KERNEL, get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); if (!backing_store) goto fail_alloc_signal_store; /* Initialize all events to unsignaled */ memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, KFD_SIGNAL_EVENT_LIMIT * 8); page->kernel_address = backing_store; page->need_to_free_pages = true; pr_debug("Allocated new event signal page at %p, for process %p\n", page, p); return page; fail_alloc_signal_store: kfree(page); return NULL; } static int allocate_event_notification_slot(struct kfd_process *p, struct kfd_event *ev) { int id; if (!p->signal_page) { p->signal_page = allocate_signal_page(p); if (!p->signal_page) return -ENOMEM; /* Oldest user mode expects 256 event slots */ p->signal_mapped_size = 256*8; } /* * Compatibility with old user mode: Only use signal slots * user mode has mapped, may be less than * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase * of the event limit without breaking user mode. */ id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, GFP_KERNEL); if (id < 0) return id; ev->event_id = id; page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; return 0; } /* * Assumes that p->event_mutex is held and of course that p is not going * away (current or locked). */ static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) { return idr_find(&p->event_idr, id); } /** * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID * @p: Pointer to struct kfd_process * @id: ID to look up * @bits: Number of valid bits in @id * * Finds the first signaled event with a matching partial ID. If no * matching signaled event is found, returns NULL. In that case the * caller should assume that the partial ID is invalid and do an * exhaustive search of all siglaned events. * * If multiple events with the same partial ID signal at the same * time, they will be found one interrupt at a time, not necessarily * in the same order the interrupts occurred. As long as the number of * interrupts is correct, all signaled events will be seen by the * driver. */ static struct kfd_event *lookup_signaled_event_by_partial_id( struct kfd_process *p, uint32_t id, uint32_t bits) { struct kfd_event *ev; if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) return NULL; /* Fast path for the common case that @id is not a partial ID * and we only need a single lookup. */ if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) return NULL; return idr_find(&p->event_idr, id); } /* General case for partial IDs: Iterate over all matching IDs * and find the first one that has signaled. */ for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) continue; ev = idr_find(&p->event_idr, id); } return ev; } static int create_signal_event(struct file *devkfd, struct kfd_process *p, struct kfd_event *ev) { int ret; if (p->signal_mapped_size && p->signal_event_count == p->signal_mapped_size / 8) { if (!p->signal_event_limit_reached) { pr_debug("Signal event wasn't created because limit was reached\n"); p->signal_event_limit_reached = true; } return -ENOSPC; } ret = allocate_event_notification_slot(p, ev); if (ret) { pr_warn("Signal event wasn't created because out of kernel memory\n"); return ret; } p->signal_event_count++; ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; pr_debug("Signal event number %zu created with id %d, address %p\n", p->signal_event_count, ev->event_id, ev->user_signal_address); return 0; } static int create_other_event(struct kfd_process *p, struct kfd_event *ev) { /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an * intentional integer overflow to -1 without a compiler * warning. idr_alloc treats a negative value as "maximum * signed integer". */ int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, GFP_KERNEL); if (id < 0) return id; ev->event_id = id; return 0; } void kfd_event_init_process(struct kfd_process *p) { mutex_init(&p->event_mutex); idr_init(&p->event_idr); p->signal_page = NULL; p->signal_event_count = 0; } static void destroy_event(struct kfd_process *p, struct kfd_event *ev) { struct kfd_event_waiter *waiter; /* Wake up pending waiters. They will return failure */ list_for_each_entry(waiter, &ev->wq.head, wait.entry) waiter->event = NULL; wake_up_all(&ev->wq); if (ev->type == KFD_EVENT_TYPE_SIGNAL || ev->type == KFD_EVENT_TYPE_DEBUG) p->signal_event_count--; idr_remove(&p->event_idr, ev->event_id); kfree(ev); } static void destroy_events(struct kfd_process *p) { struct kfd_event *ev; uint32_t id; idr_for_each_entry(&p->event_idr, ev, id) destroy_event(p, ev); idr_destroy(&p->event_idr); } /* * We assume that the process is being destroyed and there is no need to * unmap the pages or keep bookkeeping data in order. */ static void shutdown_signal_page(struct kfd_process *p) { struct kfd_signal_page *page = p->signal_page; if (page) { if (page->need_to_free_pages) free_pages((unsigned long)page->kernel_address, get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); kfree(page); } } void kfd_event_free_process(struct kfd_process *p) { destroy_events(p); shutdown_signal_page(p); } static bool event_can_be_gpu_signaled(const struct kfd_event *ev) { return ev->type == KFD_EVENT_TYPE_SIGNAL || ev->type == KFD_EVENT_TYPE_DEBUG; } static bool event_can_be_cpu_signaled(const struct kfd_event *ev) { return ev->type == KFD_EVENT_TYPE_SIGNAL; } int kfd_event_page_set(struct kfd_process *p, void *kernel_address, uint64_t size) { struct kfd_signal_page *page; if (p->signal_page) return -EBUSY; page = kzalloc(sizeof(*page), GFP_KERNEL); if (!page) return -ENOMEM; /* Initialize all events to unsignaled */ memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, KFD_SIGNAL_EVENT_LIMIT * 8); page->kernel_address = kernel_address; p->signal_page = page; p->signal_mapped_size = size; return 0; } int kfd_event_create(struct file *devkfd, struct kfd_process *p, uint32_t event_type, bool auto_reset, uint32_t node_id, uint32_t *event_id, uint32_t *event_trigger_data, uint64_t *event_page_offset, uint32_t *event_slot_index) { int ret = 0; struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); if (!ev) return -ENOMEM; ev->type = event_type; ev->auto_reset = auto_reset; ev->signaled = false; init_waitqueue_head(&ev->wq); *event_page_offset = 0; mutex_lock(&p->event_mutex); switch (event_type) { case KFD_EVENT_TYPE_SIGNAL: case KFD_EVENT_TYPE_DEBUG: ret = create_signal_event(devkfd, p, ev); if (!ret) { *event_page_offset = KFD_MMAP_TYPE_EVENTS; *event_slot_index = ev->event_id; } break; default: ret = create_other_event(p, ev); break; } if (!ret) { *event_id = ev->event_id; *event_trigger_data = ev->event_id; } else { kfree(ev); } mutex_unlock(&p->event_mutex); return ret; } /* Assumes that p is current. */ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) { struct kfd_event *ev; int ret = 0; mutex_lock(&p->event_mutex); ev = lookup_event_by_id(p, event_id); if (ev) destroy_event(p, ev); else ret = -EINVAL; mutex_unlock(&p->event_mutex); return ret; } static void set_event(struct kfd_event *ev) { struct kfd_event_waiter *waiter; /* Auto reset if the list is non-empty and we're waking * someone. waitqueue_active is safe here because we're * protected by the p->event_mutex, which is also held when * updating the wait queues in kfd_wait_on_events. */ ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); list_for_each_entry(waiter, &ev->wq.head, wait.entry) waiter->activated = true; wake_up_all(&ev->wq); } /* Assumes that p is current. */ int kfd_set_event(struct kfd_process *p, uint32_t event_id) { int ret = 0; struct kfd_event *ev; mutex_lock(&p->event_mutex); ev = lookup_event_by_id(p, event_id); if (ev && event_can_be_cpu_signaled(ev)) set_event(ev); else ret = -EINVAL; mutex_unlock(&p->event_mutex); return ret; } static void reset_event(struct kfd_event *ev) { ev->signaled = false; } /* Assumes that p is current. */ int kfd_reset_event(struct kfd_process *p, uint32_t event_id) { int ret = 0; struct kfd_event *ev; mutex_lock(&p->event_mutex); ev = lookup_event_by_id(p, event_id); if (ev && event_can_be_cpu_signaled(ev)) reset_event(ev); else ret = -EINVAL; mutex_unlock(&p->event_mutex); return ret; } static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) { page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT; } static void set_event_from_interrupt(struct kfd_process *p, struct kfd_event *ev) { if (ev && event_can_be_gpu_signaled(ev)) { acknowledge_signal(p, ev); set_event(ev); } } void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, uint32_t valid_id_bits) { struct kfd_event *ev = NULL; /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); if (!p) return; /* Presumably process exited. */ mutex_lock(&p->event_mutex); if (valid_id_bits) ev = lookup_signaled_event_by_partial_id(p, partial_id, valid_id_bits); if (ev) { set_event_from_interrupt(p, ev); } else if (p->signal_page) { /* * Partial ID lookup failed. Assume that the event ID * in the interrupt payload was invalid and do an * exhaustive search of signaled events. */ uint64_t *slots = page_slots(p->signal_page); uint32_t id; if (valid_id_bits) pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", partial_id, valid_id_bits); if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { /* With relatively few events, it's faster to * iterate over the event IDR */ idr_for_each_entry(&p->event_idr, ev, id) { if (id >= KFD_SIGNAL_EVENT_LIMIT) break; if (slots[id] != UNSIGNALED_EVENT_SLOT) set_event_from_interrupt(p, ev); } } else { /* With relatively many events, it's faster to * iterate over the signal slots and lookup * only signaled events from the IDR. */ for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++) if (slots[id] != UNSIGNALED_EVENT_SLOT) { ev = lookup_event_by_id(p, id); set_event_from_interrupt(p, ev); } } } mutex_unlock(&p->event_mutex); kfd_unref_process(p); } static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) { struct kfd_event_waiter *event_waiters; uint32_t i; event_waiters = kmalloc_array(num_events, sizeof(struct kfd_event_waiter), GFP_KERNEL); for (i = 0; (event_waiters) && (i < num_events) ; i++) { init_wait(&event_waiters[i].wait); event_waiters[i].activated = false; } return event_waiters; } static int init_event_waiter_get_status(struct kfd_process *p, struct kfd_event_waiter *waiter, uint32_t event_id) { struct kfd_event *ev = lookup_event_by_id(p, event_id); if (!ev) return -EINVAL; waiter->event = ev; waiter->activated = ev->signaled; ev->signaled = ev->signaled && !ev->auto_reset; return 0; } static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter) { struct kfd_event *ev = waiter->event; /* Only add to the wait list if we actually need to * wait on this event. */ if (!waiter->activated) add_wait_queue(&ev->wq, &waiter->wait); } /* test_event_condition - Test condition of events being waited for * @all: Return completion only if all events have signaled * @num_events: Number of events to wait for * @event_waiters: Array of event waiters, one per event * * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of * the events have been destroyed. */ static uint32_t test_event_condition(bool all, uint32_t num_events, struct kfd_event_waiter *event_waiters) { uint32_t i; uint32_t activated_count = 0; for (i = 0; i < num_events; i++) { if (!event_waiters[i].event) return KFD_IOC_WAIT_RESULT_FAIL; if (event_waiters[i].activated) { if (!all) return KFD_IOC_WAIT_RESULT_COMPLETE; activated_count++; } } return activated_count == num_events ? KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; } /* * Copy event specific data, if defined. * Currently only memory exception events have additional data to copy to user */ static int copy_signaled_event_data(uint32_t num_events, struct kfd_event_waiter *event_waiters, struct kfd_event_data __user *data) { struct kfd_hsa_memory_exception_data *src; struct kfd_hsa_memory_exception_data __user *dst; struct kfd_event_waiter *waiter; struct kfd_event *event; uint32_t i; for (i = 0; i < num_events; i++) { waiter = &event_waiters[i]; event = waiter->event; if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { dst = &data[i].memory_exception_data; src = &event->memory_exception_data; if (copy_to_user(dst, src, sizeof(struct kfd_hsa_memory_exception_data))) return -EFAULT; } } return 0; } static long user_timeout_to_jiffies(uint32_t user_timeout_ms) { if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) return 0; if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) return MAX_SCHEDULE_TIMEOUT; /* * msecs_to_jiffies interprets all values above 2^31-1 as infinite, * but we consider them finite. * This hack is wrong, but nobody is likely to notice. */ user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); return msecs_to_jiffies(user_timeout_ms) + 1; } static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) { uint32_t i; for (i = 0; i < num_events; i++) if (waiters[i].event) remove_wait_queue(&waiters[i].event->wq, &waiters[i].wait); kfree(waiters); } int kfd_wait_on_events(struct kfd_process *p, uint32_t num_events, void __user *data, bool all, uint32_t user_timeout_ms, uint32_t *wait_result) { struct kfd_event_data __user *events = (struct kfd_event_data __user *) data; uint32_t i; int ret = 0; struct kfd_event_waiter *event_waiters = NULL; long timeout = user_timeout_to_jiffies(user_timeout_ms); event_waiters = alloc_event_waiters(num_events); if (!event_waiters) { ret = -ENOMEM; goto out; } mutex_lock(&p->event_mutex); for (i = 0; i < num_events; i++) { struct kfd_event_data event_data; if (copy_from_user(&event_data, &events[i], sizeof(struct kfd_event_data))) { ret = -EFAULT; goto out_unlock; } ret = init_event_waiter_get_status(p, &event_waiters[i], event_data.event_id); if (ret) goto out_unlock; } /* Check condition once. */ *wait_result = test_event_condition(all, num_events, event_waiters); if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { ret = copy_signaled_event_data(num_events, event_waiters, events); goto out_unlock; } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { /* This should not happen. Events shouldn't be * destroyed while we're holding the event_mutex */ goto out_unlock; } /* Add to wait lists if we need to wait. */ for (i = 0; i < num_events; i++) init_event_waiter_add_to_waitlist(&event_waiters[i]); mutex_unlock(&p->event_mutex); while (true) { if (fatal_signal_pending(current)) { ret = -EINTR; break; } if (signal_pending(current)) { /* * This is wrong when a nonzero, non-infinite timeout * is specified. We need to use * ERESTARTSYS_RESTARTBLOCK, but struct restart_block * contains a union with data for each user and it's * in generic kernel code that I don't want to * touch yet. */ ret = -ERESTARTSYS; break; } /* Set task state to interruptible sleep before * checking wake-up conditions. A concurrent wake-up * will put the task back into runnable state. In that * case schedule_timeout will not put the task to * sleep and we'll get a chance to re-check the * updated conditions almost immediately. Otherwise, * this race condition would lead to a soft hang or a * very long sleep. */ set_current_state(TASK_INTERRUPTIBLE); *wait_result = test_event_condition(all, num_events, event_waiters); if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) break; if (timeout <= 0) break; timeout = schedule_timeout(timeout); } __set_current_state(TASK_RUNNING); /* copy_signaled_event_data may sleep. So this has to happen * after the task state is set back to RUNNING. */ if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) ret = copy_signaled_event_data(num_events, event_waiters, events); mutex_lock(&p->event_mutex); out_unlock: free_waiters(num_events, event_waiters); mutex_unlock(&p->event_mutex); out: if (ret) *wait_result = KFD_IOC_WAIT_RESULT_FAIL; else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) ret = -EIO; return ret; } int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) { unsigned long pfn; struct kfd_signal_page *page; int ret; /* check required size doesn't exceed the allocated size */ if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < get_order(vma->vm_end - vma->vm_start)) { pr_err("Event page mmap requested illegal size\n"); return -EINVAL; } page = p->signal_page; if (!page) { /* Probably KFD bug, but mmap is user-accessible. */ pr_debug("Signal page could not be found\n"); return -EINVAL; } pfn = __pa(page->kernel_address); pfn >>= PAGE_SHIFT; vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP; pr_debug("Mapping signal page\n"); pr_debug(" start user address == 0x%08lx\n", vma->vm_start); pr_debug(" end user address == 0x%08lx\n", vma->vm_end); pr_debug(" pfn == 0x%016lX\n", pfn); pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); pr_debug(" size == 0x%08lX\n", vma->vm_end - vma->vm_start); page->user_address = (uint64_t __user *)vma->vm_start; /* mapping the page to user process */ ret = remap_pfn_range(vma, vma->vm_start, pfn, vma->vm_end - vma->vm_start, vma->vm_page_prot); if (!ret) p->signal_mapped_size = vma->vm_end - vma->vm_start; return ret; } /* * Assumes that p->event_mutex is held and of course * that p is not going away (current or locked). */ static void lookup_events_by_type_and_signal(struct kfd_process *p, int type, void *event_data) { struct kfd_hsa_memory_exception_data *ev_data; struct kfd_event *ev; uint32_t id; bool send_signal = true; ev_data = (struct kfd_hsa_memory_exception_data *) event_data; id = KFD_FIRST_NONSIGNAL_EVENT_ID; idr_for_each_entry_continue(&p->event_idr, ev, id) if (ev->type == type) { send_signal = false; dev_dbg(kfd_device, "Event found: id %X type %d", ev->event_id, ev->type); set_event(ev); if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) ev->memory_exception_data = *ev_data; } if (type == KFD_EVENT_TYPE_MEMORY) { dev_warn(kfd_device, "Sending SIGSEGV to process %d (pasid 0x%x)", p->lead_thread->pid, p->pasid); send_sig(SIGSEGV, p->lead_thread, 0); } /* Send SIGTERM no event of type "type" has been found*/ if (send_signal) { if (send_sigterm) { dev_warn(kfd_device, "Sending SIGTERM to process %d (pasid 0x%x)", p->lead_thread->pid, p->pasid); send_sig(SIGTERM, p->lead_thread, 0); } else { dev_err(kfd_device, "Process %d (pasid 0x%x) got unhandled exception", p->lead_thread->pid, p->pasid); } } } #ifdef KFD_SUPPORT_IOMMU_V2 void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, unsigned long address, bool is_write_requested, bool is_execute_requested) { struct kfd_hsa_memory_exception_data memory_exception_data; struct vm_area_struct *vma; /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct mm_struct *mm; if (!p) return; /* Presumably process exited. */ /* Take a safe reference to the mm_struct, which may otherwise * disappear even while the kfd_process is still referenced. */ mm = get_task_mm(p->lead_thread); if (!mm) { kfd_unref_process(p); return; /* Process is exiting */ } memset(&memory_exception_data, 0, sizeof(memory_exception_data)); down_read(&mm->mmap_sem); vma = find_vma(mm, address); memory_exception_data.gpu_id = dev->id; memory_exception_data.va = address; /* Set failure reason */ memory_exception_data.failure.NotPresent = 1; memory_exception_data.failure.NoExecute = 0; memory_exception_data.failure.ReadOnly = 0; if (vma && address >= vma->vm_start) { memory_exception_data.failure.NotPresent = 0; if (is_write_requested && !(vma->vm_flags & VM_WRITE)) memory_exception_data.failure.ReadOnly = 1; else memory_exception_data.failure.ReadOnly = 0; if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) memory_exception_data.failure.NoExecute = 1; else memory_exception_data.failure.NoExecute = 0; } up_read(&mm->mmap_sem); mmput(mm); pr_debug("notpresent %d, noexecute %d, readonly %d\n", memory_exception_data.failure.NotPresent, memory_exception_data.failure.NoExecute, memory_exception_data.failure.ReadOnly); /* Workaround on Raven to not kill the process when memory is freed * before IOMMU is able to finish processing all the excessive PPRs */ if (dev->device_info->asic_family != CHIP_RAVEN && dev->device_info->asic_family != CHIP_RENOIR) { mutex_lock(&p->event_mutex); /* Lookup events by type and signal them */ lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, &memory_exception_data); mutex_unlock(&p->event_mutex); } kfd_unref_process(p); } #endif /* KFD_SUPPORT_IOMMU_V2 */ void kfd_signal_hw_exception_event(unsigned int pasid) { /* * Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); if (!p) return; /* Presumably process exited. */ mutex_lock(&p->event_mutex); /* Lookup events by type and signal them */ lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); mutex_unlock(&p->event_mutex); kfd_unref_process(p); } void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid, struct kfd_vm_fault_info *info) { struct kfd_event *ev; uint32_t id; struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct kfd_hsa_memory_exception_data memory_exception_data; if (!p) return; /* Presumably process exited. */ memset(&memory_exception_data, 0, sizeof(memory_exception_data)); memory_exception_data.gpu_id = dev->id; memory_exception_data.failure.imprecise = true; /* Set failure reason */ if (info) { memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; memory_exception_data.failure.NotPresent = info->prot_valid ? 1 : 0; memory_exception_data.failure.NoExecute = info->prot_exec ? 1 : 0; memory_exception_data.failure.ReadOnly = info->prot_write ? 1 : 0; memory_exception_data.failure.imprecise = 0; } mutex_lock(&p->event_mutex); id = KFD_FIRST_NONSIGNAL_EVENT_ID; idr_for_each_entry_continue(&p->event_idr, ev, id) if (ev->type == KFD_EVENT_TYPE_MEMORY) { ev->memory_exception_data = memory_exception_data; set_event(ev); } mutex_unlock(&p->event_mutex); kfd_unref_process(p); } void kfd_signal_reset_event(struct kfd_dev *dev) { struct kfd_hsa_hw_exception_data hw_exception_data; struct kfd_hsa_memory_exception_data memory_exception_data; struct kfd_process *p; struct kfd_event *ev; unsigned int temp; uint32_t id, idx; int reset_cause = atomic_read(&dev->sram_ecc_flag) ? KFD_HW_EXCEPTION_ECC : KFD_HW_EXCEPTION_GPU_HANG; /* Whole gpu reset caused by GPU hang and memory is lost */ memset(&hw_exception_data, 0, sizeof(hw_exception_data)); hw_exception_data.gpu_id = dev->id; hw_exception_data.memory_lost = 1; hw_exception_data.reset_cause = reset_cause; memset(&memory_exception_data, 0, sizeof(memory_exception_data)); memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; memory_exception_data.gpu_id = dev->id; memory_exception_data.failure.imprecise = true; idx = srcu_read_lock(&kfd_processes_srcu); hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { mutex_lock(&p->event_mutex); id = KFD_FIRST_NONSIGNAL_EVENT_ID; idr_for_each_entry_continue(&p->event_idr, ev, id) { if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { ev->hw_exception_data = hw_exception_data; set_event(ev); } if (ev->type == KFD_EVENT_TYPE_MEMORY && reset_cause == KFD_HW_EXCEPTION_ECC) { ev->memory_exception_data = memory_exception_data; set_event(ev); } } mutex_unlock(&p->event_mutex); } srcu_read_unlock(&kfd_processes_srcu, idx); }