/* * Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst) * * Based on bo.c which bears the following copyright notice, * but is dual licensed: * * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellstrom */ #include #include /** * DOC: Reservation Object Overview * * The reservation object provides a mechanism to manage shared and * exclusive fences associated with a buffer. A reservation object * can have attached one exclusive fence (normally associated with * write operations) or N shared fences (read operations). The RCU * mechanism is used to protect read access to fences from locked * write-side updates. */ DEFINE_WD_CLASS(reservation_ww_class); EXPORT_SYMBOL(reservation_ww_class); struct lock_class_key reservation_seqcount_class; EXPORT_SYMBOL(reservation_seqcount_class); const char reservation_seqcount_string[] = "reservation_seqcount"; EXPORT_SYMBOL(reservation_seqcount_string); /** * reservation_object_reserve_shared - Reserve space to add shared fences to * a reservation_object. * @obj: reservation object * @num_fences: number of fences we want to add * * Should be called before reservation_object_add_shared_fence(). Must * be called with obj->lock held. * * RETURNS * Zero for success, or -errno */ int reservation_object_reserve_shared(struct reservation_object *obj, unsigned int num_fences) { struct reservation_object_list *old, *new; unsigned int i, j, k, max; reservation_object_assert_held(obj); old = reservation_object_get_list(obj); if (old && old->shared_max) { if ((old->shared_count + num_fences) <= old->shared_max) return 0; else max = max(old->shared_count + num_fences, old->shared_max * 2); } else { max = 4; } new = kmalloc(offsetof(typeof(*new), shared[max]), GFP_KERNEL); if (!new) return -ENOMEM; /* * no need to bump fence refcounts, rcu_read access * requires the use of kref_get_unless_zero, and the * references from the old struct are carried over to * the new. */ for (i = 0, j = 0, k = max; i < (old ? old->shared_count : 0); ++i) { struct dma_fence *fence; fence = rcu_dereference_protected(old->shared[i], reservation_object_held(obj)); if (dma_fence_is_signaled(fence)) RCU_INIT_POINTER(new->shared[--k], fence); else RCU_INIT_POINTER(new->shared[j++], fence); } new->shared_count = j; new->shared_max = max; preempt_disable(); write_seqcount_begin(&obj->seq); /* * RCU_INIT_POINTER can be used here, * seqcount provides the necessary barriers */ RCU_INIT_POINTER(obj->fence, new); write_seqcount_end(&obj->seq); preempt_enable(); if (!old) return 0; /* Drop the references to the signaled fences */ for (i = k; i < new->shared_max; ++i) { struct dma_fence *fence; fence = rcu_dereference_protected(new->shared[i], reservation_object_held(obj)); dma_fence_put(fence); } kfree_rcu(old, rcu); return 0; } EXPORT_SYMBOL(reservation_object_reserve_shared); /** * reservation_object_add_shared_fence - Add a fence to a shared slot * @obj: the reservation object * @fence: the shared fence to add * * Add a fence to a shared slot, obj->lock must be held, and * reservation_object_reserve_shared() has been called. */ void reservation_object_add_shared_fence(struct reservation_object *obj, struct dma_fence *fence) { struct reservation_object_list *fobj; unsigned int i, count; dma_fence_get(fence); reservation_object_assert_held(obj); fobj = reservation_object_get_list(obj); count = fobj->shared_count; preempt_disable(); write_seqcount_begin(&obj->seq); for (i = 0; i < count; ++i) { struct dma_fence *old_fence; old_fence = rcu_dereference_protected(fobj->shared[i], reservation_object_held(obj)); if (old_fence->context == fence->context || dma_fence_is_signaled(old_fence)) { dma_fence_put(old_fence); goto replace; } } BUG_ON(fobj->shared_count >= fobj->shared_max); count++; replace: RCU_INIT_POINTER(fobj->shared[i], fence); /* pointer update must be visible before we extend the shared_count */ smp_store_mb(fobj->shared_count, count); write_seqcount_end(&obj->seq); preempt_enable(); } EXPORT_SYMBOL(reservation_object_add_shared_fence); /** * reservation_object_add_excl_fence - Add an exclusive fence. * @obj: the reservation object * @fence: the shared fence to add * * Add a fence to the exclusive slot. The obj->lock must be held. */ void reservation_object_add_excl_fence(struct reservation_object *obj, struct dma_fence *fence) { struct dma_fence *old_fence = reservation_object_get_excl(obj); struct reservation_object_list *old; u32 i = 0; reservation_object_assert_held(obj); old = reservation_object_get_list(obj); if (old) i = old->shared_count; if (fence) dma_fence_get(fence); preempt_disable(); write_seqcount_begin(&obj->seq); /* write_seqcount_begin provides the necessary memory barrier */ RCU_INIT_POINTER(obj->fence_excl, fence); if (old) old->shared_count = 0; write_seqcount_end(&obj->seq); preempt_enable(); /* inplace update, no shared fences */ while (i--) dma_fence_put(rcu_dereference_protected(old->shared[i], reservation_object_held(obj))); dma_fence_put(old_fence); } EXPORT_SYMBOL(reservation_object_add_excl_fence); /** * reservation_object_copy_fences - Copy all fences from src to dst. * @dst: the destination reservation object * @src: the source reservation object * * Copy all fences from src to dst. dst-lock must be held. */ int reservation_object_copy_fences(struct reservation_object *dst, struct reservation_object *src) { struct reservation_object_list *src_list, *dst_list; struct dma_fence *old, *new; size_t size; unsigned i; reservation_object_assert_held(dst); rcu_read_lock(); src_list = rcu_dereference(src->fence); retry: if (src_list) { unsigned shared_count = src_list->shared_count; size = offsetof(typeof(*src_list), shared[shared_count]); rcu_read_unlock(); dst_list = kmalloc(size, GFP_KERNEL); if (!dst_list) return -ENOMEM; rcu_read_lock(); src_list = rcu_dereference(src->fence); if (!src_list || src_list->shared_count > shared_count) { kfree(dst_list); goto retry; } dst_list->shared_count = 0; dst_list->shared_max = shared_count; for (i = 0; i < src_list->shared_count; ++i) { struct dma_fence *fence; fence = rcu_dereference(src_list->shared[i]); if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) continue; if (!dma_fence_get_rcu(fence)) { kfree(dst_list); src_list = rcu_dereference(src->fence); goto retry; } if (dma_fence_is_signaled(fence)) { dma_fence_put(fence); continue; } rcu_assign_pointer(dst_list->shared[dst_list->shared_count++], fence); } } else { dst_list = NULL; } new = dma_fence_get_rcu_safe(&src->fence_excl); rcu_read_unlock(); src_list = reservation_object_get_list(dst); old = reservation_object_get_excl(dst); preempt_disable(); write_seqcount_begin(&dst->seq); /* write_seqcount_begin provides the necessary memory barrier */ RCU_INIT_POINTER(dst->fence_excl, new); RCU_INIT_POINTER(dst->fence, dst_list); write_seqcount_end(&dst->seq); preempt_enable(); if (src_list) kfree_rcu(src_list, rcu); dma_fence_put(old); return 0; } EXPORT_SYMBOL(reservation_object_copy_fences); /** * reservation_object_get_fences_rcu - Get an object's shared and exclusive * fences without update side lock held * @obj: the reservation object * @pfence_excl: the returned exclusive fence (or NULL) * @pshared_count: the number of shared fences returned * @pshared: the array of shared fence ptrs returned (array is krealloc'd to * the required size, and must be freed by caller) * * Retrieve all fences from the reservation object. If the pointer for the * exclusive fence is not specified the fence is put into the array of the * shared fences as well. Returns either zero or -ENOMEM. */ int reservation_object_get_fences_rcu(struct reservation_object *obj, struct dma_fence **pfence_excl, unsigned *pshared_count, struct dma_fence ***pshared) { struct dma_fence **shared = NULL; struct dma_fence *fence_excl; unsigned int shared_count; int ret = 1; do { struct reservation_object_list *fobj; unsigned int i, seq; size_t sz = 0; shared_count = i = 0; rcu_read_lock(); seq = read_seqcount_begin(&obj->seq); fence_excl = rcu_dereference(obj->fence_excl); if (fence_excl && !dma_fence_get_rcu(fence_excl)) goto unlock; fobj = rcu_dereference(obj->fence); if (fobj) sz += sizeof(*shared) * fobj->shared_max; if (!pfence_excl && fence_excl) sz += sizeof(*shared); if (sz) { struct dma_fence **nshared; nshared = krealloc(shared, sz, GFP_NOWAIT | __GFP_NOWARN); if (!nshared) { rcu_read_unlock(); dma_fence_put(fence_excl); fence_excl = NULL; nshared = krealloc(shared, sz, GFP_KERNEL); if (nshared) { shared = nshared; continue; } ret = -ENOMEM; break; } shared = nshared; shared_count = fobj ? fobj->shared_count : 0; for (i = 0; i < shared_count; ++i) { shared[i] = rcu_dereference(fobj->shared[i]); if (!dma_fence_get_rcu(shared[i])) break; } if (!pfence_excl && fence_excl) { shared[i] = fence_excl; fence_excl = NULL; ++i; ++shared_count; } } if (i != shared_count || read_seqcount_retry(&obj->seq, seq)) { while (i--) dma_fence_put(shared[i]); dma_fence_put(fence_excl); goto unlock; } ret = 0; unlock: rcu_read_unlock(); } while (ret); if (!shared_count) { kfree(shared); shared = NULL; } *pshared_count = shared_count; *pshared = shared; if (pfence_excl) *pfence_excl = fence_excl; return ret; } EXPORT_SYMBOL_GPL(reservation_object_get_fences_rcu); /** * reservation_object_wait_timeout_rcu - Wait on reservation's objects * shared and/or exclusive fences. * @obj: the reservation object * @wait_all: if true, wait on all fences, else wait on just exclusive fence * @intr: if true, do interruptible wait * @timeout: timeout value in jiffies or zero to return immediately * * RETURNS * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or * greater than zer on success. */ long reservation_object_wait_timeout_rcu(struct reservation_object *obj, bool wait_all, bool intr, unsigned long timeout) { struct dma_fence *fence; unsigned seq, shared_count; long ret = timeout ? timeout : 1; int i; retry: shared_count = 0; seq = read_seqcount_begin(&obj->seq); rcu_read_lock(); i = -1; fence = rcu_dereference(obj->fence_excl); if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { if (!dma_fence_get_rcu(fence)) goto unlock_retry; if (dma_fence_is_signaled(fence)) { dma_fence_put(fence); fence = NULL; } } else { fence = NULL; } if (wait_all) { struct reservation_object_list *fobj = rcu_dereference(obj->fence); if (fobj) shared_count = fobj->shared_count; for (i = 0; !fence && i < shared_count; ++i) { struct dma_fence *lfence = rcu_dereference(fobj->shared[i]); if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &lfence->flags)) continue; if (!dma_fence_get_rcu(lfence)) goto unlock_retry; if (dma_fence_is_signaled(lfence)) { dma_fence_put(lfence); continue; } fence = lfence; break; } } rcu_read_unlock(); if (fence) { if (read_seqcount_retry(&obj->seq, seq)) { dma_fence_put(fence); goto retry; } ret = dma_fence_wait_timeout(fence, intr, ret); dma_fence_put(fence); if (ret > 0 && wait_all && (i + 1 < shared_count)) goto retry; } return ret; unlock_retry: rcu_read_unlock(); goto retry; } EXPORT_SYMBOL_GPL(reservation_object_wait_timeout_rcu); static inline int reservation_object_test_signaled_single(struct dma_fence *passed_fence) { struct dma_fence *fence, *lfence = passed_fence; int ret = 1; if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &lfence->flags)) { fence = dma_fence_get_rcu(lfence); if (!fence) return -1; ret = !!dma_fence_is_signaled(fence); dma_fence_put(fence); } return ret; } /** * reservation_object_test_signaled_rcu - Test if a reservation object's * fences have been signaled. * @obj: the reservation object * @test_all: if true, test all fences, otherwise only test the exclusive * fence * * RETURNS * true if all fences signaled, else false */ bool reservation_object_test_signaled_rcu(struct reservation_object *obj, bool test_all) { unsigned seq, shared_count; int ret; rcu_read_lock(); retry: ret = true; shared_count = 0; seq = read_seqcount_begin(&obj->seq); if (test_all) { unsigned i; struct reservation_object_list *fobj = rcu_dereference(obj->fence); if (fobj) shared_count = fobj->shared_count; for (i = 0; i < shared_count; ++i) { struct dma_fence *fence = rcu_dereference(fobj->shared[i]); ret = reservation_object_test_signaled_single(fence); if (ret < 0) goto retry; else if (!ret) break; } if (read_seqcount_retry(&obj->seq, seq)) goto retry; } if (!shared_count) { struct dma_fence *fence_excl = rcu_dereference(obj->fence_excl); if (fence_excl) { ret = reservation_object_test_signaled_single( fence_excl); if (ret < 0) goto retry; if (read_seqcount_retry(&obj->seq, seq)) goto retry; } } rcu_read_unlock(); return ret; } EXPORT_SYMBOL_GPL(reservation_object_test_signaled_rcu);