summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c
diff options
context:
space:
mode:
authorMichel Dänzer <michel.daenzer@amd.com>2015-01-08 13:27:15 +0900
committerOded Gabbay <oded.gabbay@amd.com>2015-01-08 13:27:15 +0900
commit6ee0ad2a7f27f7dc365576b748bc98684f02882d (patch)
tree11cb4e5dd5f9ae100ddd7df500ec446b4c48d39e /drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c
parenteaa27f34e91a14cdceed26ed6c6793ec1d186115 (diff)
drm/amdkfd: Drop interrupt SW ring buffer
The work queue couldn't reliably prevent the SW ring buffer from overflowing, so dmesg was spammed by kfd kfd: Interrupt ring overflow, dropping interrupt. messages when running e.g. the Atlantis Substance demo from https://wiki.unrealengine.com/Linux_Demos on Kaveri. Since the SW ring buffer doesn't actually do anything at this point, just remove it for now. When actual interrupt processing code is added to amdkfd, it should try to do things immediately and only defer to work queues when necessary. Signed-off-by: Michel Dänzer <michel.daenzer@amd.com> Reviewed-by: Christian König <christian.koenig@amd.com> Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
Diffstat (limited to 'drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c')
-rw-r--r--drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c176
1 files changed, 0 insertions, 176 deletions
diff --git a/drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c b/drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c
deleted file mode 100644
index 5b999095a1f7..000000000000
--- a/drivers/gpu/drm/amd/amdkfd/kfd_interrupt.c
+++ /dev/null
@@ -1,176 +0,0 @@
-/*
- * Copyright 2014 Advanced Micro Devices, Inc.
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
- * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- */
-
-/*
- * KFD Interrupts.
- *
- * AMD GPUs deliver interrupts by pushing an interrupt description onto the
- * interrupt ring and then sending an interrupt. KGD receives the interrupt
- * in ISR and sends us a pointer to each new entry on the interrupt ring.
- *
- * We generally can't process interrupt-signaled events from ISR, so we call
- * out to each interrupt client module (currently only the scheduler) to ask if
- * each interrupt is interesting. If they return true, then it requires further
- * processing so we copy it to an internal interrupt ring and call each
- * interrupt client again from a work-queue.
- *
- * There's no acknowledgment for the interrupts we use. The hardware simply
- * queues a new interrupt each time without waiting.
- *
- * The fixed-size internal queue means that it's possible for us to lose
- * interrupts because we have no back-pressure to the hardware.
- */
-
-#include <linux/slab.h>
-#include <linux/device.h>
-#include "kfd_priv.h"
-
-#define KFD_INTERRUPT_RING_SIZE 256
-
-static void interrupt_wq(struct work_struct *);
-
-int kfd_interrupt_init(struct kfd_dev *kfd)
-{
- void *interrupt_ring = kmalloc_array(KFD_INTERRUPT_RING_SIZE,
- kfd->device_info->ih_ring_entry_size,
- GFP_KERNEL);
- if (!interrupt_ring)
- return -ENOMEM;
-
- kfd->interrupt_ring = interrupt_ring;
- kfd->interrupt_ring_size =
- KFD_INTERRUPT_RING_SIZE * kfd->device_info->ih_ring_entry_size;
- atomic_set(&kfd->interrupt_ring_wptr, 0);
- atomic_set(&kfd->interrupt_ring_rptr, 0);
-
- spin_lock_init(&kfd->interrupt_lock);
-
- INIT_WORK(&kfd->interrupt_work, interrupt_wq);
-
- kfd->interrupts_active = true;
-
- /*
- * After this function returns, the interrupt will be enabled. This
- * barrier ensures that the interrupt running on a different processor
- * sees all the above writes.
- */
- smp_wmb();
-
- return 0;
-}
-
-void kfd_interrupt_exit(struct kfd_dev *kfd)
-{
- /*
- * Stop the interrupt handler from writing to the ring and scheduling
- * workqueue items. The spinlock ensures that any interrupt running
- * after we have unlocked sees interrupts_active = false.
- */
- unsigned long flags;
-
- spin_lock_irqsave(&kfd->interrupt_lock, flags);
- kfd->interrupts_active = false;
- spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
-
- /*
- * Flush_scheduled_work ensures that there are no outstanding
- * work-queue items that will access interrupt_ring. New work items
- * can't be created because we stopped interrupt handling above.
- */
- flush_scheduled_work();
-
- kfree(kfd->interrupt_ring);
-}
-
-/*
- * This assumes that it can't be called concurrently with itself
- * but only with dequeue_ih_ring_entry.
- */
-bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry)
-{
- unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
- unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
-
- if ((rptr - wptr) % kfd->interrupt_ring_size ==
- kfd->device_info->ih_ring_entry_size) {
- /* This is very bad, the system is likely to hang. */
- dev_err_ratelimited(kfd_chardev(),
- "Interrupt ring overflow, dropping interrupt.\n");
- return false;
- }
-
- memcpy(kfd->interrupt_ring + wptr, ih_ring_entry,
- kfd->device_info->ih_ring_entry_size);
-
- wptr = (wptr + kfd->device_info->ih_ring_entry_size) %
- kfd->interrupt_ring_size;
- smp_wmb(); /* Ensure memcpy'd data is visible before wptr update. */
- atomic_set(&kfd->interrupt_ring_wptr, wptr);
-
- return true;
-}
-
-/*
- * This assumes that it can't be called concurrently with itself
- * but only with enqueue_ih_ring_entry.
- */
-static bool dequeue_ih_ring_entry(struct kfd_dev *kfd, void *ih_ring_entry)
-{
- /*
- * Assume that wait queues have an implicit barrier, i.e. anything that
- * happened in the ISR before it queued work is visible.
- */
-
- unsigned int wptr = atomic_read(&kfd->interrupt_ring_wptr);
- unsigned int rptr = atomic_read(&kfd->interrupt_ring_rptr);
-
- if (rptr == wptr)
- return false;
-
- memcpy(ih_ring_entry, kfd->interrupt_ring + rptr,
- kfd->device_info->ih_ring_entry_size);
-
- rptr = (rptr + kfd->device_info->ih_ring_entry_size) %
- kfd->interrupt_ring_size;
-
- /*
- * Ensure the rptr write update is not visible until
- * memcpy has finished reading.
- */
- smp_mb();
- atomic_set(&kfd->interrupt_ring_rptr, rptr);
-
- return true;
-}
-
-static void interrupt_wq(struct work_struct *work)
-{
- struct kfd_dev *dev = container_of(work, struct kfd_dev,
- interrupt_work);
-
- uint32_t ih_ring_entry[DIV_ROUND_UP(
- dev->device_info->ih_ring_entry_size,
- sizeof(uint32_t))];
-
- while (dequeue_ih_ring_entry(dev, ih_ring_entry))
- ;
-}