/* * Copyright (c) 2016 Intel Corporation * * Permission to use, copy, modify, distribute, and sell this software and its * documentation for any purpose is hereby granted without fee, provided that * the above copyright notice appear in all copies and that both that copyright * notice and this permission notice appear in supporting documentation, and * that the name of the copyright holders not be used in advertising or * publicity pertaining to distribution of the software without specific, * written prior permission. The copyright holders make no representations * about the suitability of this software for any purpose. It is provided "as * is" without express or implied warranty. * * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #ifndef __DRM_ENCODER_H__ #define __DRM_ENCODER_H__ #include #include #include #include #include struct drm_encoder; /** * struct drm_encoder_funcs - encoder controls * * Encoders sit between CRTCs and connectors. */ struct drm_encoder_funcs { /** * @reset: * * Reset encoder hardware and software state to off. This function isn't * called by the core directly, only through drm_mode_config_reset(). * It's not a helper hook only for historical reasons. */ void (*reset)(struct drm_encoder *encoder); /** * @destroy: * * Clean up encoder resources. This is only called at driver unload time * through drm_mode_config_cleanup() since an encoder cannot be * hotplugged in DRM. */ void (*destroy)(struct drm_encoder *encoder); /** * @late_register: * * This optional hook can be used to register additional userspace * interfaces attached to the encoder like debugfs interfaces. * It is called late in the driver load sequence from drm_dev_register(). * Everything added from this callback should be unregistered in * the early_unregister callback. * * Returns: * * 0 on success, or a negative error code on failure. */ int (*late_register)(struct drm_encoder *encoder); /** * @early_unregister: * * This optional hook should be used to unregister the additional * userspace interfaces attached to the encoder from * @late_register. It is called from drm_dev_unregister(), * early in the driver unload sequence to disable userspace access * before data structures are torndown. */ void (*early_unregister)(struct drm_encoder *encoder); }; /** * struct drm_encoder - central DRM encoder structure * @dev: parent DRM device * @head: list management * @base: base KMS object * @name: human readable name, can be overwritten by the driver * @crtc: currently bound CRTC * @bridge: bridge associated to the encoder * @funcs: control functions * @helper_private: mid-layer private data * * CRTCs drive pixels to encoders, which convert them into signals * appropriate for a given connector or set of connectors. */ struct drm_encoder { struct drm_device *dev; struct list_head head; struct drm_mode_object base; char *name; /** * @encoder_type: * * One of the DRM_MODE_ENCODER_ types in drm_mode.h. The following * encoder types are defined thus far: * * - DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A. * * - DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort. * * - DRM_MODE_ENCODER_LVDS for display panels, or in general any panel * with a proprietary parallel connector. * * - DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, * Component, SCART). * * - DRM_MODE_ENCODER_VIRTUAL for virtual machine displays * * - DRM_MODE_ENCODER_DSI for panels connected using the DSI serial bus. * * - DRM_MODE_ENCODER_DPI for panels connected using the DPI parallel * bus. * * - DRM_MODE_ENCODER_DPMST for special fake encoders used to allow * mutliple DP MST streams to share one physical encoder. */ int encoder_type; /** * @index: Position inside the mode_config.list, can be used as an array * index. It is invariant over the lifetime of the encoder. */ unsigned index; /** * @possible_crtcs: Bitmask of potential CRTC bindings, using * drm_crtc_index() as the index into the bitfield. The driver must set * the bits for all &drm_crtc objects this encoder can be connected to * before calling drm_encoder_init(). * * In reality almost every driver gets this wrong. * * Note that since CRTC objects can't be hotplugged the assigned indices * are stable and hence known before registering all objects. */ uint32_t possible_crtcs; /** * @possible_clones: Bitmask of potential sibling encoders for cloning, * using drm_encoder_index() as the index into the bitfield. The driver * must set the bits for all &drm_encoder objects which can clone a * &drm_crtc together with this encoder before calling * drm_encoder_init(). Drivers should set the bit representing the * encoder itself, too. Cloning bits should be set such that when two * encoders can be used in a cloned configuration, they both should have * each another bits set. * * In reality almost every driver gets this wrong. * * Note that since encoder objects can't be hotplugged the assigned indices * are stable and hence known before registering all objects. */ uint32_t possible_clones; struct drm_crtc *crtc; struct drm_bridge *bridge; const struct drm_encoder_funcs *funcs; const struct drm_encoder_helper_funcs *helper_private; }; #define obj_to_encoder(x) container_of(x, struct drm_encoder, base) __printf(5, 6) int drm_encoder_init(struct drm_device *dev, struct drm_encoder *encoder, const struct drm_encoder_funcs *funcs, int encoder_type, const char *name, ...); /** * drm_encoder_index - find the index of a registered encoder * @encoder: encoder to find index for * * Given a registered encoder, return the index of that encoder within a DRM * device's list of encoders. */ static inline unsigned int drm_encoder_index(struct drm_encoder *encoder) { return encoder->index; } /** * drm_encoder_crtc_ok - can a given crtc drive a given encoder? * @encoder: encoder to test * @crtc: crtc to test * * Returns false if @encoder can't be driven by @crtc, true otherwise. */ static inline bool drm_encoder_crtc_ok(struct drm_encoder *encoder, struct drm_crtc *crtc) { return !!(encoder->possible_crtcs & drm_crtc_mask(crtc)); } /** * drm_encoder_find - find a &drm_encoder * @dev: DRM device * @id: encoder id * * Returns the encoder with @id, NULL if it doesn't exist. Simple wrapper around * drm_mode_object_find(). */ static inline struct drm_encoder *drm_encoder_find(struct drm_device *dev, uint32_t id) { struct drm_mode_object *mo; mo = drm_mode_object_find(dev, id, DRM_MODE_OBJECT_ENCODER); return mo ? obj_to_encoder(mo) : NULL; } void drm_encoder_cleanup(struct drm_encoder *encoder); /** * drm_for_each_encoder_mask - iterate over encoders specified by bitmask * @encoder: the loop cursor * @dev: the DRM device * @encoder_mask: bitmask of encoder indices * * Iterate over all encoders specified by bitmask. */ #define drm_for_each_encoder_mask(encoder, dev, encoder_mask) \ list_for_each_entry((encoder), &(dev)->mode_config.encoder_list, head) \ for_each_if ((encoder_mask) & (1 << drm_encoder_index(encoder))) /** * drm_for_each_encoder - iterate over all encoders * @encoder: the loop cursor * @dev: the DRM device * * Iterate over all encoders of @dev. */ #define drm_for_each_encoder(encoder, dev) \ list_for_each_entry(encoder, &(dev)->mode_config.encoder_list, head) #endif