/* * Copyright 2014-2018 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include "amdgpu_object.h" #include "amdgpu_vm.h" #include "amdgpu_amdkfd.h" #include "amdgpu_dma_buf.h" /* BO flag to indicate a KFD userptr BO */ #define AMDGPU_AMDKFD_USERPTR_BO (1ULL << 63) /* Userptr restore delay, just long enough to allow consecutive VM * changes to accumulate */ #define AMDGPU_USERPTR_RESTORE_DELAY_MS 1 /* Impose limit on how much memory KFD can use */ static struct { uint64_t max_system_mem_limit; uint64_t max_ttm_mem_limit; int64_t system_mem_used; int64_t ttm_mem_used; spinlock_t mem_limit_lock; } kfd_mem_limit; /* Struct used for amdgpu_amdkfd_bo_validate */ struct amdgpu_vm_parser { uint32_t domain; bool wait; }; static const char * const domain_bit_to_string[] = { "CPU", "GTT", "VRAM", "GDS", "GWS", "OA" }; #define domain_string(domain) domain_bit_to_string[ffs(domain)-1] static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work); static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd) { return (struct amdgpu_device *)kgd; } static bool check_if_add_bo_to_vm(struct amdgpu_vm *avm, struct kgd_mem *mem) { struct kfd_bo_va_list *entry; list_for_each_entry(entry, &mem->bo_va_list, bo_list) if (entry->bo_va->base.vm == avm) return false; return true; } /* Set memory usage limits. Current, limits are * System (TTM + userptr) memory - 15/16th System RAM * TTM memory - 3/8th System RAM */ void amdgpu_amdkfd_gpuvm_init_mem_limits(void) { struct sysinfo si; uint64_t mem; si_meminfo(&si); mem = si.totalram - si.totalhigh; mem *= si.mem_unit; spin_lock_init(&kfd_mem_limit.mem_limit_lock); kfd_mem_limit.max_system_mem_limit = mem - (mem >> 4); kfd_mem_limit.max_ttm_mem_limit = (mem >> 1) - (mem >> 3); pr_debug("Kernel memory limit %lluM, TTM limit %lluM\n", (kfd_mem_limit.max_system_mem_limit >> 20), (kfd_mem_limit.max_ttm_mem_limit >> 20)); } /* Estimate page table size needed to represent a given memory size * * With 4KB pages, we need one 8 byte PTE for each 4KB of memory * (factor 512, >> 9). With 2MB pages, we need one 8 byte PTE for 2MB * of memory (factor 256K, >> 18). ROCm user mode tries to optimize * for 2MB pages for TLB efficiency. However, small allocations and * fragmented system memory still need some 4KB pages. We choose a * compromise that should work in most cases without reserving too * much memory for page tables unnecessarily (factor 16K, >> 14). */ #define ESTIMATE_PT_SIZE(mem_size) ((mem_size) >> 14) static int amdgpu_amdkfd_reserve_mem_limit(struct amdgpu_device *adev, uint64_t size, u32 domain, bool sg) { uint64_t reserved_for_pt = ESTIMATE_PT_SIZE(amdgpu_amdkfd_total_mem_size); size_t acc_size, system_mem_needed, ttm_mem_needed, vram_needed; int ret = 0; acc_size = ttm_bo_dma_acc_size(&adev->mman.bdev, size, sizeof(struct amdgpu_bo)); vram_needed = 0; if (domain == AMDGPU_GEM_DOMAIN_GTT) { /* TTM GTT memory */ system_mem_needed = acc_size + size; ttm_mem_needed = acc_size + size; } else if (domain == AMDGPU_GEM_DOMAIN_CPU && !sg) { /* Userptr */ system_mem_needed = acc_size + size; ttm_mem_needed = acc_size; } else { /* VRAM and SG */ system_mem_needed = acc_size; ttm_mem_needed = acc_size; if (domain == AMDGPU_GEM_DOMAIN_VRAM) vram_needed = size; } spin_lock(&kfd_mem_limit.mem_limit_lock); if ((kfd_mem_limit.system_mem_used + system_mem_needed > kfd_mem_limit.max_system_mem_limit) || (kfd_mem_limit.ttm_mem_used + ttm_mem_needed > kfd_mem_limit.max_ttm_mem_limit) || (adev->kfd.vram_used + vram_needed > adev->gmc.real_vram_size - reserved_for_pt)) { ret = -ENOMEM; } else { kfd_mem_limit.system_mem_used += system_mem_needed; kfd_mem_limit.ttm_mem_used += ttm_mem_needed; adev->kfd.vram_used += vram_needed; } spin_unlock(&kfd_mem_limit.mem_limit_lock); return ret; } static void unreserve_mem_limit(struct amdgpu_device *adev, uint64_t size, u32 domain, bool sg) { size_t acc_size; acc_size = ttm_bo_dma_acc_size(&adev->mman.bdev, size, sizeof(struct amdgpu_bo)); spin_lock(&kfd_mem_limit.mem_limit_lock); if (domain == AMDGPU_GEM_DOMAIN_GTT) { kfd_mem_limit.system_mem_used -= (acc_size + size); kfd_mem_limit.ttm_mem_used -= (acc_size + size); } else if (domain == AMDGPU_GEM_DOMAIN_CPU && !sg) { kfd_mem_limit.system_mem_used -= (acc_size + size); kfd_mem_limit.ttm_mem_used -= acc_size; } else { kfd_mem_limit.system_mem_used -= acc_size; kfd_mem_limit.ttm_mem_used -= acc_size; if (domain == AMDGPU_GEM_DOMAIN_VRAM) { adev->kfd.vram_used -= size; WARN_ONCE(adev->kfd.vram_used < 0, "kfd VRAM memory accounting unbalanced"); } } WARN_ONCE(kfd_mem_limit.system_mem_used < 0, "kfd system memory accounting unbalanced"); WARN_ONCE(kfd_mem_limit.ttm_mem_used < 0, "kfd TTM memory accounting unbalanced"); spin_unlock(&kfd_mem_limit.mem_limit_lock); } void amdgpu_amdkfd_unreserve_memory_limit(struct amdgpu_bo *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); u32 domain = bo->preferred_domains; bool sg = (bo->preferred_domains == AMDGPU_GEM_DOMAIN_CPU); if (bo->flags & AMDGPU_AMDKFD_USERPTR_BO) { domain = AMDGPU_GEM_DOMAIN_CPU; sg = false; } unreserve_mem_limit(adev, amdgpu_bo_size(bo), domain, sg); } /* amdgpu_amdkfd_remove_eviction_fence - Removes eviction fence from BO's * reservation object. * * @bo: [IN] Remove eviction fence(s) from this BO * @ef: [IN] This eviction fence is removed if it * is present in the shared list. * * NOTE: Must be called with BO reserved i.e. bo->tbo.resv->lock held. */ static int amdgpu_amdkfd_remove_eviction_fence(struct amdgpu_bo *bo, struct amdgpu_amdkfd_fence *ef) { struct dma_resv *resv = bo->tbo.base.resv; struct dma_resv_list *old, *new; unsigned int i, j, k; if (!ef) return -EINVAL; old = dma_resv_get_list(resv); if (!old) return 0; new = kmalloc(offsetof(typeof(*new), shared[old->shared_max]), GFP_KERNEL); if (!new) return -ENOMEM; /* Go through all the shared fences in the resevation object and sort * the interesting ones to the end of the list. */ for (i = 0, j = old->shared_count, k = 0; i < old->shared_count; ++i) { struct dma_fence *f; f = rcu_dereference_protected(old->shared[i], dma_resv_held(resv)); if (f->context == ef->base.context) RCU_INIT_POINTER(new->shared[--j], f); else RCU_INIT_POINTER(new->shared[k++], f); } new->shared_max = old->shared_max; new->shared_count = k; /* Install the new fence list, seqcount provides the barriers */ preempt_disable(); write_seqcount_begin(&resv->seq); RCU_INIT_POINTER(resv->fence, new); write_seqcount_end(&resv->seq); preempt_enable(); /* Drop the references to the removed fences or move them to ef_list */ for (i = j, k = 0; i < old->shared_count; ++i) { struct dma_fence *f; f = rcu_dereference_protected(new->shared[i], dma_resv_held(resv)); dma_fence_put(f); } kfree_rcu(old, rcu); return 0; } static int amdgpu_amdkfd_bo_validate(struct amdgpu_bo *bo, uint32_t domain, bool wait) { struct ttm_operation_ctx ctx = { false, false }; int ret; if (WARN(amdgpu_ttm_tt_get_usermm(bo->tbo.ttm), "Called with userptr BO")) return -EINVAL; amdgpu_bo_placement_from_domain(bo, domain); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) goto validate_fail; if (wait) amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); validate_fail: return ret; } static int amdgpu_amdkfd_validate(void *param, struct amdgpu_bo *bo) { struct amdgpu_vm_parser *p = param; return amdgpu_amdkfd_bo_validate(bo, p->domain, p->wait); } /* vm_validate_pt_pd_bos - Validate page table and directory BOs * * Page directories are not updated here because huge page handling * during page table updates can invalidate page directory entries * again. Page directories are only updated after updating page * tables. */ static int vm_validate_pt_pd_bos(struct amdgpu_vm *vm) { struct amdgpu_bo *pd = vm->root.base.bo; struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); struct amdgpu_vm_parser param; int ret; param.domain = AMDGPU_GEM_DOMAIN_VRAM; param.wait = false; ret = amdgpu_vm_validate_pt_bos(adev, vm, amdgpu_amdkfd_validate, ¶m); if (ret) { pr_err("amdgpu: failed to validate PT BOs\n"); return ret; } ret = amdgpu_amdkfd_validate(¶m, pd); if (ret) { pr_err("amdgpu: failed to validate PD\n"); return ret; } vm->pd_phys_addr = amdgpu_gmc_pd_addr(vm->root.base.bo); if (vm->use_cpu_for_update) { ret = amdgpu_bo_kmap(pd, NULL); if (ret) { pr_err("amdgpu: failed to kmap PD, ret=%d\n", ret); return ret; } } return 0; } static int vm_update_pds(struct amdgpu_vm *vm, struct amdgpu_sync *sync) { struct amdgpu_bo *pd = vm->root.base.bo; struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); int ret; ret = amdgpu_vm_update_pdes(adev, vm, false); if (ret) return ret; return amdgpu_sync_fence(sync, vm->last_update, false); } static uint64_t get_pte_flags(struct amdgpu_device *adev, struct kgd_mem *mem) { struct amdgpu_device *bo_adev = amdgpu_ttm_adev(mem->bo->tbo.bdev); bool coherent = mem->alloc_flags & ALLOC_MEM_FLAGS_COHERENT; uint32_t mapping_flags; mapping_flags = AMDGPU_VM_PAGE_READABLE; if (mem->alloc_flags & ALLOC_MEM_FLAGS_WRITABLE) mapping_flags |= AMDGPU_VM_PAGE_WRITEABLE; if (mem->alloc_flags & ALLOC_MEM_FLAGS_EXECUTABLE) mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; switch (adev->asic_type) { case CHIP_ARCTURUS: if (mem->alloc_flags & ALLOC_MEM_FLAGS_VRAM) { if (bo_adev == adev) mapping_flags |= coherent ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; else mapping_flags |= AMDGPU_VM_MTYPE_UC; } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } break; default: mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } return amdgpu_gem_va_map_flags(adev, mapping_flags); } /* add_bo_to_vm - Add a BO to a VM * * Everything that needs to bo done only once when a BO is first added * to a VM. It can later be mapped and unmapped many times without * repeating these steps. * * 1. Allocate and initialize BO VA entry data structure * 2. Add BO to the VM * 3. Determine ASIC-specific PTE flags * 4. Alloc page tables and directories if needed * 4a. Validate new page tables and directories */ static int add_bo_to_vm(struct amdgpu_device *adev, struct kgd_mem *mem, struct amdgpu_vm *vm, bool is_aql, struct kfd_bo_va_list **p_bo_va_entry) { int ret; struct kfd_bo_va_list *bo_va_entry; struct amdgpu_bo *bo = mem->bo; uint64_t va = mem->va; struct list_head *list_bo_va = &mem->bo_va_list; unsigned long bo_size = bo->tbo.mem.size; if (!va) { pr_err("Invalid VA when adding BO to VM\n"); return -EINVAL; } if (is_aql) va += bo_size; bo_va_entry = kzalloc(sizeof(*bo_va_entry), GFP_KERNEL); if (!bo_va_entry) return -ENOMEM; pr_debug("\t add VA 0x%llx - 0x%llx to vm %p\n", va, va + bo_size, vm); /* Add BO to VM internal data structures*/ bo_va_entry->bo_va = amdgpu_vm_bo_add(adev, vm, bo); if (!bo_va_entry->bo_va) { ret = -EINVAL; pr_err("Failed to add BO object to VM. ret == %d\n", ret); goto err_vmadd; } bo_va_entry->va = va; bo_va_entry->pte_flags = get_pte_flags(adev, mem); bo_va_entry->kgd_dev = (void *)adev; list_add(&bo_va_entry->bo_list, list_bo_va); if (p_bo_va_entry) *p_bo_va_entry = bo_va_entry; /* Allocate validate page tables if needed */ ret = vm_validate_pt_pd_bos(vm); if (ret) { pr_err("validate_pt_pd_bos() failed\n"); goto err_alloc_pts; } return 0; err_alloc_pts: amdgpu_vm_bo_rmv(adev, bo_va_entry->bo_va); list_del(&bo_va_entry->bo_list); err_vmadd: kfree(bo_va_entry); return ret; } static void remove_bo_from_vm(struct amdgpu_device *adev, struct kfd_bo_va_list *entry, unsigned long size) { pr_debug("\t remove VA 0x%llx - 0x%llx in entry %p\n", entry->va, entry->va + size, entry); amdgpu_vm_bo_rmv(adev, entry->bo_va); list_del(&entry->bo_list); kfree(entry); } static void add_kgd_mem_to_kfd_bo_list(struct kgd_mem *mem, struct amdkfd_process_info *process_info, bool userptr) { struct ttm_validate_buffer *entry = &mem->validate_list; struct amdgpu_bo *bo = mem->bo; INIT_LIST_HEAD(&entry->head); entry->num_shared = 1; entry->bo = &bo->tbo; mutex_lock(&process_info->lock); if (userptr) list_add_tail(&entry->head, &process_info->userptr_valid_list); else list_add_tail(&entry->head, &process_info->kfd_bo_list); mutex_unlock(&process_info->lock); } static void remove_kgd_mem_from_kfd_bo_list(struct kgd_mem *mem, struct amdkfd_process_info *process_info) { struct ttm_validate_buffer *bo_list_entry; bo_list_entry = &mem->validate_list; mutex_lock(&process_info->lock); list_del(&bo_list_entry->head); mutex_unlock(&process_info->lock); } /* Initializes user pages. It registers the MMU notifier and validates * the userptr BO in the GTT domain. * * The BO must already be on the userptr_valid_list. Otherwise an * eviction and restore may happen that leaves the new BO unmapped * with the user mode queues running. * * Takes the process_info->lock to protect against concurrent restore * workers. * * Returns 0 for success, negative errno for errors. */ static int init_user_pages(struct kgd_mem *mem, uint64_t user_addr) { struct amdkfd_process_info *process_info = mem->process_info; struct amdgpu_bo *bo = mem->bo; struct ttm_operation_ctx ctx = { true, false }; int ret = 0; mutex_lock(&process_info->lock); ret = amdgpu_ttm_tt_set_userptr(bo->tbo.ttm, user_addr, 0); if (ret) { pr_err("%s: Failed to set userptr: %d\n", __func__, ret); goto out; } ret = amdgpu_mn_register(bo, user_addr); if (ret) { pr_err("%s: Failed to register MMU notifier: %d\n", __func__, ret); goto out; } ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages); if (ret) { pr_err("%s: Failed to get user pages: %d\n", __func__, ret); goto unregister_out; } ret = amdgpu_bo_reserve(bo, true); if (ret) { pr_err("%s: Failed to reserve BO\n", __func__); goto release_out; } amdgpu_bo_placement_from_domain(bo, mem->domain); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) pr_err("%s: failed to validate BO\n", __func__); amdgpu_bo_unreserve(bo); release_out: amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm); unregister_out: if (ret) amdgpu_mn_unregister(bo); out: mutex_unlock(&process_info->lock); return ret; } /* Reserving a BO and its page table BOs must happen atomically to * avoid deadlocks. Some operations update multiple VMs at once. Track * all the reservation info in a context structure. Optionally a sync * object can track VM updates. */ struct bo_vm_reservation_context { struct amdgpu_bo_list_entry kfd_bo; /* BO list entry for the KFD BO */ unsigned int n_vms; /* Number of VMs reserved */ struct amdgpu_bo_list_entry *vm_pd; /* Array of VM BO list entries */ struct ww_acquire_ctx ticket; /* Reservation ticket */ struct list_head list, duplicates; /* BO lists */ struct amdgpu_sync *sync; /* Pointer to sync object */ bool reserved; /* Whether BOs are reserved */ }; enum bo_vm_match { BO_VM_NOT_MAPPED = 0, /* Match VMs where a BO is not mapped */ BO_VM_MAPPED, /* Match VMs where a BO is mapped */ BO_VM_ALL, /* Match all VMs a BO was added to */ }; /** * reserve_bo_and_vm - reserve a BO and a VM unconditionally. * @mem: KFD BO structure. * @vm: the VM to reserve. * @ctx: the struct that will be used in unreserve_bo_and_vms(). */ static int reserve_bo_and_vm(struct kgd_mem *mem, struct amdgpu_vm *vm, struct bo_vm_reservation_context *ctx) { struct amdgpu_bo *bo = mem->bo; int ret; WARN_ON(!vm); ctx->reserved = false; ctx->n_vms = 1; ctx->sync = &mem->sync; INIT_LIST_HEAD(&ctx->list); INIT_LIST_HEAD(&ctx->duplicates); ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL); if (!ctx->vm_pd) return -ENOMEM; ctx->kfd_bo.priority = 0; ctx->kfd_bo.tv.bo = &bo->tbo; ctx->kfd_bo.tv.num_shared = 1; list_add(&ctx->kfd_bo.tv.head, &ctx->list); amdgpu_vm_get_pd_bo(vm, &ctx->list, &ctx->vm_pd[0]); ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, false, &ctx->duplicates); if (!ret) ctx->reserved = true; else { pr_err("Failed to reserve buffers in ttm\n"); kfree(ctx->vm_pd); ctx->vm_pd = NULL; } return ret; } /** * reserve_bo_and_cond_vms - reserve a BO and some VMs conditionally * @mem: KFD BO structure. * @vm: the VM to reserve. If NULL, then all VMs associated with the BO * is used. Otherwise, a single VM associated with the BO. * @map_type: the mapping status that will be used to filter the VMs. * @ctx: the struct that will be used in unreserve_bo_and_vms(). * * Returns 0 for success, negative for failure. */ static int reserve_bo_and_cond_vms(struct kgd_mem *mem, struct amdgpu_vm *vm, enum bo_vm_match map_type, struct bo_vm_reservation_context *ctx) { struct amdgpu_bo *bo = mem->bo; struct kfd_bo_va_list *entry; unsigned int i; int ret; ctx->reserved = false; ctx->n_vms = 0; ctx->vm_pd = NULL; ctx->sync = &mem->sync; INIT_LIST_HEAD(&ctx->list); INIT_LIST_HEAD(&ctx->duplicates); list_for_each_entry(entry, &mem->bo_va_list, bo_list) { if ((vm && vm != entry->bo_va->base.vm) || (entry->is_mapped != map_type && map_type != BO_VM_ALL)) continue; ctx->n_vms++; } if (ctx->n_vms != 0) { ctx->vm_pd = kcalloc(ctx->n_vms, sizeof(*ctx->vm_pd), GFP_KERNEL); if (!ctx->vm_pd) return -ENOMEM; } ctx->kfd_bo.priority = 0; ctx->kfd_bo.tv.bo = &bo->tbo; ctx->kfd_bo.tv.num_shared = 1; list_add(&ctx->kfd_bo.tv.head, &ctx->list); i = 0; list_for_each_entry(entry, &mem->bo_va_list, bo_list) { if ((vm && vm != entry->bo_va->base.vm) || (entry->is_mapped != map_type && map_type != BO_VM_ALL)) continue; amdgpu_vm_get_pd_bo(entry->bo_va->base.vm, &ctx->list, &ctx->vm_pd[i]); i++; } ret = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->list, false, &ctx->duplicates); if (!ret) ctx->reserved = true; else pr_err("Failed to reserve buffers in ttm.\n"); if (ret) { kfree(ctx->vm_pd); ctx->vm_pd = NULL; } return ret; } /** * unreserve_bo_and_vms - Unreserve BO and VMs from a reservation context * @ctx: Reservation context to unreserve * @wait: Optionally wait for a sync object representing pending VM updates * @intr: Whether the wait is interruptible * * Also frees any resources allocated in * reserve_bo_and_(cond_)vm(s). Returns the status from * amdgpu_sync_wait. */ static int unreserve_bo_and_vms(struct bo_vm_reservation_context *ctx, bool wait, bool intr) { int ret = 0; if (wait) ret = amdgpu_sync_wait(ctx->sync, intr); if (ctx->reserved) ttm_eu_backoff_reservation(&ctx->ticket, &ctx->list); kfree(ctx->vm_pd); ctx->sync = NULL; ctx->reserved = false; ctx->vm_pd = NULL; return ret; } static int unmap_bo_from_gpuvm(struct amdgpu_device *adev, struct kfd_bo_va_list *entry, struct amdgpu_sync *sync) { struct amdgpu_bo_va *bo_va = entry->bo_va; struct amdgpu_vm *vm = bo_va->base.vm; amdgpu_vm_bo_unmap(adev, bo_va, entry->va); amdgpu_vm_clear_freed(adev, vm, &bo_va->last_pt_update); amdgpu_sync_fence(sync, bo_va->last_pt_update, false); return 0; } static int update_gpuvm_pte(struct amdgpu_device *adev, struct kfd_bo_va_list *entry, struct amdgpu_sync *sync) { int ret; struct amdgpu_bo_va *bo_va = entry->bo_va; /* Update the page tables */ ret = amdgpu_vm_bo_update(adev, bo_va, false); if (ret) { pr_err("amdgpu_vm_bo_update failed\n"); return ret; } return amdgpu_sync_fence(sync, bo_va->last_pt_update, false); } static int map_bo_to_gpuvm(struct amdgpu_device *adev, struct kfd_bo_va_list *entry, struct amdgpu_sync *sync, bool no_update_pte) { int ret; /* Set virtual address for the allocation */ ret = amdgpu_vm_bo_map(adev, entry->bo_va, entry->va, 0, amdgpu_bo_size(entry->bo_va->base.bo), entry->pte_flags); if (ret) { pr_err("Failed to map VA 0x%llx in vm. ret %d\n", entry->va, ret); return ret; } if (no_update_pte) return 0; ret = update_gpuvm_pte(adev, entry, sync); if (ret) { pr_err("update_gpuvm_pte() failed\n"); goto update_gpuvm_pte_failed; } return 0; update_gpuvm_pte_failed: unmap_bo_from_gpuvm(adev, entry, sync); return ret; } static struct sg_table *create_doorbell_sg(uint64_t addr, uint32_t size) { struct sg_table *sg = kmalloc(sizeof(*sg), GFP_KERNEL); if (!sg) return NULL; if (sg_alloc_table(sg, 1, GFP_KERNEL)) { kfree(sg); return NULL; } sg->sgl->dma_address = addr; sg->sgl->length = size; #ifdef CONFIG_NEED_SG_DMA_LENGTH sg->sgl->dma_length = size; #endif return sg; } static int process_validate_vms(struct amdkfd_process_info *process_info) { struct amdgpu_vm *peer_vm; int ret; list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { ret = vm_validate_pt_pd_bos(peer_vm); if (ret) return ret; } return 0; } static int process_sync_pds_resv(struct amdkfd_process_info *process_info, struct amdgpu_sync *sync) { struct amdgpu_vm *peer_vm; int ret; list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { struct amdgpu_bo *pd = peer_vm->root.base.bo; ret = amdgpu_sync_resv(NULL, sync, pd->tbo.base.resv, AMDGPU_FENCE_OWNER_KFD, false); if (ret) return ret; } return 0; } static int process_update_pds(struct amdkfd_process_info *process_info, struct amdgpu_sync *sync) { struct amdgpu_vm *peer_vm; int ret; list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { ret = vm_update_pds(peer_vm, sync); if (ret) return ret; } return 0; } static int init_kfd_vm(struct amdgpu_vm *vm, void **process_info, struct dma_fence **ef) { struct amdkfd_process_info *info = NULL; int ret; if (!*process_info) { info = kzalloc(sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; mutex_init(&info->lock); INIT_LIST_HEAD(&info->vm_list_head); INIT_LIST_HEAD(&info->kfd_bo_list); INIT_LIST_HEAD(&info->userptr_valid_list); INIT_LIST_HEAD(&info->userptr_inval_list); info->eviction_fence = amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), current->mm); if (!info->eviction_fence) { pr_err("Failed to create eviction fence\n"); ret = -ENOMEM; goto create_evict_fence_fail; } info->pid = get_task_pid(current->group_leader, PIDTYPE_PID); atomic_set(&info->evicted_bos, 0); INIT_DELAYED_WORK(&info->restore_userptr_work, amdgpu_amdkfd_restore_userptr_worker); *process_info = info; *ef = dma_fence_get(&info->eviction_fence->base); } vm->process_info = *process_info; /* Validate page directory and attach eviction fence */ ret = amdgpu_bo_reserve(vm->root.base.bo, true); if (ret) goto reserve_pd_fail; ret = vm_validate_pt_pd_bos(vm); if (ret) { pr_err("validate_pt_pd_bos() failed\n"); goto validate_pd_fail; } ret = amdgpu_bo_sync_wait(vm->root.base.bo, AMDGPU_FENCE_OWNER_KFD, false); if (ret) goto wait_pd_fail; ret = dma_resv_reserve_shared(vm->root.base.bo->tbo.base.resv, 1); if (ret) goto reserve_shared_fail; amdgpu_bo_fence(vm->root.base.bo, &vm->process_info->eviction_fence->base, true); amdgpu_bo_unreserve(vm->root.base.bo); /* Update process info */ mutex_lock(&vm->process_info->lock); list_add_tail(&vm->vm_list_node, &(vm->process_info->vm_list_head)); vm->process_info->n_vms++; mutex_unlock(&vm->process_info->lock); return 0; reserve_shared_fail: wait_pd_fail: validate_pd_fail: amdgpu_bo_unreserve(vm->root.base.bo); reserve_pd_fail: vm->process_info = NULL; if (info) { /* Two fence references: one in info and one in *ef */ dma_fence_put(&info->eviction_fence->base); dma_fence_put(*ef); *ef = NULL; *process_info = NULL; put_pid(info->pid); create_evict_fence_fail: mutex_destroy(&info->lock); kfree(info); } return ret; } int amdgpu_amdkfd_gpuvm_create_process_vm(struct kgd_dev *kgd, unsigned int pasid, void **vm, void **process_info, struct dma_fence **ef) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_vm *new_vm; int ret; new_vm = kzalloc(sizeof(*new_vm), GFP_KERNEL); if (!new_vm) return -ENOMEM; /* Initialize AMDGPU part of the VM */ ret = amdgpu_vm_init(adev, new_vm, AMDGPU_VM_CONTEXT_COMPUTE, pasid); if (ret) { pr_err("Failed init vm ret %d\n", ret); goto amdgpu_vm_init_fail; } /* Initialize KFD part of the VM and process info */ ret = init_kfd_vm(new_vm, process_info, ef); if (ret) goto init_kfd_vm_fail; *vm = (void *) new_vm; return 0; init_kfd_vm_fail: amdgpu_vm_fini(adev, new_vm); amdgpu_vm_init_fail: kfree(new_vm); return ret; } int amdgpu_amdkfd_gpuvm_acquire_process_vm(struct kgd_dev *kgd, struct file *filp, unsigned int pasid, void **vm, void **process_info, struct dma_fence **ef) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct drm_file *drm_priv = filp->private_data; struct amdgpu_fpriv *drv_priv = drm_priv->driver_priv; struct amdgpu_vm *avm = &drv_priv->vm; int ret; /* Already a compute VM? */ if (avm->process_info) return -EINVAL; /* Convert VM into a compute VM */ ret = amdgpu_vm_make_compute(adev, avm, pasid); if (ret) return ret; /* Initialize KFD part of the VM and process info */ ret = init_kfd_vm(avm, process_info, ef); if (ret) return ret; *vm = (void *)avm; return 0; } void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdkfd_process_info *process_info = vm->process_info; struct amdgpu_bo *pd = vm->root.base.bo; if (!process_info) return; /* Release eviction fence from PD */ amdgpu_bo_reserve(pd, false); amdgpu_bo_fence(pd, NULL, false); amdgpu_bo_unreserve(pd); /* Update process info */ mutex_lock(&process_info->lock); process_info->n_vms--; list_del(&vm->vm_list_node); mutex_unlock(&process_info->lock); /* Release per-process resources when last compute VM is destroyed */ if (!process_info->n_vms) { WARN_ON(!list_empty(&process_info->kfd_bo_list)); WARN_ON(!list_empty(&process_info->userptr_valid_list)); WARN_ON(!list_empty(&process_info->userptr_inval_list)); dma_fence_put(&process_info->eviction_fence->base); cancel_delayed_work_sync(&process_info->restore_userptr_work); put_pid(process_info->pid); mutex_destroy(&process_info->lock); kfree(process_info); } } void amdgpu_amdkfd_gpuvm_destroy_process_vm(struct kgd_dev *kgd, void *vm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; if (WARN_ON(!kgd || !vm)) return; pr_debug("Destroying process vm %p\n", vm); /* Release the VM context */ amdgpu_vm_fini(adev, avm); kfree(vm); } void amdgpu_amdkfd_gpuvm_release_process_vm(struct kgd_dev *kgd, void *vm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; if (WARN_ON(!kgd || !vm)) return; pr_debug("Releasing process vm %p\n", vm); /* The original pasid of amdgpu vm has already been * released during making a amdgpu vm to a compute vm * The current pasid is managed by kfd and will be * released on kfd process destroy. Set amdgpu pasid * to 0 to avoid duplicate release. */ amdgpu_vm_release_compute(adev, avm); } uint64_t amdgpu_amdkfd_gpuvm_get_process_page_dir(void *vm) { struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; struct amdgpu_bo *pd = avm->root.base.bo; struct amdgpu_device *adev = amdgpu_ttm_adev(pd->tbo.bdev); if (adev->asic_type < CHIP_VEGA10) return avm->pd_phys_addr >> AMDGPU_GPU_PAGE_SHIFT; return avm->pd_phys_addr; } int amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu( struct kgd_dev *kgd, uint64_t va, uint64_t size, void *vm, struct kgd_mem **mem, uint64_t *offset, uint32_t flags) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; enum ttm_bo_type bo_type = ttm_bo_type_device; struct sg_table *sg = NULL; uint64_t user_addr = 0; struct amdgpu_bo *bo; struct amdgpu_bo_param bp; u32 domain, alloc_domain; u64 alloc_flags; int ret; /* * Check on which domain to allocate BO */ if (flags & ALLOC_MEM_FLAGS_VRAM) { domain = alloc_domain = AMDGPU_GEM_DOMAIN_VRAM; alloc_flags = AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE; alloc_flags |= (flags & ALLOC_MEM_FLAGS_PUBLIC) ? AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED : AMDGPU_GEM_CREATE_NO_CPU_ACCESS; } else if (flags & ALLOC_MEM_FLAGS_GTT) { domain = alloc_domain = AMDGPU_GEM_DOMAIN_GTT; alloc_flags = 0; } else if (flags & ALLOC_MEM_FLAGS_USERPTR) { domain = AMDGPU_GEM_DOMAIN_GTT; alloc_domain = AMDGPU_GEM_DOMAIN_CPU; alloc_flags = 0; if (!offset || !*offset) return -EINVAL; user_addr = untagged_addr(*offset); } else if (flags & (ALLOC_MEM_FLAGS_DOORBELL | ALLOC_MEM_FLAGS_MMIO_REMAP)) { domain = AMDGPU_GEM_DOMAIN_GTT; alloc_domain = AMDGPU_GEM_DOMAIN_CPU; bo_type = ttm_bo_type_sg; alloc_flags = 0; if (size > UINT_MAX) return -EINVAL; sg = create_doorbell_sg(*offset, size); if (!sg) return -ENOMEM; } else { return -EINVAL; } *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); if (!*mem) { ret = -ENOMEM; goto err; } INIT_LIST_HEAD(&(*mem)->bo_va_list); mutex_init(&(*mem)->lock); (*mem)->aql_queue = !!(flags & ALLOC_MEM_FLAGS_AQL_QUEUE_MEM); /* Workaround for AQL queue wraparound bug. Map the same * memory twice. That means we only actually allocate half * the memory. */ if ((*mem)->aql_queue) size = size >> 1; (*mem)->alloc_flags = flags; amdgpu_sync_create(&(*mem)->sync); ret = amdgpu_amdkfd_reserve_mem_limit(adev, size, alloc_domain, !!sg); if (ret) { pr_debug("Insufficient system memory\n"); goto err_reserve_limit; } pr_debug("\tcreate BO VA 0x%llx size 0x%llx domain %s\n", va, size, domain_string(alloc_domain)); memset(&bp, 0, sizeof(bp)); bp.size = size; bp.byte_align = 1; bp.domain = alloc_domain; bp.flags = alloc_flags; bp.type = bo_type; bp.resv = NULL; ret = amdgpu_bo_create(adev, &bp, &bo); if (ret) { pr_debug("Failed to create BO on domain %s. ret %d\n", domain_string(alloc_domain), ret); goto err_bo_create; } if (bo_type == ttm_bo_type_sg) { bo->tbo.sg = sg; bo->tbo.ttm->sg = sg; } bo->kfd_bo = *mem; (*mem)->bo = bo; if (user_addr) bo->flags |= AMDGPU_AMDKFD_USERPTR_BO; (*mem)->va = va; (*mem)->domain = domain; (*mem)->mapped_to_gpu_memory = 0; (*mem)->process_info = avm->process_info; add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, user_addr); if (user_addr) { ret = init_user_pages(*mem, user_addr); if (ret) goto allocate_init_user_pages_failed; } if (offset) *offset = amdgpu_bo_mmap_offset(bo); return 0; allocate_init_user_pages_failed: remove_kgd_mem_from_kfd_bo_list(*mem, avm->process_info); amdgpu_bo_unref(&bo); /* Don't unreserve system mem limit twice */ goto err_reserve_limit; err_bo_create: unreserve_mem_limit(adev, size, alloc_domain, !!sg); err_reserve_limit: mutex_destroy(&(*mem)->lock); kfree(*mem); err: if (sg) { sg_free_table(sg); kfree(sg); } return ret; } int amdgpu_amdkfd_gpuvm_free_memory_of_gpu( struct kgd_dev *kgd, struct kgd_mem *mem) { struct amdkfd_process_info *process_info = mem->process_info; unsigned long bo_size = mem->bo->tbo.mem.size; struct kfd_bo_va_list *entry, *tmp; struct bo_vm_reservation_context ctx; struct ttm_validate_buffer *bo_list_entry; int ret; mutex_lock(&mem->lock); if (mem->mapped_to_gpu_memory > 0) { pr_debug("BO VA 0x%llx size 0x%lx is still mapped.\n", mem->va, bo_size); mutex_unlock(&mem->lock); return -EBUSY; } mutex_unlock(&mem->lock); /* lock is not needed after this, since mem is unused and will * be freed anyway */ /* No more MMU notifiers */ amdgpu_mn_unregister(mem->bo); /* Make sure restore workers don't access the BO any more */ bo_list_entry = &mem->validate_list; mutex_lock(&process_info->lock); list_del(&bo_list_entry->head); mutex_unlock(&process_info->lock); ret = reserve_bo_and_cond_vms(mem, NULL, BO_VM_ALL, &ctx); if (unlikely(ret)) return ret; /* The eviction fence should be removed by the last unmap. * TODO: Log an error condition if the bo still has the eviction fence * attached */ amdgpu_amdkfd_remove_eviction_fence(mem->bo, process_info->eviction_fence); pr_debug("Release VA 0x%llx - 0x%llx\n", mem->va, mem->va + bo_size * (1 + mem->aql_queue)); /* Remove from VM internal data structures */ list_for_each_entry_safe(entry, tmp, &mem->bo_va_list, bo_list) remove_bo_from_vm((struct amdgpu_device *)entry->kgd_dev, entry, bo_size); ret = unreserve_bo_and_vms(&ctx, false, false); /* Free the sync object */ amdgpu_sync_free(&mem->sync); /* If the SG is not NULL, it's one we created for a doorbell or mmio * remap BO. We need to free it. */ if (mem->bo->tbo.sg) { sg_free_table(mem->bo->tbo.sg); kfree(mem->bo->tbo.sg); } /* Free the BO*/ amdgpu_bo_unref(&mem->bo); mutex_destroy(&mem->lock); kfree(mem); return ret; } int amdgpu_amdkfd_gpuvm_map_memory_to_gpu( struct kgd_dev *kgd, struct kgd_mem *mem, void *vm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; int ret; struct amdgpu_bo *bo; uint32_t domain; struct kfd_bo_va_list *entry; struct bo_vm_reservation_context ctx; struct kfd_bo_va_list *bo_va_entry = NULL; struct kfd_bo_va_list *bo_va_entry_aql = NULL; unsigned long bo_size; bool is_invalid_userptr = false; bo = mem->bo; if (!bo) { pr_err("Invalid BO when mapping memory to GPU\n"); return -EINVAL; } /* Make sure restore is not running concurrently. Since we * don't map invalid userptr BOs, we rely on the next restore * worker to do the mapping */ mutex_lock(&mem->process_info->lock); /* Lock mmap-sem. If we find an invalid userptr BO, we can be * sure that the MMU notifier is no longer running * concurrently and the queues are actually stopped */ if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { down_write(¤t->mm->mmap_sem); is_invalid_userptr = atomic_read(&mem->invalid); up_write(¤t->mm->mmap_sem); } mutex_lock(&mem->lock); domain = mem->domain; bo_size = bo->tbo.mem.size; pr_debug("Map VA 0x%llx - 0x%llx to vm %p domain %s\n", mem->va, mem->va + bo_size * (1 + mem->aql_queue), vm, domain_string(domain)); ret = reserve_bo_and_vm(mem, vm, &ctx); if (unlikely(ret)) goto out; /* Userptr can be marked as "not invalid", but not actually be * validated yet (still in the system domain). In that case * the queues are still stopped and we can leave mapping for * the next restore worker */ if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && bo->tbo.mem.mem_type == TTM_PL_SYSTEM) is_invalid_userptr = true; if (check_if_add_bo_to_vm(avm, mem)) { ret = add_bo_to_vm(adev, mem, avm, false, &bo_va_entry); if (ret) goto add_bo_to_vm_failed; if (mem->aql_queue) { ret = add_bo_to_vm(adev, mem, avm, true, &bo_va_entry_aql); if (ret) goto add_bo_to_vm_failed_aql; } } else { ret = vm_validate_pt_pd_bos(avm); if (unlikely(ret)) goto add_bo_to_vm_failed; } if (mem->mapped_to_gpu_memory == 0 && !amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { /* Validate BO only once. The eviction fence gets added to BO * the first time it is mapped. Validate will wait for all * background evictions to complete. */ ret = amdgpu_amdkfd_bo_validate(bo, domain, true); if (ret) { pr_debug("Validate failed\n"); goto map_bo_to_gpuvm_failed; } } list_for_each_entry(entry, &mem->bo_va_list, bo_list) { if (entry->bo_va->base.vm == vm && !entry->is_mapped) { pr_debug("\t map VA 0x%llx - 0x%llx in entry %p\n", entry->va, entry->va + bo_size, entry); ret = map_bo_to_gpuvm(adev, entry, ctx.sync, is_invalid_userptr); if (ret) { pr_err("Failed to map bo to gpuvm\n"); goto map_bo_to_gpuvm_failed; } ret = vm_update_pds(vm, ctx.sync); if (ret) { pr_err("Failed to update page directories\n"); goto map_bo_to_gpuvm_failed; } entry->is_mapped = true; mem->mapped_to_gpu_memory++; pr_debug("\t INC mapping count %d\n", mem->mapped_to_gpu_memory); } } if (!amdgpu_ttm_tt_get_usermm(bo->tbo.ttm) && !bo->pin_count) amdgpu_bo_fence(bo, &avm->process_info->eviction_fence->base, true); ret = unreserve_bo_and_vms(&ctx, false, false); goto out; map_bo_to_gpuvm_failed: if (bo_va_entry_aql) remove_bo_from_vm(adev, bo_va_entry_aql, bo_size); add_bo_to_vm_failed_aql: if (bo_va_entry) remove_bo_from_vm(adev, bo_va_entry, bo_size); add_bo_to_vm_failed: unreserve_bo_and_vms(&ctx, false, false); out: mutex_unlock(&mem->process_info->lock); mutex_unlock(&mem->lock); return ret; } int amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu( struct kgd_dev *kgd, struct kgd_mem *mem, void *vm) { struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdkfd_process_info *process_info = ((struct amdgpu_vm *)vm)->process_info; unsigned long bo_size = mem->bo->tbo.mem.size; struct kfd_bo_va_list *entry; struct bo_vm_reservation_context ctx; int ret; mutex_lock(&mem->lock); ret = reserve_bo_and_cond_vms(mem, vm, BO_VM_MAPPED, &ctx); if (unlikely(ret)) goto out; /* If no VMs were reserved, it means the BO wasn't actually mapped */ if (ctx.n_vms == 0) { ret = -EINVAL; goto unreserve_out; } ret = vm_validate_pt_pd_bos((struct amdgpu_vm *)vm); if (unlikely(ret)) goto unreserve_out; pr_debug("Unmap VA 0x%llx - 0x%llx from vm %p\n", mem->va, mem->va + bo_size * (1 + mem->aql_queue), vm); list_for_each_entry(entry, &mem->bo_va_list, bo_list) { if (entry->bo_va->base.vm == vm && entry->is_mapped) { pr_debug("\t unmap VA 0x%llx - 0x%llx from entry %p\n", entry->va, entry->va + bo_size, entry); ret = unmap_bo_from_gpuvm(adev, entry, ctx.sync); if (ret == 0) { entry->is_mapped = false; } else { pr_err("failed to unmap VA 0x%llx\n", mem->va); goto unreserve_out; } mem->mapped_to_gpu_memory--; pr_debug("\t DEC mapping count %d\n", mem->mapped_to_gpu_memory); } } /* If BO is unmapped from all VMs, unfence it. It can be evicted if * required. */ if (mem->mapped_to_gpu_memory == 0 && !amdgpu_ttm_tt_get_usermm(mem->bo->tbo.ttm) && !mem->bo->pin_count) amdgpu_amdkfd_remove_eviction_fence(mem->bo, process_info->eviction_fence); unreserve_out: unreserve_bo_and_vms(&ctx, false, false); out: mutex_unlock(&mem->lock); return ret; } int amdgpu_amdkfd_gpuvm_sync_memory( struct kgd_dev *kgd, struct kgd_mem *mem, bool intr) { struct amdgpu_sync sync; int ret; amdgpu_sync_create(&sync); mutex_lock(&mem->lock); amdgpu_sync_clone(&mem->sync, &sync); mutex_unlock(&mem->lock); ret = amdgpu_sync_wait(&sync, intr); amdgpu_sync_free(&sync); return ret; } int amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(struct kgd_dev *kgd, struct kgd_mem *mem, void **kptr, uint64_t *size) { int ret; struct amdgpu_bo *bo = mem->bo; if (amdgpu_ttm_tt_get_usermm(bo->tbo.ttm)) { pr_err("userptr can't be mapped to kernel\n"); return -EINVAL; } /* delete kgd_mem from kfd_bo_list to avoid re-validating * this BO in BO's restoring after eviction. */ mutex_lock(&mem->process_info->lock); ret = amdgpu_bo_reserve(bo, true); if (ret) { pr_err("Failed to reserve bo. ret %d\n", ret); goto bo_reserve_failed; } ret = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT); if (ret) { pr_err("Failed to pin bo. ret %d\n", ret); goto pin_failed; } ret = amdgpu_bo_kmap(bo, kptr); if (ret) { pr_err("Failed to map bo to kernel. ret %d\n", ret); goto kmap_failed; } amdgpu_amdkfd_remove_eviction_fence( bo, mem->process_info->eviction_fence); list_del_init(&mem->validate_list.head); if (size) *size = amdgpu_bo_size(bo); amdgpu_bo_unreserve(bo); mutex_unlock(&mem->process_info->lock); return 0; kmap_failed: amdgpu_bo_unpin(bo); pin_failed: amdgpu_bo_unreserve(bo); bo_reserve_failed: mutex_unlock(&mem->process_info->lock); return ret; } int amdgpu_amdkfd_gpuvm_get_vm_fault_info(struct kgd_dev *kgd, struct kfd_vm_fault_info *mem) { struct amdgpu_device *adev; adev = (struct amdgpu_device *)kgd; if (atomic_read(&adev->gmc.vm_fault_info_updated) == 1) { *mem = *adev->gmc.vm_fault_info; mb(); atomic_set(&adev->gmc.vm_fault_info_updated, 0); } return 0; } int amdgpu_amdkfd_gpuvm_import_dmabuf(struct kgd_dev *kgd, struct dma_buf *dma_buf, uint64_t va, void *vm, struct kgd_mem **mem, uint64_t *size, uint64_t *mmap_offset) { struct amdgpu_device *adev = (struct amdgpu_device *)kgd; struct drm_gem_object *obj; struct amdgpu_bo *bo; struct amdgpu_vm *avm = (struct amdgpu_vm *)vm; if (dma_buf->ops != &amdgpu_dmabuf_ops) /* Can't handle non-graphics buffers */ return -EINVAL; obj = dma_buf->priv; if (obj->dev->dev_private != adev) /* Can't handle buffers from other devices */ return -EINVAL; bo = gem_to_amdgpu_bo(obj); if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM | AMDGPU_GEM_DOMAIN_GTT))) /* Only VRAM and GTT BOs are supported */ return -EINVAL; *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); if (!*mem) return -ENOMEM; if (size) *size = amdgpu_bo_size(bo); if (mmap_offset) *mmap_offset = amdgpu_bo_mmap_offset(bo); INIT_LIST_HEAD(&(*mem)->bo_va_list); mutex_init(&(*mem)->lock); (*mem)->alloc_flags = ((bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? ALLOC_MEM_FLAGS_VRAM : ALLOC_MEM_FLAGS_GTT) | ALLOC_MEM_FLAGS_WRITABLE | ALLOC_MEM_FLAGS_EXECUTABLE; (*mem)->bo = amdgpu_bo_ref(bo); (*mem)->va = va; (*mem)->domain = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ? AMDGPU_GEM_DOMAIN_VRAM : AMDGPU_GEM_DOMAIN_GTT; (*mem)->mapped_to_gpu_memory = 0; (*mem)->process_info = avm->process_info; add_kgd_mem_to_kfd_bo_list(*mem, avm->process_info, false); amdgpu_sync_create(&(*mem)->sync); return 0; } /* Evict a userptr BO by stopping the queues if necessary * * Runs in MMU notifier, may be in RECLAIM_FS context. This means it * cannot do any memory allocations, and cannot take any locks that * are held elsewhere while allocating memory. Therefore this is as * simple as possible, using atomic counters. * * It doesn't do anything to the BO itself. The real work happens in * restore, where we get updated page addresses. This function only * ensures that GPU access to the BO is stopped. */ int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem, struct mm_struct *mm) { struct amdkfd_process_info *process_info = mem->process_info; int evicted_bos; int r = 0; atomic_inc(&mem->invalid); evicted_bos = atomic_inc_return(&process_info->evicted_bos); if (evicted_bos == 1) { /* First eviction, stop the queues */ r = kgd2kfd_quiesce_mm(mm); if (r) pr_err("Failed to quiesce KFD\n"); schedule_delayed_work(&process_info->restore_userptr_work, msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); } return r; } /* Update invalid userptr BOs * * Moves invalidated (evicted) userptr BOs from userptr_valid_list to * userptr_inval_list and updates user pages for all BOs that have * been invalidated since their last update. */ static int update_invalid_user_pages(struct amdkfd_process_info *process_info, struct mm_struct *mm) { struct kgd_mem *mem, *tmp_mem; struct amdgpu_bo *bo; struct ttm_operation_ctx ctx = { false, false }; int invalid, ret; /* Move all invalidated BOs to the userptr_inval_list and * release their user pages by migration to the CPU domain */ list_for_each_entry_safe(mem, tmp_mem, &process_info->userptr_valid_list, validate_list.head) { if (!atomic_read(&mem->invalid)) continue; /* BO is still valid */ bo = mem->bo; if (amdgpu_bo_reserve(bo, true)) return -EAGAIN; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_CPU); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); amdgpu_bo_unreserve(bo); if (ret) { pr_err("%s: Failed to invalidate userptr BO\n", __func__); return -EAGAIN; } list_move_tail(&mem->validate_list.head, &process_info->userptr_inval_list); } if (list_empty(&process_info->userptr_inval_list)) return 0; /* All evicted userptr BOs were freed */ /* Go through userptr_inval_list and update any invalid user_pages */ list_for_each_entry(mem, &process_info->userptr_inval_list, validate_list.head) { invalid = atomic_read(&mem->invalid); if (!invalid) /* BO hasn't been invalidated since the last * revalidation attempt. Keep its BO list. */ continue; bo = mem->bo; /* Get updated user pages */ ret = amdgpu_ttm_tt_get_user_pages(bo, bo->tbo.ttm->pages); if (ret) { pr_debug("%s: Failed to get user pages: %d\n", __func__, ret); /* Return error -EBUSY or -ENOMEM, retry restore */ return ret; } /* * FIXME: Cannot ignore the return code, must hold * notifier_lock */ amdgpu_ttm_tt_get_user_pages_done(bo->tbo.ttm); /* Mark the BO as valid unless it was invalidated * again concurrently. */ if (atomic_cmpxchg(&mem->invalid, invalid, 0) != invalid) return -EAGAIN; } return 0; } /* Validate invalid userptr BOs * * Validates BOs on the userptr_inval_list, and moves them back to the * userptr_valid_list. Also updates GPUVM page tables with new page * addresses and waits for the page table updates to complete. */ static int validate_invalid_user_pages(struct amdkfd_process_info *process_info) { struct amdgpu_bo_list_entry *pd_bo_list_entries; struct list_head resv_list, duplicates; struct ww_acquire_ctx ticket; struct amdgpu_sync sync; struct amdgpu_vm *peer_vm; struct kgd_mem *mem, *tmp_mem; struct amdgpu_bo *bo; struct ttm_operation_ctx ctx = { false, false }; int i, ret; pd_bo_list_entries = kcalloc(process_info->n_vms, sizeof(struct amdgpu_bo_list_entry), GFP_KERNEL); if (!pd_bo_list_entries) { pr_err("%s: Failed to allocate PD BO list entries\n", __func__); ret = -ENOMEM; goto out_no_mem; } INIT_LIST_HEAD(&resv_list); INIT_LIST_HEAD(&duplicates); /* Get all the page directory BOs that need to be reserved */ i = 0; list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) amdgpu_vm_get_pd_bo(peer_vm, &resv_list, &pd_bo_list_entries[i++]); /* Add the userptr_inval_list entries to resv_list */ list_for_each_entry(mem, &process_info->userptr_inval_list, validate_list.head) { list_add_tail(&mem->resv_list.head, &resv_list); mem->resv_list.bo = mem->validate_list.bo; mem->resv_list.num_shared = mem->validate_list.num_shared; } /* Reserve all BOs and page tables for validation */ ret = ttm_eu_reserve_buffers(&ticket, &resv_list, false, &duplicates); WARN(!list_empty(&duplicates), "Duplicates should be empty"); if (ret) goto out_free; amdgpu_sync_create(&sync); ret = process_validate_vms(process_info); if (ret) goto unreserve_out; /* Validate BOs and update GPUVM page tables */ list_for_each_entry_safe(mem, tmp_mem, &process_info->userptr_inval_list, validate_list.head) { struct kfd_bo_va_list *bo_va_entry; bo = mem->bo; /* Validate the BO if we got user pages */ if (bo->tbo.ttm->pages[0]) { amdgpu_bo_placement_from_domain(bo, mem->domain); ret = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); if (ret) { pr_err("%s: failed to validate BO\n", __func__); goto unreserve_out; } } list_move_tail(&mem->validate_list.head, &process_info->userptr_valid_list); /* Update mapping. If the BO was not validated * (because we couldn't get user pages), this will * clear the page table entries, which will result in * VM faults if the GPU tries to access the invalid * memory. */ list_for_each_entry(bo_va_entry, &mem->bo_va_list, bo_list) { if (!bo_va_entry->is_mapped) continue; ret = update_gpuvm_pte((struct amdgpu_device *) bo_va_entry->kgd_dev, bo_va_entry, &sync); if (ret) { pr_err("%s: update PTE failed\n", __func__); /* make sure this gets validated again */ atomic_inc(&mem->invalid); goto unreserve_out; } } } /* Update page directories */ ret = process_update_pds(process_info, &sync); unreserve_out: ttm_eu_backoff_reservation(&ticket, &resv_list); amdgpu_sync_wait(&sync, false); amdgpu_sync_free(&sync); out_free: kfree(pd_bo_list_entries); out_no_mem: return ret; } /* Worker callback to restore evicted userptr BOs * * Tries to update and validate all userptr BOs. If successful and no * concurrent evictions happened, the queues are restarted. Otherwise, * reschedule for another attempt later. */ static void amdgpu_amdkfd_restore_userptr_worker(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct amdkfd_process_info *process_info = container_of(dwork, struct amdkfd_process_info, restore_userptr_work); struct task_struct *usertask; struct mm_struct *mm; int evicted_bos; evicted_bos = atomic_read(&process_info->evicted_bos); if (!evicted_bos) return; /* Reference task and mm in case of concurrent process termination */ usertask = get_pid_task(process_info->pid, PIDTYPE_PID); if (!usertask) return; mm = get_task_mm(usertask); if (!mm) { put_task_struct(usertask); return; } mutex_lock(&process_info->lock); if (update_invalid_user_pages(process_info, mm)) goto unlock_out; /* userptr_inval_list can be empty if all evicted userptr BOs * have been freed. In that case there is nothing to validate * and we can just restart the queues. */ if (!list_empty(&process_info->userptr_inval_list)) { if (atomic_read(&process_info->evicted_bos) != evicted_bos) goto unlock_out; /* Concurrent eviction, try again */ if (validate_invalid_user_pages(process_info)) goto unlock_out; } /* Final check for concurrent evicton and atomic update. If * another eviction happens after successful update, it will * be a first eviction that calls quiesce_mm. The eviction * reference counting inside KFD will handle this case. */ if (atomic_cmpxchg(&process_info->evicted_bos, evicted_bos, 0) != evicted_bos) goto unlock_out; evicted_bos = 0; if (kgd2kfd_resume_mm(mm)) { pr_err("%s: Failed to resume KFD\n", __func__); /* No recovery from this failure. Probably the CP is * hanging. No point trying again. */ } unlock_out: mutex_unlock(&process_info->lock); mmput(mm); put_task_struct(usertask); /* If validation failed, reschedule another attempt */ if (evicted_bos) schedule_delayed_work(&process_info->restore_userptr_work, msecs_to_jiffies(AMDGPU_USERPTR_RESTORE_DELAY_MS)); } /** amdgpu_amdkfd_gpuvm_restore_process_bos - Restore all BOs for the given * KFD process identified by process_info * * @process_info: amdkfd_process_info of the KFD process * * After memory eviction, restore thread calls this function. The function * should be called when the Process is still valid. BO restore involves - * * 1. Release old eviction fence and create new one * 2. Get two copies of PD BO list from all the VMs. Keep one copy as pd_list. * 3 Use the second PD list and kfd_bo_list to create a list (ctx.list) of * BOs that need to be reserved. * 4. Reserve all the BOs * 5. Validate of PD and PT BOs. * 6. Validate all KFD BOs using kfd_bo_list and Map them and add new fence * 7. Add fence to all PD and PT BOs. * 8. Unreserve all BOs */ int amdgpu_amdkfd_gpuvm_restore_process_bos(void *info, struct dma_fence **ef) { struct amdgpu_bo_list_entry *pd_bo_list; struct amdkfd_process_info *process_info = info; struct amdgpu_vm *peer_vm; struct kgd_mem *mem; struct bo_vm_reservation_context ctx; struct amdgpu_amdkfd_fence *new_fence; int ret = 0, i; struct list_head duplicate_save; struct amdgpu_sync sync_obj; INIT_LIST_HEAD(&duplicate_save); INIT_LIST_HEAD(&ctx.list); INIT_LIST_HEAD(&ctx.duplicates); pd_bo_list = kcalloc(process_info->n_vms, sizeof(struct amdgpu_bo_list_entry), GFP_KERNEL); if (!pd_bo_list) return -ENOMEM; i = 0; mutex_lock(&process_info->lock); list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) amdgpu_vm_get_pd_bo(peer_vm, &ctx.list, &pd_bo_list[i++]); /* Reserve all BOs and page tables/directory. Add all BOs from * kfd_bo_list to ctx.list */ list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list.head) { list_add_tail(&mem->resv_list.head, &ctx.list); mem->resv_list.bo = mem->validate_list.bo; mem->resv_list.num_shared = mem->validate_list.num_shared; } ret = ttm_eu_reserve_buffers(&ctx.ticket, &ctx.list, false, &duplicate_save); if (ret) { pr_debug("Memory eviction: TTM Reserve Failed. Try again\n"); goto ttm_reserve_fail; } amdgpu_sync_create(&sync_obj); /* Validate PDs and PTs */ ret = process_validate_vms(process_info); if (ret) goto validate_map_fail; ret = process_sync_pds_resv(process_info, &sync_obj); if (ret) { pr_debug("Memory eviction: Failed to sync to PD BO moving fence. Try again\n"); goto validate_map_fail; } /* Validate BOs and map them to GPUVM (update VM page tables). */ list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list.head) { struct amdgpu_bo *bo = mem->bo; uint32_t domain = mem->domain; struct kfd_bo_va_list *bo_va_entry; ret = amdgpu_amdkfd_bo_validate(bo, domain, false); if (ret) { pr_debug("Memory eviction: Validate BOs failed. Try again\n"); goto validate_map_fail; } ret = amdgpu_sync_fence(&sync_obj, bo->tbo.moving, false); if (ret) { pr_debug("Memory eviction: Sync BO fence failed. Try again\n"); goto validate_map_fail; } list_for_each_entry(bo_va_entry, &mem->bo_va_list, bo_list) { ret = update_gpuvm_pte((struct amdgpu_device *) bo_va_entry->kgd_dev, bo_va_entry, &sync_obj); if (ret) { pr_debug("Memory eviction: update PTE failed. Try again\n"); goto validate_map_fail; } } } /* Update page directories */ ret = process_update_pds(process_info, &sync_obj); if (ret) { pr_debug("Memory eviction: update PDs failed. Try again\n"); goto validate_map_fail; } /* Wait for validate and PT updates to finish */ amdgpu_sync_wait(&sync_obj, false); /* Release old eviction fence and create new one, because fence only * goes from unsignaled to signaled, fence cannot be reused. * Use context and mm from the old fence. */ new_fence = amdgpu_amdkfd_fence_create( process_info->eviction_fence->base.context, process_info->eviction_fence->mm); if (!new_fence) { pr_err("Failed to create eviction fence\n"); ret = -ENOMEM; goto validate_map_fail; } dma_fence_put(&process_info->eviction_fence->base); process_info->eviction_fence = new_fence; *ef = dma_fence_get(&new_fence->base); /* Attach new eviction fence to all BOs */ list_for_each_entry(mem, &process_info->kfd_bo_list, validate_list.head) amdgpu_bo_fence(mem->bo, &process_info->eviction_fence->base, true); /* Attach eviction fence to PD / PT BOs */ list_for_each_entry(peer_vm, &process_info->vm_list_head, vm_list_node) { struct amdgpu_bo *bo = peer_vm->root.base.bo; amdgpu_bo_fence(bo, &process_info->eviction_fence->base, true); } validate_map_fail: ttm_eu_backoff_reservation(&ctx.ticket, &ctx.list); amdgpu_sync_free(&sync_obj); ttm_reserve_fail: mutex_unlock(&process_info->lock); kfree(pd_bo_list); return ret; } int amdgpu_amdkfd_add_gws_to_process(void *info, void *gws, struct kgd_mem **mem) { struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; struct amdgpu_bo *gws_bo = (struct amdgpu_bo *)gws; int ret; if (!info || !gws) return -EINVAL; *mem = kzalloc(sizeof(struct kgd_mem), GFP_KERNEL); if (!*mem) return -ENOMEM; mutex_init(&(*mem)->lock); INIT_LIST_HEAD(&(*mem)->bo_va_list); (*mem)->bo = amdgpu_bo_ref(gws_bo); (*mem)->domain = AMDGPU_GEM_DOMAIN_GWS; (*mem)->process_info = process_info; add_kgd_mem_to_kfd_bo_list(*mem, process_info, false); amdgpu_sync_create(&(*mem)->sync); /* Validate gws bo the first time it is added to process */ mutex_lock(&(*mem)->process_info->lock); ret = amdgpu_bo_reserve(gws_bo, false); if (unlikely(ret)) { pr_err("Reserve gws bo failed %d\n", ret); goto bo_reservation_failure; } ret = amdgpu_amdkfd_bo_validate(gws_bo, AMDGPU_GEM_DOMAIN_GWS, true); if (ret) { pr_err("GWS BO validate failed %d\n", ret); goto bo_validation_failure; } /* GWS resource is shared b/t amdgpu and amdkfd * Add process eviction fence to bo so they can * evict each other. */ ret = dma_resv_reserve_shared(gws_bo->tbo.base.resv, 1); if (ret) goto reserve_shared_fail; amdgpu_bo_fence(gws_bo, &process_info->eviction_fence->base, true); amdgpu_bo_unreserve(gws_bo); mutex_unlock(&(*mem)->process_info->lock); return ret; reserve_shared_fail: bo_validation_failure: amdgpu_bo_unreserve(gws_bo); bo_reservation_failure: mutex_unlock(&(*mem)->process_info->lock); amdgpu_sync_free(&(*mem)->sync); remove_kgd_mem_from_kfd_bo_list(*mem, process_info); amdgpu_bo_unref(&gws_bo); mutex_destroy(&(*mem)->lock); kfree(*mem); *mem = NULL; return ret; } int amdgpu_amdkfd_remove_gws_from_process(void *info, void *mem) { int ret; struct amdkfd_process_info *process_info = (struct amdkfd_process_info *)info; struct kgd_mem *kgd_mem = (struct kgd_mem *)mem; struct amdgpu_bo *gws_bo = kgd_mem->bo; /* Remove BO from process's validate list so restore worker won't touch * it anymore */ remove_kgd_mem_from_kfd_bo_list(kgd_mem, process_info); ret = amdgpu_bo_reserve(gws_bo, false); if (unlikely(ret)) { pr_err("Reserve gws bo failed %d\n", ret); //TODO add BO back to validate_list? return ret; } amdgpu_amdkfd_remove_eviction_fence(gws_bo, process_info->eviction_fence); amdgpu_bo_unreserve(gws_bo); amdgpu_sync_free(&kgd_mem->sync); amdgpu_bo_unref(&gws_bo); mutex_destroy(&kgd_mem->lock); kfree(mem); return 0; }