summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/head.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arm64/kernel/head.S')
-rw-r--r--arch/arm64/kernel/head.S1022
1 files changed, 286 insertions, 736 deletions
diff --git a/arch/arm64/kernel/head.S b/arch/arm64/kernel/head.S
index 989b1944cb71..ce08b744aaab 100644
--- a/arch/arm64/kernel/head.S
+++ b/arch/arm64/kernel/head.S
@@ -11,22 +11,25 @@
#include <linux/linkage.h>
#include <linux/init.h>
-#include <linux/irqchip/arm-gic-v3.h>
+#include <linux/pgtable.h>
+#include <asm/asm_pointer_auth.h>
#include <asm/assembler.h>
#include <asm/boot.h>
+#include <asm/bug.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/cache.h>
#include <asm/cputype.h>
+#include <asm/el2_setup.h>
#include <asm/elf.h>
#include <asm/image.h>
#include <asm/kernel-pgtable.h>
#include <asm/kvm_arm.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
-#include <asm/pgtable.h>
#include <asm/page.h>
+#include <asm/scs.h>
#include <asm/smp.h>
#include <asm/sysreg.h>
#include <asm/thread_info.h>
@@ -34,14 +37,8 @@
#include "efi-header.S"
-#define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
-
-#if (TEXT_OFFSET & 0xfff) != 0
-#error TEXT_OFFSET must be at least 4KB aligned
-#elif (PAGE_OFFSET & 0x1fffff) != 0
+#if (PAGE_OFFSET & 0x1fffff) != 0
#error PAGE_OFFSET must be at least 2MB aligned
-#elif TEXT_OFFSET > 0x1fffff
-#error TEXT_OFFSET must be less than 2MB
#endif
/*
@@ -52,66 +49,76 @@
* MMU = off, D-cache = off, I-cache = on or off,
* x0 = physical address to the FDT blob.
*
- * This code is mostly position independent so you call this at
- * __pa(PAGE_OFFSET + TEXT_OFFSET).
- *
* Note that the callee-saved registers are used for storing variables
* that are useful before the MMU is enabled. The allocations are described
* in the entry routines.
*/
__HEAD
-_head:
/*
* DO NOT MODIFY. Image header expected by Linux boot-loaders.
*/
-#ifdef CONFIG_EFI
- /*
- * This add instruction has no meaningful effect except that
- * its opcode forms the magic "MZ" signature required by UEFI.
- */
- add x13, x18, #0x16
- b stext
-#else
- b stext // branch to kernel start, magic
- .long 0 // reserved
-#endif
- le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian
+ efi_signature_nop // special NOP to identity as PE/COFF executable
+ b primary_entry // branch to kernel start, magic
+ .quad 0 // Image load offset from start of RAM, little-endian
le64sym _kernel_size_le // Effective size of kernel image, little-endian
le64sym _kernel_flags_le // Informative flags, little-endian
.quad 0 // reserved
.quad 0 // reserved
.quad 0 // reserved
.ascii ARM64_IMAGE_MAGIC // Magic number
-#ifdef CONFIG_EFI
- .long pe_header - _head // Offset to the PE header.
+ .long .Lpe_header_offset // Offset to the PE header.
-pe_header:
__EFI_PE_HEADER
-#else
- .long 0 // reserved
-#endif
- __INIT
+ .section ".idmap.text","a"
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
- * x21 stext() .. start_kernel() FDT pointer passed at boot in x0
- * x23 stext() .. start_kernel() physical misalignment/KASLR offset
- * x28 __create_page_tables() callee preserved temp register
- * x19/x20 __primary_switch() callee preserved temp registers
- * x24 __primary_switch() .. relocate_kernel()
- * current RELR displacement
+ * x19 primary_entry() .. start_kernel() whether we entered with the MMU on
+ * x20 primary_entry() .. __primary_switch() CPU boot mode
+ * x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
*/
-ENTRY(stext)
+SYM_CODE_START(primary_entry)
+ bl record_mmu_state
bl preserve_boot_args
- bl el2_setup // Drop to EL1, w0=cpu_boot_mode
- adrp x23, __PHYS_OFFSET
- and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
- bl set_cpu_boot_mode_flag
- bl __create_page_tables
+
+ adrp x1, early_init_stack
+ mov sp, x1
+ mov x29, xzr
+ adrp x0, init_idmap_pg_dir
+ mov x1, xzr
+ bl __pi_create_init_idmap
+
+ /*
+ * If the page tables have been populated with non-cacheable
+ * accesses (MMU disabled), invalidate those tables again to
+ * remove any speculatively loaded cache lines.
+ */
+ cbnz x19, 0f
+ dmb sy
+ mov x1, x0 // end of used region
+ adrp x0, init_idmap_pg_dir
+ adr_l x2, dcache_inval_poc
+ blr x2
+ b 1f
+
+ /*
+ * If we entered with the MMU and caches on, clean the ID mapped part
+ * of the primary boot code to the PoC so we can safely execute it with
+ * the MMU off.
+ */
+0: adrp x0, __idmap_text_start
+ adr_l x1, __idmap_text_end
+ adr_l x2, dcache_clean_poc
+ blr x2
+
+1: mov x0, x19
+ bl init_kernel_el // w0=cpu_boot_mode
+ mov x20, x0
+
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
* details.
@@ -120,627 +127,309 @@ ENTRY(stext)
*/
bl __cpu_setup // initialise processor
b __primary_switch
-ENDPROC(stext)
+SYM_CODE_END(primary_entry)
+
+ __INIT
+SYM_CODE_START_LOCAL(record_mmu_state)
+ mrs x19, CurrentEL
+ cmp x19, #CurrentEL_EL2
+ mrs x19, sctlr_el1
+ b.ne 0f
+ mrs x19, sctlr_el2
+0:
+CPU_LE( tbnz x19, #SCTLR_ELx_EE_SHIFT, 1f )
+CPU_BE( tbz x19, #SCTLR_ELx_EE_SHIFT, 1f )
+ tst x19, #SCTLR_ELx_C // Z := (C == 0)
+ and x19, x19, #SCTLR_ELx_M // isolate M bit
+ csel x19, xzr, x19, eq // clear x19 if Z
+ ret
+
+ /*
+ * Set the correct endianness early so all memory accesses issued
+ * before init_kernel_el() occur in the correct byte order. Note that
+ * this means the MMU must be disabled, or the active ID map will end
+ * up getting interpreted with the wrong byte order.
+ */
+1: eor x19, x19, #SCTLR_ELx_EE
+ bic x19, x19, #SCTLR_ELx_M
+ b.ne 2f
+ pre_disable_mmu_workaround
+ msr sctlr_el2, x19
+ b 3f
+2: pre_disable_mmu_workaround
+ msr sctlr_el1, x19
+3: isb
+ mov x19, xzr
+ ret
+SYM_CODE_END(record_mmu_state)
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
-preserve_boot_args:
+SYM_CODE_START_LOCAL(preserve_boot_args)
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
+ cbnz x19, 0f // skip cache invalidation if MMU is on
dmb sy // needed before dc ivac with
// MMU off
- mov x1, #0x20 // 4 x 8 bytes
- b __inval_dcache_area // tail call
-ENDPROC(preserve_boot_args)
-
-/*
- * Macro to create a table entry to the next page.
- *
- * tbl: page table address
- * virt: virtual address
- * shift: #imm page table shift
- * ptrs: #imm pointers per table page
- *
- * Preserves: virt
- * Corrupts: ptrs, tmp1, tmp2
- * Returns: tbl -> next level table page address
- */
- .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
- add \tmp1, \tbl, #PAGE_SIZE
- phys_to_pte \tmp2, \tmp1
- orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
- lsr \tmp1, \virt, #\shift
- sub \ptrs, \ptrs, #1
- and \tmp1, \tmp1, \ptrs // table index
- str \tmp2, [\tbl, \tmp1, lsl #3]
- add \tbl, \tbl, #PAGE_SIZE // next level table page
- .endm
-
-/*
- * Macro to populate page table entries, these entries can be pointers to the next level
- * or last level entries pointing to physical memory.
- *
- * tbl: page table address
- * rtbl: pointer to page table or physical memory
- * index: start index to write
- * eindex: end index to write - [index, eindex] written to
- * flags: flags for pagetable entry to or in
- * inc: increment to rtbl between each entry
- * tmp1: temporary variable
- *
- * Preserves: tbl, eindex, flags, inc
- * Corrupts: index, tmp1
- * Returns: rtbl
- */
- .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
-.Lpe\@: phys_to_pte \tmp1, \rtbl
- orr \tmp1, \tmp1, \flags // tmp1 = table entry
- str \tmp1, [\tbl, \index, lsl #3]
- add \rtbl, \rtbl, \inc // rtbl = pa next level
- add \index, \index, #1
- cmp \index, \eindex
- b.ls .Lpe\@
- .endm
-
-/*
- * Compute indices of table entries from virtual address range. If multiple entries
- * were needed in the previous page table level then the next page table level is assumed
- * to be composed of multiple pages. (This effectively scales the end index).
- *
- * vstart: virtual address of start of range
- * vend: virtual address of end of range
- * shift: shift used to transform virtual address into index
- * ptrs: number of entries in page table
- * istart: index in table corresponding to vstart
- * iend: index in table corresponding to vend
- * count: On entry: how many extra entries were required in previous level, scales
- * our end index.
- * On exit: returns how many extra entries required for next page table level
- *
- * Preserves: vstart, vend, shift, ptrs
- * Returns: istart, iend, count
- */
- .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
- lsr \iend, \vend, \shift
- mov \istart, \ptrs
- sub \istart, \istart, #1
- and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1)
- mov \istart, \ptrs
- mul \istart, \istart, \count
- add \iend, \iend, \istart // iend += (count - 1) * ptrs
- // our entries span multiple tables
-
- lsr \istart, \vstart, \shift
- mov \count, \ptrs
- sub \count, \count, #1
- and \istart, \istart, \count
-
- sub \count, \iend, \istart
- .endm
-
-/*
- * Map memory for specified virtual address range. Each level of page table needed supports
- * multiple entries. If a level requires n entries the next page table level is assumed to be
- * formed from n pages.
- *
- * tbl: location of page table
- * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
- * vstart: start address to map
- * vend: end address to map - we map [vstart, vend]
- * flags: flags to use to map last level entries
- * phys: physical address corresponding to vstart - physical memory is contiguous
- * pgds: the number of pgd entries
- *
- * Temporaries: istart, iend, tmp, count, sv - these need to be different registers
- * Preserves: vstart, vend, flags
- * Corrupts: tbl, rtbl, istart, iend, tmp, count, sv
- */
- .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
- add \rtbl, \tbl, #PAGE_SIZE
- mov \sv, \rtbl
- mov \count, #0
- compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
- populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
- mov \tbl, \sv
- mov \sv, \rtbl
-
-#if SWAPPER_PGTABLE_LEVELS > 3
- compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
- populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
- mov \tbl, \sv
- mov \sv, \rtbl
-#endif
-
-#if SWAPPER_PGTABLE_LEVELS > 2
- compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
- populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
- mov \tbl, \sv
-#endif
-
- compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
- bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
- populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
- .endm
-
-/*
- * Setup the initial page tables. We only setup the barest amount which is
- * required to get the kernel running. The following sections are required:
- * - identity mapping to enable the MMU (low address, TTBR0)
- * - first few MB of the kernel linear mapping to jump to once the MMU has
- * been enabled
- */
-__create_page_tables:
- mov x28, lr
-
- /*
- * Invalidate the init page tables to avoid potential dirty cache lines
- * being evicted. Other page tables are allocated in rodata as part of
- * the kernel image, and thus are clean to the PoC per the boot
- * protocol.
- */
- adrp x0, init_pg_dir
- adrp x1, init_pg_end
- sub x1, x1, x0
- bl __inval_dcache_area
-
- /*
- * Clear the init page tables.
- */
- adrp x0, init_pg_dir
- adrp x1, init_pg_end
- sub x1, x1, x0
-1: stp xzr, xzr, [x0], #16
- stp xzr, xzr, [x0], #16
- stp xzr, xzr, [x0], #16
- stp xzr, xzr, [x0], #16
- subs x1, x1, #64
- b.ne 1b
-
- mov x7, SWAPPER_MM_MMUFLAGS
-
- /*
- * Create the identity mapping.
- */
- adrp x0, idmap_pg_dir
- adrp x3, __idmap_text_start // __pa(__idmap_text_start)
-
-#ifdef CONFIG_ARM64_VA_BITS_52
- mrs_s x6, SYS_ID_AA64MMFR2_EL1
- and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
- mov x5, #52
- cbnz x6, 1f
-#endif
- mov x5, #VA_BITS_MIN
-1:
- adr_l x6, vabits_actual
- str x5, [x6]
- dmb sy
- dc ivac, x6 // Invalidate potentially stale cache line
+ add x1, x0, #0x20 // 4 x 8 bytes
+ b dcache_inval_poc // tail call
+0: str_l x19, mmu_enabled_at_boot, x0
+ ret
+SYM_CODE_END(preserve_boot_args)
/*
- * VA_BITS may be too small to allow for an ID mapping to be created
- * that covers system RAM if that is located sufficiently high in the
- * physical address space. So for the ID map, use an extended virtual
- * range in that case, and configure an additional translation level
- * if needed.
+ * Initialize CPU registers with task-specific and cpu-specific context.
*
- * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
- * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
- * this number conveniently equals the number of leading zeroes in
- * the physical address of __idmap_text_end.
+ * Create a final frame record at task_pt_regs(current)->stackframe, so
+ * that the unwinder can identify the final frame record of any task by
+ * its location in the task stack. We reserve the entire pt_regs space
+ * for consistency with user tasks and kthreads.
*/
- adrp x5, __idmap_text_end
- clz x5, x5
- cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough?
- b.ge 1f // .. then skip VA range extension
-
- adr_l x6, idmap_t0sz
- str x5, [x6]
- dmb sy
- dc ivac, x6 // Invalidate potentially stale cache line
+ .macro init_cpu_task tsk, tmp1, tmp2
+ msr sp_el0, \tsk
-#if (VA_BITS < 48)
-#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
-#define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
+ ldr \tmp1, [\tsk, #TSK_STACK]
+ add sp, \tmp1, #THREAD_SIZE
+ sub sp, sp, #PT_REGS_SIZE
- /*
- * If VA_BITS < 48, we have to configure an additional table level.
- * First, we have to verify our assumption that the current value of
- * VA_BITS was chosen such that all translation levels are fully
- * utilised, and that lowering T0SZ will always result in an additional
- * translation level to be configured.
- */
-#if VA_BITS != EXTRA_SHIFT
-#error "Mismatch between VA_BITS and page size/number of translation levels"
-#endif
+ stp xzr, xzr, [sp, #S_STACKFRAME]
+ add x29, sp, #S_STACKFRAME
- mov x4, EXTRA_PTRS
- create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
-#else
- /*
- * If VA_BITS == 48, we don't have to configure an additional
- * translation level, but the top-level table has more entries.
- */
- mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
- str_l x4, idmap_ptrs_per_pgd, x5
-#endif
-1:
- ldr_l x4, idmap_ptrs_per_pgd
- mov x5, x3 // __pa(__idmap_text_start)
- adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
-
- map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
-
- /*
- * Map the kernel image (starting with PHYS_OFFSET).
- */
- adrp x0, init_pg_dir
- mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text)
- add x5, x5, x23 // add KASLR displacement
- mov x4, PTRS_PER_PGD
- adrp x6, _end // runtime __pa(_end)
- adrp x3, _text // runtime __pa(_text)
- sub x6, x6, x3 // _end - _text
- add x6, x6, x5 // runtime __va(_end)
+ scs_load_current
- map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
-
- /*
- * Since the page tables have been populated with non-cacheable
- * accesses (MMU disabled), invalidate the idmap and swapper page
- * tables again to remove any speculatively loaded cache lines.
- */
- adrp x0, idmap_pg_dir
- adrp x1, init_pg_end
- sub x1, x1, x0
- dmb sy
- bl __inval_dcache_area
-
- ret x28
-ENDPROC(__create_page_tables)
- .ltorg
+ adr_l \tmp1, __per_cpu_offset
+ ldr w\tmp2, [\tsk, #TSK_TI_CPU]
+ ldr \tmp1, [\tmp1, \tmp2, lsl #3]
+ set_this_cpu_offset \tmp1
+ .endm
/*
* The following fragment of code is executed with the MMU enabled.
*
- * x0 = __PHYS_OFFSET
+ * x0 = __pa(KERNEL_START)
*/
-__primary_switched:
- adrp x4, init_thread_union
- add sp, x4, #THREAD_SIZE
- adr_l x5, init_task
- msr sp_el0, x5 // Save thread_info
+SYM_FUNC_START_LOCAL(__primary_switched)
+ adr_l x4, init_task
+ init_cpu_task x4, x5, x6
adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb
- stp xzr, x30, [sp, #-16]!
+ stp x29, x30, [sp, #-16]!
mov x29, sp
str_l x21, __fdt_pointer, x5 // Save FDT pointer
- ldr_l x4, kimage_vaddr // Save the offset between
+ adrp x4, _text // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
- // Clear BSS
- adr_l x0, __bss_start
- mov x1, xzr
- adr_l x2, __bss_stop
- sub x2, x2, x0
- bl __pi_memset
- dsb ishst // Make zero page visible to PTW
+ mov x0, x20
+ bl set_cpu_boot_mode_flag
-#ifdef CONFIG_KASAN
+#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
bl kasan_early_init
#endif
-#ifdef CONFIG_RANDOMIZE_BASE
- tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
- b.ne 0f
- mov x0, x21 // pass FDT address in x0
- bl kaslr_early_init // parse FDT for KASLR options
- cbz x0, 0f // KASLR disabled? just proceed
- orr x23, x23, x0 // record KASLR offset
- ldp x29, x30, [sp], #16 // we must enable KASLR, return
- ret // to __primary_switch()
-0:
-#endif
- add sp, sp, #16
- mov x29, #0
- mov x30, #0
- b start_kernel
-ENDPROC(__primary_switched)
+ mov x0, x20
+ bl finalise_el2 // Prefer VHE if possible
+ ldp x29, x30, [sp], #16
+ bl start_kernel
+ ASM_BUG()
+SYM_FUNC_END(__primary_switched)
/*
* end early head section, begin head code that is also used for
* hotplug and needs to have the same protections as the text region
*/
- .section ".idmap.text","awx"
-
-ENTRY(kimage_vaddr)
- .quad _text - TEXT_OFFSET
-EXPORT_SYMBOL(kimage_vaddr)
+ .section ".idmap.text","a"
/*
- * If we're fortunate enough to boot at EL2, ensure that the world is
- * sane before dropping to EL1.
+ * Starting from EL2 or EL1, configure the CPU to execute at the highest
+ * reachable EL supported by the kernel in a chosen default state. If dropping
+ * from EL2 to EL1, configure EL2 before configuring EL1.
*
- * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
- * booted in EL1 or EL2 respectively.
+ * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
+ * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
+ *
+ * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if
+ * booted in EL1 or EL2 respectively, with the top 32 bits containing
+ * potential context flags. These flags are *not* stored in __boot_cpu_mode.
+ *
+ * x0: whether we are being called from the primary boot path with the MMU on
*/
-ENTRY(el2_setup)
- msr SPsel, #1 // We want to use SP_EL{1,2}
- mrs x0, CurrentEL
- cmp x0, #CurrentEL_EL2
- b.eq 1f
- mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
+SYM_FUNC_START(init_kernel_el)
+ mrs x1, CurrentEL
+ cmp x1, #CurrentEL_EL2
+ b.eq init_el2
+
+SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
+ mov_q x0, INIT_SCTLR_EL1_MMU_OFF
+ pre_disable_mmu_workaround
msr sctlr_el1, x0
- mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
isb
- ret
-
-1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
- msr sctlr_el2, x0
+ mov_q x0, INIT_PSTATE_EL1
+ msr spsr_el1, x0
+ msr elr_el1, lr
+ mov w0, #BOOT_CPU_MODE_EL1
+ eret
-#ifdef CONFIG_ARM64_VHE
- /*
- * Check for VHE being present. For the rest of the EL2 setup,
- * x2 being non-zero indicates that we do have VHE, and that the
- * kernel is intended to run at EL2.
- */
- mrs x2, id_aa64mmfr1_el1
- ubfx x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4
-#else
- mov x2, xzr
-#endif
+SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
+ msr elr_el2, lr
- /* Hyp configuration. */
+ // clean all HYP code to the PoC if we booted at EL2 with the MMU on
+ cbz x0, 0f
+ adrp x0, __hyp_idmap_text_start
+ adr_l x1, __hyp_text_end
+ adr_l x2, dcache_clean_poc
+ blr x2
+0:
mov_q x0, HCR_HOST_NVHE_FLAGS
- cbz x2, set_hcr
- mov_q x0, HCR_HOST_VHE_FLAGS
-set_hcr:
msr hcr_el2, x0
isb
- /*
- * Allow Non-secure EL1 and EL0 to access physical timer and counter.
- * This is not necessary for VHE, since the host kernel runs in EL2,
- * and EL0 accesses are configured in the later stage of boot process.
- * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
- * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
- * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
- * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
- * EL2.
- */
- cbnz x2, 1f
- mrs x0, cnthctl_el2
- orr x0, x0, #3 // Enable EL1 physical timers
- msr cnthctl_el2, x0
-1:
- msr cntvoff_el2, xzr // Clear virtual offset
-
-#ifdef CONFIG_ARM_GIC_V3
- /* GICv3 system register access */
- mrs x0, id_aa64pfr0_el1
- ubfx x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4
- cbz x0, 3f
-
- mrs_s x0, SYS_ICC_SRE_EL2
- orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
- orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
- msr_s SYS_ICC_SRE_EL2, x0
- isb // Make sure SRE is now set
- mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back,
- tbz x0, #0, 3f // and check that it sticks
- msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
-
-3:
-#endif
-
- /* Populate ID registers. */
- mrs x0, midr_el1
- mrs x1, mpidr_el1
- msr vpidr_el2, x0
- msr vmpidr_el2, x1
-
-#ifdef CONFIG_COMPAT
- msr hstr_el2, xzr // Disable CP15 traps to EL2
-#endif
-
- /* EL2 debug */
- mrs x1, id_aa64dfr0_el1
- sbfx x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4
- cmp x0, #1
- b.lt 4f // Skip if no PMU present
- mrs x0, pmcr_el0 // Disable debug access traps
- ubfx x0, x0, #11, #5 // to EL2 and allow access to
-4:
- csel x3, xzr, x0, lt // all PMU counters from EL1
-
- /* Statistical profiling */
- ubfx x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4
- cbz x0, 7f // Skip if SPE not present
- cbnz x2, 6f // VHE?
- mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2,
- and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
- cbnz x4, 5f // then permit sampling of physical
- mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
- 1 << SYS_PMSCR_EL2_PA_SHIFT)
- msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter
-5:
- mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
- orr x3, x3, x1 // If we don't have VHE, then
- b 7f // use EL1&0 translation.
-6: // For VHE, use EL2 translation
- orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1
-7:
- msr mdcr_el2, x3 // Configure debug traps
-
- /* LORegions */
- mrs x1, id_aa64mmfr1_el1
- ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
- cbz x0, 1f
- msr_s SYS_LORC_EL1, xzr
-1:
-
- /* Stage-2 translation */
- msr vttbr_el2, xzr
+ init_el2_state
- cbz x2, install_el2_stub
-
- mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
+ /* Hypervisor stub */
+ adr_l x0, __hyp_stub_vectors
+ msr vbar_el2, x0
isb
- ret
-install_el2_stub:
+ mov_q x1, INIT_SCTLR_EL1_MMU_OFF
+
/*
- * When VHE is not in use, early init of EL2 and EL1 needs to be
- * done here.
- * When VHE _is_ in use, EL1 will not be used in the host and
- * requires no configuration, and all non-hyp-specific EL2 setup
- * will be done via the _EL1 system register aliases in __cpu_setup.
+ * Compliant CPUs advertise their VHE-onlyness with
+ * ID_AA64MMFR4_EL1.E2H0 < 0. HCR_EL2.E2H can be
+ * RES1 in that case.
+ *
+ * Fruity CPUs seem to have HCR_EL2.E2H set to RES1, but
+ * don't advertise it (they predate this relaxation).
*/
- mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
- msr sctlr_el1, x0
-
- /* Coprocessor traps. */
- mov x0, #0x33ff
- msr cptr_el2, x0 // Disable copro. traps to EL2
+ mrs_s x0, SYS_ID_AA64MMFR4_EL1
+ ubfx x0, x0, #ID_AA64MMFR4_EL1_E2H0_SHIFT, #ID_AA64MMFR4_EL1_E2H0_WIDTH
+ tbnz x0, #(ID_AA64MMFR4_EL1_E2H0_SHIFT + ID_AA64MMFR4_EL1_E2H0_WIDTH - 1), 1f
- /* SVE register access */
- mrs x1, id_aa64pfr0_el1
- ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
- cbz x1, 7f
-
- bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps
- msr cptr_el2, x0 // Disable copro. traps to EL2
- isb
- mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector
- msr_s SYS_ZCR_EL2, x1 // length for EL1.
+ mrs x0, hcr_el2
+ and x0, x0, #HCR_E2H
+ cbz x0, 2f
+1:
+ /* Set a sane SCTLR_EL1, the VHE way */
+ pre_disable_mmu_workaround
+ msr_s SYS_SCTLR_EL12, x1
+ mov x2, #BOOT_CPU_FLAG_E2H
+ b 3f
- /* Hypervisor stub */
-7: adr_l x0, __hyp_stub_vectors
- msr vbar_el2, x0
+2:
+ pre_disable_mmu_workaround
+ msr sctlr_el1, x1
+ mov x2, xzr
+3:
+ __init_el2_nvhe_prepare_eret
- /* spsr */
- mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
- PSR_MODE_EL1h)
- msr spsr_el2, x0
- msr elr_el2, lr
- mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
+ mov w0, #BOOT_CPU_MODE_EL2
+ orr x0, x0, x2
eret
-ENDPROC(el2_setup)
-
-/*
- * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
- * in w0. See arch/arm64/include/asm/virt.h for more info.
- */
-set_cpu_boot_mode_flag:
- adr_l x1, __boot_cpu_mode
- cmp w0, #BOOT_CPU_MODE_EL2
- b.ne 1f
- add x1, x1, #4
-1: str w0, [x1] // This CPU has booted in EL1
- dmb sy
- dc ivac, x1 // Invalidate potentially stale cache line
- ret
-ENDPROC(set_cpu_boot_mode_flag)
-
-/*
- * These values are written with the MMU off, but read with the MMU on.
- * Writers will invalidate the corresponding address, discarding up to a
- * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
- * sufficient alignment that the CWG doesn't overlap another section.
- */
- .pushsection ".mmuoff.data.write", "aw"
-/*
- * We need to find out the CPU boot mode long after boot, so we need to
- * store it in a writable variable.
- *
- * This is not in .bss, because we set it sufficiently early that the boot-time
- * zeroing of .bss would clobber it.
- */
-ENTRY(__boot_cpu_mode)
- .long BOOT_CPU_MODE_EL2
- .long BOOT_CPU_MODE_EL1
-/*
- * The booting CPU updates the failed status @__early_cpu_boot_status,
- * with MMU turned off.
- */
-ENTRY(__early_cpu_boot_status)
- .quad 0
-
- .popsection
+SYM_FUNC_END(init_kernel_el)
/*
* This provides a "holding pen" for platforms to hold all secondary
* cores are held until we're ready for them to initialise.
*/
-ENTRY(secondary_holding_pen)
- bl el2_setup // Drop to EL1, w0=cpu_boot_mode
- bl set_cpu_boot_mode_flag
- mrs x0, mpidr_el1
+SYM_FUNC_START(secondary_holding_pen)
+ mov x0, xzr
+ bl init_kernel_el // w0=cpu_boot_mode
+ mrs x2, mpidr_el1
mov_q x1, MPIDR_HWID_BITMASK
- and x0, x0, x1
+ and x2, x2, x1
adr_l x3, secondary_holding_pen_release
pen: ldr x4, [x3]
- cmp x4, x0
+ cmp x4, x2
b.eq secondary_startup
wfe
b pen
-ENDPROC(secondary_holding_pen)
+SYM_FUNC_END(secondary_holding_pen)
/*
* Secondary entry point that jumps straight into the kernel. Only to
* be used where CPUs are brought online dynamically by the kernel.
*/
-ENTRY(secondary_entry)
- bl el2_setup // Drop to EL1
- bl set_cpu_boot_mode_flag
+SYM_FUNC_START(secondary_entry)
+ mov x0, xzr
+ bl init_kernel_el // w0=cpu_boot_mode
b secondary_startup
-ENDPROC(secondary_entry)
+SYM_FUNC_END(secondary_entry)
-secondary_startup:
+SYM_FUNC_START_LOCAL(secondary_startup)
/*
* Common entry point for secondary CPUs.
*/
+ mov x20, x0 // preserve boot mode
+
+#ifdef CONFIG_ARM64_VA_BITS_52
+alternative_if ARM64_HAS_VA52
bl __cpu_secondary_check52bitva
+alternative_else_nop_endif
+#endif
+
bl __cpu_setup // initialise processor
adrp x1, swapper_pg_dir
+ adrp x2, idmap_pg_dir
bl __enable_mmu
ldr x8, =__secondary_switched
br x8
-ENDPROC(secondary_startup)
+SYM_FUNC_END(secondary_startup)
+
+ .text
+SYM_FUNC_START_LOCAL(__secondary_switched)
+ mov x0, x20
+ bl set_cpu_boot_mode_flag
+
+ mov x0, x20
+ bl finalise_el2
-__secondary_switched:
+ str_l xzr, __early_cpu_boot_status, x3
adr_l x5, vectors
msr vbar_el1, x5
isb
adr_l x0, secondary_data
- ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
- cbz x1, __secondary_too_slow
- mov sp, x1
ldr x2, [x0, #CPU_BOOT_TASK]
cbz x2, __secondary_too_slow
- msr sp_el0, x2
- mov x29, #0
- mov x30, #0
- b secondary_start_kernel
-ENDPROC(__secondary_switched)
-__secondary_too_slow:
+ init_cpu_task x2, x1, x3
+
+#ifdef CONFIG_ARM64_PTR_AUTH
+ ptrauth_keys_init_cpu x2, x3, x4, x5
+#endif
+
+ bl secondary_start_kernel
+ ASM_BUG()
+SYM_FUNC_END(__secondary_switched)
+
+SYM_FUNC_START_LOCAL(__secondary_too_slow)
wfe
wfi
b __secondary_too_slow
-ENDPROC(__secondary_too_slow)
+SYM_FUNC_END(__secondary_too_slow)
+
+/*
+ * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
+ * in w0. See arch/arm64/include/asm/virt.h for more info.
+ */
+SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
+ adr_l x1, __boot_cpu_mode
+ cmp w0, #BOOT_CPU_MODE_EL2
+ b.ne 1f
+ add x1, x1, #4
+1: str w0, [x1] // Save CPU boot mode
+ ret
+SYM_FUNC_END(set_cpu_boot_mode_flag)
/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
@@ -765,6 +454,7 @@ ENDPROC(__secondary_too_slow)
*
* x0 = SCTLR_EL1 value for turning on the MMU.
* x1 = TTBR1_EL1 value
+ * x2 = ID map root table address
*
* Returns to the caller via x30/lr. This requires the caller to be covered
* by the .idmap.text section.
@@ -772,41 +462,35 @@ ENDPROC(__secondary_too_slow)
* Checks if the selected granule size is supported by the CPU.
* If it isn't, park the CPU
*/
-ENTRY(__enable_mmu)
- mrs x2, ID_AA64MMFR0_EL1
- ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
- cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
- b.ne __no_granule_support
- update_early_cpu_boot_status 0, x2, x3
- adrp x2, idmap_pg_dir
- phys_to_ttbr x1, x1
+ .section ".idmap.text","a"
+SYM_FUNC_START(__enable_mmu)
+ mrs x3, ID_AA64MMFR0_EL1
+ ubfx x3, x3, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
+ cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN
+ b.lt __no_granule_support
+ cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX
+ b.gt __no_granule_support
phys_to_ttbr x2, x2
msr ttbr0_el1, x2 // load TTBR0
- offset_ttbr1 x1, x3
- msr ttbr1_el1, x1 // load TTBR1
- isb
- msr sctlr_el1, x0
- isb
- /*
- * Invalidate the local I-cache so that any instructions fetched
- * speculatively from the PoC are discarded, since they may have
- * been dynamically patched at the PoU.
- */
- ic iallu
- dsb nsh
- isb
+ load_ttbr1 x1, x1, x3
+
+ set_sctlr_el1 x0
+
ret
-ENDPROC(__enable_mmu)
+SYM_FUNC_END(__enable_mmu)
-ENTRY(__cpu_secondary_check52bitva)
#ifdef CONFIG_ARM64_VA_BITS_52
- ldr_l x0, vabits_actual
- cmp x0, #52
- b.ne 2f
-
+SYM_FUNC_START(__cpu_secondary_check52bitva)
+#ifndef CONFIG_ARM64_LPA2
mrs_s x0, SYS_ID_AA64MMFR2_EL1
- and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
+ and x0, x0, ID_AA64MMFR2_EL1_VARange_MASK
cbnz x0, 2f
+#else
+ mrs x0, id_aa64mmfr0_el1
+ sbfx x0, x0, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
+ cmp x0, #ID_AA64MMFR0_EL1_TGRAN_LPA2
+ b.ge 2f
+#endif
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
@@ -814,11 +498,11 @@ ENTRY(__cpu_secondary_check52bitva)
wfi
b 1b
-#endif
2: ret
-ENDPROC(__cpu_secondary_check52bitva)
+SYM_FUNC_END(__cpu_secondary_check52bitva)
+#endif
-__no_granule_support:
+SYM_FUNC_START_LOCAL(__no_granule_support)
/* Indicate that this CPU can't boot and is stuck in the kernel */
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
@@ -826,155 +510,21 @@ __no_granule_support:
wfe
wfi
b 1b
-ENDPROC(__no_granule_support)
+SYM_FUNC_END(__no_granule_support)
-#ifdef CONFIG_RELOCATABLE
-__relocate_kernel:
- /*
- * Iterate over each entry in the relocation table, and apply the
- * relocations in place.
- */
- ldr w9, =__rela_offset // offset to reloc table
- ldr w10, =__rela_size // size of reloc table
-
- mov_q x11, KIMAGE_VADDR // default virtual offset
- add x11, x11, x23 // actual virtual offset
- add x9, x9, x11 // __va(.rela)
- add x10, x9, x10 // __va(.rela) + sizeof(.rela)
-
-0: cmp x9, x10
- b.hs 1f
- ldp x12, x13, [x9], #24
- ldr x14, [x9, #-8]
- cmp w13, #R_AARCH64_RELATIVE
- b.ne 0b
- add x14, x14, x23 // relocate
- str x14, [x12, x23]
- b 0b
-
-1:
-#ifdef CONFIG_RELR
- /*
- * Apply RELR relocations.
- *
- * RELR is a compressed format for storing relative relocations. The
- * encoded sequence of entries looks like:
- * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
- *
- * i.e. start with an address, followed by any number of bitmaps. The
- * address entry encodes 1 relocation. The subsequent bitmap entries
- * encode up to 63 relocations each, at subsequent offsets following
- * the last address entry.
- *
- * The bitmap entries must have 1 in the least significant bit. The
- * assumption here is that an address cannot have 1 in lsb. Odd
- * addresses are not supported. Any odd addresses are stored in the RELA
- * section, which is handled above.
- *
- * Excluding the least significant bit in the bitmap, each non-zero
- * bit in the bitmap represents a relocation to be applied to
- * a corresponding machine word that follows the base address
- * word. The second least significant bit represents the machine
- * word immediately following the initial address, and each bit
- * that follows represents the next word, in linear order. As such,
- * a single bitmap can encode up to 63 relocations in a 64-bit object.
- *
- * In this implementation we store the address of the next RELR table
- * entry in x9, the address being relocated by the current address or
- * bitmap entry in x13 and the address being relocated by the current
- * bit in x14.
- *
- * Because addends are stored in place in the binary, RELR relocations
- * cannot be applied idempotently. We use x24 to keep track of the
- * currently applied displacement so that we can correctly relocate if
- * __relocate_kernel is called twice with non-zero displacements (i.e.
- * if there is both a physical misalignment and a KASLR displacement).
- */
- ldr w9, =__relr_offset // offset to reloc table
- ldr w10, =__relr_size // size of reloc table
- add x9, x9, x11 // __va(.relr)
- add x10, x9, x10 // __va(.relr) + sizeof(.relr)
-
- sub x15, x23, x24 // delta from previous offset
- cbz x15, 7f // nothing to do if unchanged
- mov x24, x23 // save new offset
-
-2: cmp x9, x10
- b.hs 7f
- ldr x11, [x9], #8
- tbnz x11, #0, 3f // branch to handle bitmaps
- add x13, x11, x23
- ldr x12, [x13] // relocate address entry
- add x12, x12, x15
- str x12, [x13], #8 // adjust to start of bitmap
- b 2b
-
-3: mov x14, x13
-4: lsr x11, x11, #1
- cbz x11, 6f
- tbz x11, #0, 5f // skip bit if not set
- ldr x12, [x14] // relocate bit
- add x12, x12, x15
- str x12, [x14]
-
-5: add x14, x14, #8 // move to next bit's address
- b 4b
-
-6: /*
- * Move to the next bitmap's address. 8 is the word size, and 63 is the
- * number of significant bits in a bitmap entry.
- */
- add x13, x13, #(8 * 63)
- b 2b
-
-7:
-#endif
- ret
-
-ENDPROC(__relocate_kernel)
-#endif
-
-__primary_switch:
-#ifdef CONFIG_RANDOMIZE_BASE
- mov x19, x0 // preserve new SCTLR_EL1 value
- mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
-#endif
-
- adrp x1, init_pg_dir
+SYM_FUNC_START_LOCAL(__primary_switch)
+ adrp x1, reserved_pg_dir
+ adrp x2, init_idmap_pg_dir
bl __enable_mmu
-#ifdef CONFIG_RELOCATABLE
-#ifdef CONFIG_RELR
- mov x24, #0 // no RELR displacement yet
-#endif
- bl __relocate_kernel
-#ifdef CONFIG_RANDOMIZE_BASE
- ldr x8, =__primary_switched
- adrp x0, __PHYS_OFFSET
- blr x8
- /*
- * If we return here, we have a KASLR displacement in x23 which we need
- * to take into account by discarding the current kernel mapping and
- * creating a new one.
- */
- pre_disable_mmu_workaround
- msr sctlr_el1, x20 // disable the MMU
- isb
- bl __create_page_tables // recreate kernel mapping
-
- tlbi vmalle1 // Remove any stale TLB entries
- dsb nsh
-
- msr sctlr_el1, x19 // re-enable the MMU
- isb
- ic iallu // flush instructions fetched
- dsb nsh // via old mapping
- isb
+ adrp x1, early_init_stack
+ mov sp, x1
+ mov x29, xzr
+ mov x0, x20 // pass the full boot status
+ mov x1, x21 // pass the FDT
+ bl __pi_early_map_kernel // Map and relocate the kernel
- bl __relocate_kernel
-#endif
-#endif
ldr x8, =__primary_switched
- adrp x0, __PHYS_OFFSET
+ adrp x0, KERNEL_START // __pa(KERNEL_START)
br x8
-ENDPROC(__primary_switch)
+SYM_FUNC_END(__primary_switch)