/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "drmP.h" #include "radeon.h" #include "radeon_asic.h" #include "sumod.h" #include "r600_dpm.h" #include "cypress_dpm.h" #include "sumo_dpm.h" #include #define SUMO_MAX_DEEPSLEEP_DIVIDER_ID 5 #define SUMO_MINIMUM_ENGINE_CLOCK 800 #define BOOST_DPM_LEVEL 7 static const u32 sumo_utc[SUMO_PM_NUMBER_OF_TC] = { SUMO_UTC_DFLT_00, SUMO_UTC_DFLT_01, SUMO_UTC_DFLT_02, SUMO_UTC_DFLT_03, SUMO_UTC_DFLT_04, SUMO_UTC_DFLT_05, SUMO_UTC_DFLT_06, SUMO_UTC_DFLT_07, SUMO_UTC_DFLT_08, SUMO_UTC_DFLT_09, SUMO_UTC_DFLT_10, SUMO_UTC_DFLT_11, SUMO_UTC_DFLT_12, SUMO_UTC_DFLT_13, SUMO_UTC_DFLT_14, }; static const u32 sumo_dtc[SUMO_PM_NUMBER_OF_TC] = { SUMO_DTC_DFLT_00, SUMO_DTC_DFLT_01, SUMO_DTC_DFLT_02, SUMO_DTC_DFLT_03, SUMO_DTC_DFLT_04, SUMO_DTC_DFLT_05, SUMO_DTC_DFLT_06, SUMO_DTC_DFLT_07, SUMO_DTC_DFLT_08, SUMO_DTC_DFLT_09, SUMO_DTC_DFLT_10, SUMO_DTC_DFLT_11, SUMO_DTC_DFLT_12, SUMO_DTC_DFLT_13, SUMO_DTC_DFLT_14, }; static struct sumo_ps *sumo_get_ps(struct radeon_ps *rps) { struct sumo_ps *ps = rps->ps_priv; return ps; } struct sumo_power_info *sumo_get_pi(struct radeon_device *rdev) { struct sumo_power_info *pi = rdev->pm.dpm.priv; return pi; } static void sumo_gfx_clockgating_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(SCLK_PWRMGT_CNTL, DYN_GFX_CLK_OFF_EN, ~DYN_GFX_CLK_OFF_EN); else { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~DYN_GFX_CLK_OFF_EN); WREG32_P(SCLK_PWRMGT_CNTL, GFX_CLK_FORCE_ON, ~GFX_CLK_FORCE_ON); WREG32_P(SCLK_PWRMGT_CNTL, 0, ~GFX_CLK_FORCE_ON); RREG32(GB_ADDR_CONFIG); } } #define CGCG_CGTT_LOCAL0_MASK 0xE5BFFFFF #define CGCG_CGTT_LOCAL1_MASK 0xEFFF07FF static void sumo_mg_clockgating_enable(struct radeon_device *rdev, bool enable) { u32 local0; u32 local1; local0 = RREG32(CG_CGTT_LOCAL_0); local1 = RREG32(CG_CGTT_LOCAL_1); if (enable) { WREG32(CG_CGTT_LOCAL_0, (0 & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) ); WREG32(CG_CGTT_LOCAL_1, (0 & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) ); } else { WREG32(CG_CGTT_LOCAL_0, (0xFFFFFFFF & CGCG_CGTT_LOCAL0_MASK) | (local0 & ~CGCG_CGTT_LOCAL0_MASK) ); WREG32(CG_CGTT_LOCAL_1, (0xFFFFCFFF & CGCG_CGTT_LOCAL1_MASK) | (local1 & ~CGCG_CGTT_LOCAL1_MASK) ); } } static void sumo_program_git(struct radeon_device *rdev) { u32 p, u; u32 xclk = radeon_get_xclk(rdev); r600_calculate_u_and_p(SUMO_GICST_DFLT, xclk, 16, &p, &u); WREG32_P(CG_GIT, CG_GICST(p), ~CG_GICST_MASK); } static void sumo_program_grsd(struct radeon_device *rdev) { u32 p, u; u32 xclk = radeon_get_xclk(rdev); u32 grs = 256 * 25 / 100; r600_calculate_u_and_p(1, xclk, 14, &p, &u); WREG32(CG_GCOOR, PHC(grs) | SDC(p) | SU(u)); } void sumo_gfx_clockgating_initialize(struct radeon_device *rdev) { sumo_program_git(rdev); sumo_program_grsd(rdev); } static void sumo_gfx_powergating_initialize(struct radeon_device *rdev) { u32 rcu_pwr_gating_cntl; u32 p, u; u32 p_c, p_p, d_p; u32 r_t, i_t; u32 xclk = radeon_get_xclk(rdev); if (rdev->family == CHIP_PALM) { p_c = 4; d_p = 10; r_t = 10; i_t = 4; p_p = 50 + 1000/200 + 6 * 32; } else { p_c = 16; d_p = 50; r_t = 50; i_t = 50; p_p = 113; } WREG32(CG_SCRATCH2, 0x01B60A17); r600_calculate_u_and_p(SUMO_GFXPOWERGATINGT_DFLT, xclk, 16, &p, &u); WREG32_P(CG_PWR_GATING_CNTL, PGP(p) | PGU(u), ~(PGP_MASK | PGU_MASK)); r600_calculate_u_and_p(SUMO_VOLTAGEDROPT_DFLT, xclk, 16, &p, &u); WREG32_P(CG_CG_VOLTAGE_CNTL, PGP(p) | PGU(u), ~(PGP_MASK | PGU_MASK)); if (rdev->family == CHIP_PALM) { WREG32_RCU(RCU_PWR_GATING_SEQ0, 0x10103210); WREG32_RCU(RCU_PWR_GATING_SEQ1, 0x10101010); } else { WREG32_RCU(RCU_PWR_GATING_SEQ0, 0x76543210); WREG32_RCU(RCU_PWR_GATING_SEQ1, 0xFEDCBA98); } rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL); rcu_pwr_gating_cntl &= ~(RSVD_MASK | PCV_MASK | PGS_MASK); rcu_pwr_gating_cntl |= PCV(p_c) | PGS(1) | PWR_GATING_EN; if (rdev->family == CHIP_PALM) { rcu_pwr_gating_cntl &= ~PCP_MASK; rcu_pwr_gating_cntl |= PCP(0x77); } WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl); rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2); rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK); rcu_pwr_gating_cntl |= MPPU(p_p) | MPPD(50); WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl); rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3); rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK); rcu_pwr_gating_cntl |= DPPU(d_p) | DPPD(50); WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl); rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_4); rcu_pwr_gating_cntl &= ~(RT_MASK | IT_MASK); rcu_pwr_gating_cntl |= RT(r_t) | IT(i_t); WREG32_RCU(RCU_PWR_GATING_CNTL_4, rcu_pwr_gating_cntl); if (rdev->family == CHIP_PALM) WREG32_RCU(RCU_PWR_GATING_CNTL_5, 0xA02); sumo_smu_pg_init(rdev); rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL); rcu_pwr_gating_cntl &= ~(RSVD_MASK | PCV_MASK | PGS_MASK); rcu_pwr_gating_cntl |= PCV(p_c) | PGS(4) | PWR_GATING_EN; if (rdev->family == CHIP_PALM) { rcu_pwr_gating_cntl &= ~PCP_MASK; rcu_pwr_gating_cntl |= PCP(0x77); } WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl); if (rdev->family == CHIP_PALM) { rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2); rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK); rcu_pwr_gating_cntl |= MPPU(113) | MPPD(50); WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl); rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3); rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK); rcu_pwr_gating_cntl |= DPPU(16) | DPPD(50); WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl); } sumo_smu_pg_init(rdev); rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL); rcu_pwr_gating_cntl &= ~(RSVD_MASK | PCV_MASK | PGS_MASK); rcu_pwr_gating_cntl |= PGS(5) | PWR_GATING_EN; if (rdev->family == CHIP_PALM) { rcu_pwr_gating_cntl |= PCV(4); rcu_pwr_gating_cntl &= ~PCP_MASK; rcu_pwr_gating_cntl |= PCP(0x77); } else rcu_pwr_gating_cntl |= PCV(11); WREG32_RCU(RCU_PWR_GATING_CNTL, rcu_pwr_gating_cntl); if (rdev->family == CHIP_PALM) { rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_2); rcu_pwr_gating_cntl &= ~(MPPU_MASK | MPPD_MASK); rcu_pwr_gating_cntl |= MPPU(113) | MPPD(50); WREG32_RCU(RCU_PWR_GATING_CNTL_2, rcu_pwr_gating_cntl); rcu_pwr_gating_cntl = RREG32_RCU(RCU_PWR_GATING_CNTL_3); rcu_pwr_gating_cntl &= ~(DPPU_MASK | DPPD_MASK); rcu_pwr_gating_cntl |= DPPU(22) | DPPD(50); WREG32_RCU(RCU_PWR_GATING_CNTL_3, rcu_pwr_gating_cntl); } sumo_smu_pg_init(rdev); } static void sumo_gfx_powergating_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(CG_PWR_GATING_CNTL, DYN_PWR_DOWN_EN, ~DYN_PWR_DOWN_EN); else { WREG32_P(CG_PWR_GATING_CNTL, 0, ~DYN_PWR_DOWN_EN); RREG32(GB_ADDR_CONFIG); } } static int sumo_enable_clock_power_gating(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); if (pi->enable_gfx_clock_gating) sumo_gfx_clockgating_initialize(rdev); if (pi->enable_gfx_power_gating) sumo_gfx_powergating_initialize(rdev); if (pi->enable_mg_clock_gating) sumo_mg_clockgating_enable(rdev, true); if (pi->enable_gfx_clock_gating) sumo_gfx_clockgating_enable(rdev, true); if (pi->enable_gfx_power_gating) sumo_gfx_powergating_enable(rdev, true); return 0; } static void sumo_disable_clock_power_gating(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); if (pi->enable_gfx_clock_gating) sumo_gfx_clockgating_enable(rdev, false); if (pi->enable_gfx_power_gating) sumo_gfx_powergating_enable(rdev, false); if (pi->enable_mg_clock_gating) sumo_mg_clockgating_enable(rdev, false); } static void sumo_calculate_bsp(struct radeon_device *rdev, u32 high_clk) { struct sumo_power_info *pi = sumo_get_pi(rdev); u32 xclk = radeon_get_xclk(rdev); pi->pasi = 65535 * 100 / high_clk; pi->asi = 65535 * 100 / high_clk; r600_calculate_u_and_p(pi->asi, xclk, 16, &pi->bsp, &pi->bsu); r600_calculate_u_and_p(pi->pasi, xclk, 16, &pi->pbsp, &pi->pbsu); pi->dsp = BSP(pi->bsp) | BSU(pi->bsu); pi->psp = BSP(pi->pbsp) | BSU(pi->pbsu); } static void sumo_init_bsp(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); WREG32(CG_BSP_0, pi->psp); } static void sumo_program_bsp(struct radeon_device *rdev, struct radeon_ps *rps) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct sumo_ps *ps = sumo_get_ps(rps); u32 i; u32 highest_engine_clock = ps->levels[ps->num_levels - 1].sclk; if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) highest_engine_clock = pi->boost_pl.sclk; sumo_calculate_bsp(rdev, highest_engine_clock); for (i = 0; i < ps->num_levels - 1; i++) WREG32(CG_BSP_0 + (i * 4), pi->dsp); WREG32(CG_BSP_0 + (i * 4), pi->psp); if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) WREG32(CG_BSP_0 + (BOOST_DPM_LEVEL * 4), pi->psp); } static void sumo_write_at(struct radeon_device *rdev, u32 index, u32 value) { if (index == 0) WREG32(CG_AT_0, value); else if (index == 1) WREG32(CG_AT_1, value); else if (index == 2) WREG32(CG_AT_2, value); else if (index == 3) WREG32(CG_AT_3, value); else if (index == 4) WREG32(CG_AT_4, value); else if (index == 5) WREG32(CG_AT_5, value); else if (index == 6) WREG32(CG_AT_6, value); else if (index == 7) WREG32(CG_AT_7, value); } static void sumo_program_at(struct radeon_device *rdev, struct radeon_ps *rps) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct sumo_ps *ps = sumo_get_ps(rps); u32 asi; u32 i; u32 m_a; u32 a_t; u32 r[SUMO_MAX_HARDWARE_POWERLEVELS]; u32 l[SUMO_MAX_HARDWARE_POWERLEVELS]; r[0] = SUMO_R_DFLT0; r[1] = SUMO_R_DFLT1; r[2] = SUMO_R_DFLT2; r[3] = SUMO_R_DFLT3; r[4] = SUMO_R_DFLT4; l[0] = SUMO_L_DFLT0; l[1] = SUMO_L_DFLT1; l[2] = SUMO_L_DFLT2; l[3] = SUMO_L_DFLT3; l[4] = SUMO_L_DFLT4; for (i = 0; i < ps->num_levels; i++) { asi = (i == ps->num_levels - 1) ? pi->pasi : pi->asi; m_a = asi * ps->levels[i].sclk / 100; a_t = CG_R(m_a * r[i] / 100) | CG_L(m_a * l[i] / 100); sumo_write_at(rdev, i, a_t); } if (ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) { asi = pi->pasi; m_a = asi * pi->boost_pl.sclk / 100; a_t = CG_R(m_a * r[ps->num_levels - 1] / 100) | CG_L(m_a * l[ps->num_levels - 1] / 100); sumo_write_at(rdev, BOOST_DPM_LEVEL, a_t); } } static void sumo_program_tp(struct radeon_device *rdev) { int i; enum r600_td td = R600_TD_DFLT; for (i = 0; i < SUMO_PM_NUMBER_OF_TC; i++) { WREG32_P(CG_FFCT_0 + (i * 4), UTC_0(sumo_utc[i]), ~UTC_0_MASK); WREG32_P(CG_FFCT_0 + (i * 4), DTC_0(sumo_dtc[i]), ~DTC_0_MASK); } if (td == R600_TD_AUTO) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_FORCE_TREND_SEL); else WREG32_P(SCLK_PWRMGT_CNTL, FIR_FORCE_TREND_SEL, ~FIR_FORCE_TREND_SEL); if (td == R600_TD_UP) WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_TREND_MODE); if (td == R600_TD_DOWN) WREG32_P(SCLK_PWRMGT_CNTL, FIR_TREND_MODE, ~FIR_TREND_MODE); } void sumo_program_vc(struct radeon_device *rdev, u32 vrc) { WREG32(CG_FTV, vrc); } void sumo_clear_vc(struct radeon_device *rdev) { WREG32(CG_FTV, 0); } void sumo_program_sstp(struct radeon_device *rdev) { u32 p, u; u32 xclk = radeon_get_xclk(rdev); r600_calculate_u_and_p(SUMO_SST_DFLT, xclk, 16, &p, &u); WREG32(CG_SSP, SSTU(u) | SST(p)); } static void sumo_set_divider_value(struct radeon_device *rdev, u32 index, u32 divider) { u32 reg_index = index / 4; u32 field_index = index % 4; if (field_index == 0) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), SCLK_FSTATE_0_DIV(divider), ~SCLK_FSTATE_0_DIV_MASK); else if (field_index == 1) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), SCLK_FSTATE_1_DIV(divider), ~SCLK_FSTATE_1_DIV_MASK); else if (field_index == 2) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), SCLK_FSTATE_2_DIV(divider), ~SCLK_FSTATE_2_DIV_MASK); else if (field_index == 3) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), SCLK_FSTATE_3_DIV(divider), ~SCLK_FSTATE_3_DIV_MASK); } static void sumo_set_ds_dividers(struct radeon_device *rdev, u32 index, u32 divider) { struct sumo_power_info *pi = sumo_get_pi(rdev); if (pi->enable_sclk_ds) { u32 dpm_ctrl = RREG32(CG_SCLK_DPM_CTRL_6); dpm_ctrl &= ~(0x7 << (index * 3)); dpm_ctrl |= (divider << (index * 3)); WREG32(CG_SCLK_DPM_CTRL_6, dpm_ctrl); } } static void sumo_set_ss_dividers(struct radeon_device *rdev, u32 index, u32 divider) { struct sumo_power_info *pi = sumo_get_pi(rdev); if (pi->enable_sclk_ds) { u32 dpm_ctrl = RREG32(CG_SCLK_DPM_CTRL_11); dpm_ctrl &= ~(0x7 << (index * 3)); dpm_ctrl |= (divider << (index * 3)); WREG32(CG_SCLK_DPM_CTRL_11, dpm_ctrl); } } static void sumo_set_vid(struct radeon_device *rdev, u32 index, u32 vid) { u32 voltage_cntl = RREG32(CG_DPM_VOLTAGE_CNTL); voltage_cntl &= ~(DPM_STATE0_LEVEL_MASK << (index * 2)); voltage_cntl |= (vid << (DPM_STATE0_LEVEL_SHIFT + index * 2)); WREG32(CG_DPM_VOLTAGE_CNTL, voltage_cntl); } static void sumo_set_allos_gnb_slow(struct radeon_device *rdev, u32 index, u32 gnb_slow) { struct sumo_power_info *pi = sumo_get_pi(rdev); u32 temp = gnb_slow; u32 cg_sclk_dpm_ctrl_3; if (pi->driver_nbps_policy_disable) temp = 1; cg_sclk_dpm_ctrl_3 = RREG32(CG_SCLK_DPM_CTRL_3); cg_sclk_dpm_ctrl_3 &= ~(GNB_SLOW_FSTATE_0_MASK << index); cg_sclk_dpm_ctrl_3 |= (temp << (GNB_SLOW_FSTATE_0_SHIFT + index)); WREG32(CG_SCLK_DPM_CTRL_3, cg_sclk_dpm_ctrl_3); } static void sumo_program_power_level(struct radeon_device *rdev, struct sumo_pl *pl, u32 index) { struct sumo_power_info *pi = sumo_get_pi(rdev); int ret; struct atom_clock_dividers dividers; u32 ds_en = RREG32(DEEP_SLEEP_CNTL) & ENABLE_DS; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, pl->sclk, false, ÷rs); if (ret) return; sumo_set_divider_value(rdev, index, dividers.post_div); sumo_set_vid(rdev, index, pl->vddc_index); if (pl->ss_divider_index == 0 || pl->ds_divider_index == 0) { if (ds_en) WREG32_P(DEEP_SLEEP_CNTL, 0, ~ENABLE_DS); } else { sumo_set_ss_dividers(rdev, index, pl->ss_divider_index); sumo_set_ds_dividers(rdev, index, pl->ds_divider_index); if (!ds_en) WREG32_P(DEEP_SLEEP_CNTL, ENABLE_DS, ~ENABLE_DS); } sumo_set_allos_gnb_slow(rdev, index, pl->allow_gnb_slow); if (pi->enable_boost) sumo_set_tdp_limit(rdev, index, pl->sclk_dpm_tdp_limit); } static void sumo_power_level_enable(struct radeon_device *rdev, u32 index, bool enable) { u32 reg_index = index / 4; u32 field_index = index % 4; if (field_index == 0) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), enable ? SCLK_FSTATE_0_VLD : 0, ~SCLK_FSTATE_0_VLD); else if (field_index == 1) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), enable ? SCLK_FSTATE_1_VLD : 0, ~SCLK_FSTATE_1_VLD); else if (field_index == 2) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), enable ? SCLK_FSTATE_2_VLD : 0, ~SCLK_FSTATE_2_VLD); else if (field_index == 3) WREG32_P(CG_SCLK_DPM_CTRL + (reg_index * 4), enable ? SCLK_FSTATE_3_VLD : 0, ~SCLK_FSTATE_3_VLD); } static bool sumo_dpm_enabled(struct radeon_device *rdev) { if (RREG32(CG_SCLK_DPM_CTRL_3) & DPM_SCLK_ENABLE) return true; else return false; } static void sumo_start_dpm(struct radeon_device *rdev) { WREG32_P(CG_SCLK_DPM_CTRL_3, DPM_SCLK_ENABLE, ~DPM_SCLK_ENABLE); } static void sumo_stop_dpm(struct radeon_device *rdev) { WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~DPM_SCLK_ENABLE); } static void sumo_set_forced_mode(struct radeon_device *rdev, bool enable) { if (enable) WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_SCLK_STATE_EN, ~FORCE_SCLK_STATE_EN); else WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~FORCE_SCLK_STATE_EN); } static void sumo_set_forced_mode_enabled(struct radeon_device *rdev) { int i; sumo_set_forced_mode(rdev, true); for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(CG_SCLK_STATUS) & SCLK_OVERCLK_DETECT) break; udelay(1); } } static void sumo_wait_for_level_0(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) == 0) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) == 0) break; udelay(1); } } static void sumo_set_forced_mode_disabled(struct radeon_device *rdev) { sumo_set_forced_mode(rdev, false); } static void sumo_enable_power_level_0(struct radeon_device *rdev) { sumo_power_level_enable(rdev, 0, true); } static void sumo_patch_boost_state(struct radeon_device *rdev, struct radeon_ps *rps) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct sumo_ps *new_ps = sumo_get_ps(rps); if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) { pi->boost_pl = new_ps->levels[new_ps->num_levels - 1]; pi->boost_pl.sclk = pi->sys_info.boost_sclk; pi->boost_pl.vddc_index = pi->sys_info.boost_vid_2bit; pi->boost_pl.sclk_dpm_tdp_limit = pi->sys_info.sclk_dpm_tdp_limit_boost; } } static void sumo_pre_notify_alt_vddnb_change(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct sumo_ps *new_ps = sumo_get_ps(new_rps); struct sumo_ps *old_ps = sumo_get_ps(old_rps); u32 nbps1_old = 0; u32 nbps1_new = 0; if (old_ps != NULL) nbps1_old = (old_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) ? 1 : 0; nbps1_new = (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) ? 1 : 0; if (nbps1_old == 1 && nbps1_new == 0) sumo_smu_notify_alt_vddnb_change(rdev, 0, 0); } static void sumo_post_notify_alt_vddnb_change(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct sumo_ps *new_ps = sumo_get_ps(new_rps); struct sumo_ps *old_ps = sumo_get_ps(old_rps); u32 nbps1_old = 0; u32 nbps1_new = 0; if (old_ps != NULL) nbps1_old = (old_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)? 1 : 0; nbps1_new = (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE)? 1 : 0; if (nbps1_old == 0 && nbps1_new == 1) sumo_smu_notify_alt_vddnb_change(rdev, 1, 1); } static void sumo_enable_boost(struct radeon_device *rdev, struct radeon_ps *rps, bool enable) { struct sumo_ps *new_ps = sumo_get_ps(rps); if (enable) { if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) sumo_boost_state_enable(rdev, true); } else sumo_boost_state_enable(rdev, false); } static void sumo_set_forced_level(struct radeon_device *rdev, u32 index) { WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_SCLK_STATE(index), ~FORCE_SCLK_STATE_MASK); } static void sumo_set_forced_level_0(struct radeon_device *rdev) { sumo_set_forced_level(rdev, 0); } static void sumo_program_wl(struct radeon_device *rdev, struct radeon_ps *rps) { struct sumo_ps *new_ps = sumo_get_ps(rps); u32 dpm_ctrl4 = RREG32(CG_SCLK_DPM_CTRL_4); dpm_ctrl4 &= 0xFFFFFF00; dpm_ctrl4 |= (1 << (new_ps->num_levels - 1)); if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) dpm_ctrl4 |= (1 << BOOST_DPM_LEVEL); WREG32(CG_SCLK_DPM_CTRL_4, dpm_ctrl4); } static void sumo_program_power_levels_0_to_n(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct sumo_ps *new_ps = sumo_get_ps(new_rps); struct sumo_ps *old_ps = sumo_get_ps(old_rps); u32 i; u32 n_current_state_levels = (old_ps == NULL) ? 1 : old_ps->num_levels; for (i = 0; i < new_ps->num_levels; i++) { sumo_program_power_level(rdev, &new_ps->levels[i], i); sumo_power_level_enable(rdev, i, true); } for (i = new_ps->num_levels; i < n_current_state_levels; i++) sumo_power_level_enable(rdev, i, false); if (new_ps->flags & SUMO_POWERSTATE_FLAGS_BOOST_STATE) sumo_program_power_level(rdev, &pi->boost_pl, BOOST_DPM_LEVEL); } static void sumo_enable_acpi_pm(struct radeon_device *rdev) { WREG32_P(GENERAL_PWRMGT, STATIC_PM_EN, ~STATIC_PM_EN); } static void sumo_program_power_level_enter_state(struct radeon_device *rdev) { WREG32_P(CG_SCLK_DPM_CTRL_5, SCLK_FSTATE_BOOTUP(0), ~SCLK_FSTATE_BOOTUP_MASK); } static void sumo_program_acpi_power_level(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct atom_clock_dividers dividers; int ret; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, pi->acpi_pl.sclk, false, ÷rs); if (ret) return; WREG32_P(CG_ACPI_CNTL, SCLK_ACPI_DIV(dividers.post_div), ~SCLK_ACPI_DIV_MASK); WREG32_P(CG_ACPI_VOLTAGE_CNTL, 0, ~ACPI_VOLTAGE_EN); } static void sumo_program_bootup_state(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); u32 dpm_ctrl4 = RREG32(CG_SCLK_DPM_CTRL_4); u32 i; sumo_program_power_level(rdev, &pi->boot_pl, 0); dpm_ctrl4 &= 0xFFFFFF00; WREG32(CG_SCLK_DPM_CTRL_4, dpm_ctrl4); for (i = 1; i < 8; i++) sumo_power_level_enable(rdev, i, false); } static void sumo_setup_uvd_clocks(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct sumo_power_info *pi = sumo_get_pi(rdev); if (pi->enable_gfx_power_gating) { sumo_gfx_powergating_enable(rdev, false); } radeon_set_uvd_clocks(rdev, new_rps->vclk, new_rps->dclk); if (pi->enable_gfx_power_gating) { if (!pi->disable_gfx_power_gating_in_uvd || !r600_is_uvd_state(new_rps->class, new_rps->class2)) sumo_gfx_powergating_enable(rdev, true); } } static void sumo_set_uvd_clock_before_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct sumo_ps *new_ps = sumo_get_ps(new_rps); struct sumo_ps *current_ps = sumo_get_ps(old_rps); if ((new_rps->vclk == old_rps->vclk) && (new_rps->dclk == old_rps->dclk)) return; if (new_ps->levels[new_ps->num_levels - 1].sclk >= current_ps->levels[current_ps->num_levels - 1].sclk) return; sumo_setup_uvd_clocks(rdev, new_rps, old_rps); } static void sumo_set_uvd_clock_after_set_eng_clock(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct sumo_ps *new_ps = sumo_get_ps(new_rps); struct sumo_ps *current_ps = sumo_get_ps(old_rps); if ((new_rps->vclk == old_rps->vclk) && (new_rps->dclk == old_rps->dclk)) return; if (new_ps->levels[new_ps->num_levels - 1].sclk < current_ps->levels[current_ps->num_levels - 1].sclk) return; sumo_setup_uvd_clocks(rdev, new_rps, old_rps); } void sumo_take_smu_control(struct radeon_device *rdev, bool enable) { /* This bit selects who handles display phy powergating. * Clear the bit to let atom handle it. * Set it to let the driver handle it. * For now we just let atom handle it. */ #if 0 u32 v = RREG32(DOUT_SCRATCH3); if (enable) v |= 0x4; else v &= 0xFFFFFFFB; WREG32(DOUT_SCRATCH3, v); #endif } static void sumo_enable_sclk_ds(struct radeon_device *rdev, bool enable) { if (enable) { u32 deep_sleep_cntl = RREG32(DEEP_SLEEP_CNTL); u32 deep_sleep_cntl2 = RREG32(DEEP_SLEEP_CNTL2); u32 t = 1; deep_sleep_cntl &= ~R_DIS; deep_sleep_cntl &= ~HS_MASK; deep_sleep_cntl |= HS(t > 4095 ? 4095 : t); deep_sleep_cntl2 |= LB_UFP_EN; deep_sleep_cntl2 &= INOUT_C_MASK; deep_sleep_cntl2 |= INOUT_C(0xf); WREG32(DEEP_SLEEP_CNTL2, deep_sleep_cntl2); WREG32(DEEP_SLEEP_CNTL, deep_sleep_cntl); } else WREG32_P(DEEP_SLEEP_CNTL, 0, ~ENABLE_DS); } static void sumo_program_bootup_at(struct radeon_device *rdev) { WREG32_P(CG_AT_0, CG_R(0xffff), ~CG_R_MASK); WREG32_P(CG_AT_0, CG_L(0), ~CG_L_MASK); } static void sumo_reset_am(struct radeon_device *rdev) { WREG32_P(SCLK_PWRMGT_CNTL, FIR_RESET, ~FIR_RESET); } static void sumo_start_am(struct radeon_device *rdev) { WREG32_P(SCLK_PWRMGT_CNTL, 0, ~FIR_RESET); } static void sumo_program_ttp(struct radeon_device *rdev) { u32 xclk = radeon_get_xclk(rdev); u32 p, u; u32 cg_sclk_dpm_ctrl_5 = RREG32(CG_SCLK_DPM_CTRL_5); r600_calculate_u_and_p(1000, xclk, 16, &p, &u); cg_sclk_dpm_ctrl_5 &= ~(TT_TP_MASK | TT_TU_MASK); cg_sclk_dpm_ctrl_5 |= TT_TP(p) | TT_TU(u); WREG32(CG_SCLK_DPM_CTRL_5, cg_sclk_dpm_ctrl_5); } static void sumo_program_ttt(struct radeon_device *rdev) { u32 cg_sclk_dpm_ctrl_3 = RREG32(CG_SCLK_DPM_CTRL_3); struct sumo_power_info *pi = sumo_get_pi(rdev); cg_sclk_dpm_ctrl_3 &= ~(GNB_TT_MASK | GNB_THERMTHRO_MASK); cg_sclk_dpm_ctrl_3 |= GNB_TT(pi->thermal_auto_throttling + 49); WREG32(CG_SCLK_DPM_CTRL_3, cg_sclk_dpm_ctrl_3); } static void sumo_enable_voltage_scaling(struct radeon_device *rdev, bool enable) { if (enable) { WREG32_P(CG_DPM_VOLTAGE_CNTL, DPM_VOLTAGE_EN, ~DPM_VOLTAGE_EN); WREG32_P(CG_CG_VOLTAGE_CNTL, 0, ~CG_VOLTAGE_EN); } else { WREG32_P(CG_CG_VOLTAGE_CNTL, CG_VOLTAGE_EN, ~CG_VOLTAGE_EN); WREG32_P(CG_DPM_VOLTAGE_CNTL, 0, ~DPM_VOLTAGE_EN); } } static void sumo_override_cnb_thermal_events(struct radeon_device *rdev) { WREG32_P(CG_SCLK_DPM_CTRL_3, CNB_THERMTHRO_MASK_SCLK, ~CNB_THERMTHRO_MASK_SCLK); } static void sumo_program_dc_hto(struct radeon_device *rdev) { u32 cg_sclk_dpm_ctrl_4 = RREG32(CG_SCLK_DPM_CTRL_4); u32 p, u; u32 xclk = radeon_get_xclk(rdev); r600_calculate_u_and_p(100000, xclk, 14, &p, &u); cg_sclk_dpm_ctrl_4 &= ~(DC_HDC_MASK | DC_HU_MASK); cg_sclk_dpm_ctrl_4 |= DC_HDC(p) | DC_HU(u); WREG32(CG_SCLK_DPM_CTRL_4, cg_sclk_dpm_ctrl_4); } static void sumo_force_nbp_state(struct radeon_device *rdev, struct radeon_ps *rps) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct sumo_ps *new_ps = sumo_get_ps(rps); if (!pi->driver_nbps_policy_disable) { if (new_ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) WREG32_P(CG_SCLK_DPM_CTRL_3, FORCE_NB_PSTATE_1, ~FORCE_NB_PSTATE_1); else WREG32_P(CG_SCLK_DPM_CTRL_3, 0, ~FORCE_NB_PSTATE_1); } } u32 sumo_get_sleep_divider_from_id(u32 id) { return 1 << id; } u32 sumo_get_sleep_divider_id_from_clock(struct radeon_device *rdev, u32 sclk, u32 min_sclk_in_sr) { struct sumo_power_info *pi = sumo_get_pi(rdev); u32 i; u32 temp; u32 min = (min_sclk_in_sr > SUMO_MINIMUM_ENGINE_CLOCK) ? min_sclk_in_sr : SUMO_MINIMUM_ENGINE_CLOCK; if (sclk < min) return 0; if (!pi->enable_sclk_ds) return 0; for (i = SUMO_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { temp = sclk / sumo_get_sleep_divider_from_id(i); if (temp >= min || i == 0) break; } return i; } static u32 sumo_get_valid_engine_clock(struct radeon_device *rdev, u32 lower_limit) { struct sumo_power_info *pi = sumo_get_pi(rdev); u32 i; for (i = 0; i < pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries; i++) { if (pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency >= lower_limit) return pi->sys_info.sclk_voltage_mapping_table.entries[i].sclk_frequency; } return pi->sys_info.sclk_voltage_mapping_table.entries[pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1].sclk_frequency; } static void sumo_patch_thermal_state(struct radeon_device *rdev, struct sumo_ps *ps, struct sumo_ps *current_ps) { struct sumo_power_info *pi = sumo_get_pi(rdev); u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */ u32 current_vddc; u32 current_sclk; u32 current_index = 0; if (current_ps) { current_vddc = current_ps->levels[current_index].vddc_index; current_sclk = current_ps->levels[current_index].sclk; } else { current_vddc = pi->boot_pl.vddc_index; current_sclk = pi->boot_pl.sclk; } ps->levels[0].vddc_index = current_vddc; if (ps->levels[0].sclk > current_sclk) ps->levels[0].sclk = current_sclk; ps->levels[0].ss_divider_index = sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, sclk_in_sr); ps->levels[0].ds_divider_index = sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[0].sclk, SUMO_MINIMUM_ENGINE_CLOCK); if (ps->levels[0].ds_divider_index > ps->levels[0].ss_divider_index + 1) ps->levels[0].ds_divider_index = ps->levels[0].ss_divider_index + 1; if (ps->levels[0].ss_divider_index == ps->levels[0].ds_divider_index) { if (ps->levels[0].ss_divider_index > 1) ps->levels[0].ss_divider_index = ps->levels[0].ss_divider_index - 1; } if (ps->levels[0].ss_divider_index == 0) ps->levels[0].ds_divider_index = 0; if (ps->levels[0].ds_divider_index == 0) ps->levels[0].ss_divider_index = 0; } static void sumo_apply_state_adjust_rules(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct sumo_ps *ps = sumo_get_ps(new_rps); struct sumo_ps *current_ps = sumo_get_ps(old_rps); struct sumo_power_info *pi = sumo_get_pi(rdev); u32 min_voltage = 0; /* ??? */ u32 min_sclk = pi->sys_info.min_sclk; /* XXX check against disp reqs */ u32 sclk_in_sr = pi->sys_info.min_sclk; /* ??? */ u32 i; if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_THERMAL) return sumo_patch_thermal_state(rdev, ps, current_ps); if (pi->enable_boost) { if (new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_PERFORMANCE) ps->flags |= SUMO_POWERSTATE_FLAGS_BOOST_STATE; } if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) || (new_rps->class & ATOM_PPLIB_CLASSIFICATION_SDSTATE) || (new_rps->class & ATOM_PPLIB_CLASSIFICATION_HDSTATE)) ps->flags |= SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE; for (i = 0; i < ps->num_levels; i++) { if (ps->levels[i].vddc_index < min_voltage) ps->levels[i].vddc_index = min_voltage; if (ps->levels[i].sclk < min_sclk) ps->levels[i].sclk = sumo_get_valid_engine_clock(rdev, min_sclk); ps->levels[i].ss_divider_index = sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, sclk_in_sr); ps->levels[i].ds_divider_index = sumo_get_sleep_divider_id_from_clock(rdev, ps->levels[i].sclk, SUMO_MINIMUM_ENGINE_CLOCK); if (ps->levels[i].ds_divider_index > ps->levels[i].ss_divider_index + 1) ps->levels[i].ds_divider_index = ps->levels[i].ss_divider_index + 1; if (ps->levels[i].ss_divider_index == ps->levels[i].ds_divider_index) { if (ps->levels[i].ss_divider_index > 1) ps->levels[i].ss_divider_index = ps->levels[i].ss_divider_index - 1; } if (ps->levels[i].ss_divider_index == 0) ps->levels[i].ds_divider_index = 0; if (ps->levels[i].ds_divider_index == 0) ps->levels[i].ss_divider_index = 0; if (ps->flags & SUMO_POWERSTATE_FLAGS_FORCE_NBPS1_STATE) ps->levels[i].allow_gnb_slow = 1; else if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) || (new_rps->class2 & ATOM_PPLIB_CLASSIFICATION2_MVC)) ps->levels[i].allow_gnb_slow = 0; else if (i == ps->num_levels - 1) ps->levels[i].allow_gnb_slow = 0; else ps->levels[i].allow_gnb_slow = 1; } } static void sumo_cleanup_asic(struct radeon_device *rdev) { sumo_take_smu_control(rdev, false); } static int sumo_set_thermal_temperature_range(struct radeon_device *rdev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } WREG32_P(CG_THERMAL_INT, DIG_THERM_INTH(49 + (high_temp / 1000)), ~DIG_THERM_INTH_MASK); WREG32_P(CG_THERMAL_INT, DIG_THERM_INTL(49 + (low_temp / 1000)), ~DIG_THERM_INTL_MASK); rdev->pm.dpm.thermal.min_temp = low_temp; rdev->pm.dpm.thermal.max_temp = high_temp; return 0; } static void sumo_update_current_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct sumo_ps *new_ps = sumo_get_ps(rps); struct sumo_power_info *pi = sumo_get_pi(rdev); pi->current_rps = *rps; pi->current_ps = *new_ps; pi->current_rps.ps_priv = &pi->current_ps; } static void sumo_update_requested_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct sumo_ps *new_ps = sumo_get_ps(rps); struct sumo_power_info *pi = sumo_get_pi(rdev); pi->requested_rps = *rps; pi->requested_ps = *new_ps; pi->requested_rps.ps_priv = &pi->requested_ps; } int sumo_dpm_enable(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); if (sumo_dpm_enabled(rdev)) return -EINVAL; sumo_program_bootup_state(rdev); sumo_init_bsp(rdev); sumo_reset_am(rdev); sumo_program_tp(rdev); sumo_program_bootup_at(rdev); sumo_start_am(rdev); if (pi->enable_auto_thermal_throttling) { sumo_program_ttp(rdev); sumo_program_ttt(rdev); } sumo_program_dc_hto(rdev); sumo_program_power_level_enter_state(rdev); sumo_enable_voltage_scaling(rdev, true); sumo_program_sstp(rdev); sumo_program_vc(rdev, SUMO_VRC_DFLT); sumo_override_cnb_thermal_events(rdev); sumo_start_dpm(rdev); sumo_wait_for_level_0(rdev); if (pi->enable_sclk_ds) sumo_enable_sclk_ds(rdev, true); if (pi->enable_boost) sumo_enable_boost_timer(rdev); sumo_update_current_ps(rdev, rdev->pm.dpm.boot_ps); return 0; } int sumo_dpm_late_enable(struct radeon_device *rdev) { int ret; ret = sumo_enable_clock_power_gating(rdev); if (ret) return ret; if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { ret = sumo_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); if (ret) return ret; rdev->irq.dpm_thermal = true; radeon_irq_set(rdev); } return 0; } void sumo_dpm_disable(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); if (!sumo_dpm_enabled(rdev)) return; sumo_disable_clock_power_gating(rdev); if (pi->enable_sclk_ds) sumo_enable_sclk_ds(rdev, false); sumo_clear_vc(rdev); sumo_wait_for_level_0(rdev); sumo_stop_dpm(rdev); sumo_enable_voltage_scaling(rdev, false); if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { rdev->irq.dpm_thermal = false; radeon_irq_set(rdev); } sumo_update_current_ps(rdev, rdev->pm.dpm.boot_ps); } int sumo_dpm_pre_set_power_state(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps; struct radeon_ps *new_ps = &requested_ps; sumo_update_requested_ps(rdev, new_ps); if (pi->enable_dynamic_patch_ps) sumo_apply_state_adjust_rules(rdev, &pi->requested_rps, &pi->current_rps); return 0; } int sumo_dpm_set_power_state(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; struct radeon_ps *old_ps = &pi->current_rps; if (pi->enable_dpm) sumo_set_uvd_clock_before_set_eng_clock(rdev, new_ps, old_ps); if (pi->enable_boost) { sumo_enable_boost(rdev, new_ps, false); sumo_patch_boost_state(rdev, new_ps); } if (pi->enable_dpm) { sumo_pre_notify_alt_vddnb_change(rdev, new_ps, old_ps); sumo_enable_power_level_0(rdev); sumo_set_forced_level_0(rdev); sumo_set_forced_mode_enabled(rdev); sumo_wait_for_level_0(rdev); sumo_program_power_levels_0_to_n(rdev, new_ps, old_ps); sumo_program_wl(rdev, new_ps); sumo_program_bsp(rdev, new_ps); sumo_program_at(rdev, new_ps); sumo_force_nbp_state(rdev, new_ps); sumo_set_forced_mode_disabled(rdev); sumo_set_forced_mode_enabled(rdev); sumo_set_forced_mode_disabled(rdev); sumo_post_notify_alt_vddnb_change(rdev, new_ps, old_ps); } if (pi->enable_boost) sumo_enable_boost(rdev, new_ps, true); if (pi->enable_dpm) sumo_set_uvd_clock_after_set_eng_clock(rdev, new_ps, old_ps); return 0; } void sumo_dpm_post_set_power_state(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; sumo_update_current_ps(rdev, new_ps); } #if 0 void sumo_dpm_reset_asic(struct radeon_device *rdev) { sumo_program_bootup_state(rdev); sumo_enable_power_level_0(rdev); sumo_set_forced_level_0(rdev); sumo_set_forced_mode_enabled(rdev); sumo_wait_for_level_0(rdev); sumo_set_forced_mode_disabled(rdev); sumo_set_forced_mode_enabled(rdev); sumo_set_forced_mode_disabled(rdev); } #endif void sumo_dpm_setup_asic(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); sumo_initialize_m3_arb(rdev); pi->fw_version = sumo_get_running_fw_version(rdev); DRM_INFO("Found smc ucode version: 0x%08x\n", pi->fw_version); sumo_program_acpi_power_level(rdev); sumo_enable_acpi_pm(rdev); sumo_take_smu_control(rdev, true); } void sumo_dpm_display_configuration_changed(struct radeon_device *rdev) { } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void sumo_patch_boot_state(struct radeon_device *rdev, struct sumo_ps *ps) { struct sumo_power_info *pi = sumo_get_pi(rdev); ps->num_levels = 1; ps->flags = 0; ps->levels[0] = pi->boot_pl; } static void sumo_parse_pplib_non_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { struct sumo_ps *ps = sumo_get_ps(rps); rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { rdev->pm.dpm.boot_ps = rps; sumo_patch_boot_state(rdev, ps); } if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) rdev->pm.dpm.uvd_ps = rps; } static void sumo_parse_pplib_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, int index, union pplib_clock_info *clock_info) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct sumo_ps *ps = sumo_get_ps(rps); struct sumo_pl *pl = &ps->levels[index]; u32 sclk; sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; pl->sclk = sclk; pl->vddc_index = clock_info->sumo.vddcIndex; pl->sclk_dpm_tdp_limit = clock_info->sumo.tdpLimit; ps->num_levels = index + 1; if (pi->enable_sclk_ds) { pl->ds_divider_index = 5; pl->ss_divider_index = 4; } } static int sumo_parse_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, k, non_clock_array_index, clock_array_index; union pplib_clock_info *clock_info; struct _StateArray *state_array; struct _ClockInfoArray *clock_info_array; struct _NonClockInfoArray *non_clock_info_array; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; u8 *power_state_offset; struct sumo_ps *ps; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); state_array = (struct _StateArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset)); clock_info_array = (struct _ClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); non_clock_info_array = (struct _NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) * state_array->ucNumEntries, GFP_KERNEL); if (!rdev->pm.dpm.ps) return -ENOMEM; power_state_offset = (u8 *)state_array->states; for (i = 0; i < state_array->ucNumEntries; i++) { u8 *idx; power_state = (union pplib_power_state *)power_state_offset; non_clock_array_index = power_state->v2.nonClockInfoIndex; non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; if (!rdev->pm.power_state[i].clock_info) return -EINVAL; ps = kzalloc(sizeof(struct sumo_ps), GFP_KERNEL); if (ps == NULL) { kfree(rdev->pm.dpm.ps); return -ENOMEM; } rdev->pm.dpm.ps[i].ps_priv = ps; k = 0; idx = (u8 *)&power_state->v2.clockInfoIndex[0]; for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = idx[j]; if (k >= SUMO_MAX_HARDWARE_POWERLEVELS) break; clock_info = (union pplib_clock_info *) ((u8 *)&clock_info_array->clockInfo[0] + (clock_array_index * clock_info_array->ucEntrySize)); sumo_parse_pplib_clock_info(rdev, &rdev->pm.dpm.ps[i], k, clock_info); k++; } sumo_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], non_clock_info, non_clock_info_array->ucEntrySize); power_state_offset += 2 + power_state->v2.ucNumDPMLevels; } rdev->pm.dpm.num_ps = state_array->ucNumEntries; return 0; } u32 sumo_convert_vid2_to_vid7(struct radeon_device *rdev, struct sumo_vid_mapping_table *vid_mapping_table, u32 vid_2bit) { u32 i; for (i = 0; i < vid_mapping_table->num_entries; i++) { if (vid_mapping_table->entries[i].vid_2bit == vid_2bit) return vid_mapping_table->entries[i].vid_7bit; } return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit; } #if 0 u32 sumo_convert_vid7_to_vid2(struct radeon_device *rdev, struct sumo_vid_mapping_table *vid_mapping_table, u32 vid_7bit) { u32 i; for (i = 0; i < vid_mapping_table->num_entries; i++) { if (vid_mapping_table->entries[i].vid_7bit == vid_7bit) return vid_mapping_table->entries[i].vid_2bit; } return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit; } #endif static u16 sumo_convert_voltage_index_to_value(struct radeon_device *rdev, u32 vid_2bit) { struct sumo_power_info *pi = sumo_get_pi(rdev); u32 vid_7bit = sumo_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid_2bit); if (vid_7bit > 0x7C) return 0; return (15500 - vid_7bit * 125 + 5) / 10; } static void sumo_construct_display_voltage_mapping_table(struct radeon_device *rdev, struct sumo_disp_clock_voltage_mapping_table *disp_clk_voltage_mapping_table, ATOM_CLK_VOLT_CAPABILITY *table) { u32 i; for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) { if (table[i].ulMaximumSupportedCLK == 0) break; disp_clk_voltage_mapping_table->display_clock_frequency[i] = table[i].ulMaximumSupportedCLK; } disp_clk_voltage_mapping_table->num_max_voltage_levels = i; if (disp_clk_voltage_mapping_table->num_max_voltage_levels == 0) { disp_clk_voltage_mapping_table->display_clock_frequency[0] = 80000; disp_clk_voltage_mapping_table->num_max_voltage_levels = 1; } } void sumo_construct_sclk_voltage_mapping_table(struct radeon_device *rdev, struct sumo_sclk_voltage_mapping_table *sclk_voltage_mapping_table, ATOM_AVAILABLE_SCLK_LIST *table) { u32 i; u32 n = 0; u32 prev_sclk = 0; for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) { if (table[i].ulSupportedSCLK > prev_sclk) { sclk_voltage_mapping_table->entries[n].sclk_frequency = table[i].ulSupportedSCLK; sclk_voltage_mapping_table->entries[n].vid_2bit = table[i].usVoltageIndex; prev_sclk = table[i].ulSupportedSCLK; n++; } } sclk_voltage_mapping_table->num_max_dpm_entries = n; } void sumo_construct_vid_mapping_table(struct radeon_device *rdev, struct sumo_vid_mapping_table *vid_mapping_table, ATOM_AVAILABLE_SCLK_LIST *table) { u32 i, j; for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) { if (table[i].ulSupportedSCLK != 0) { vid_mapping_table->entries[table[i].usVoltageIndex].vid_7bit = table[i].usVoltageID; vid_mapping_table->entries[table[i].usVoltageIndex].vid_2bit = table[i].usVoltageIndex; } } for (i = 0; i < SUMO_MAX_NUMBER_VOLTAGES; i++) { if (vid_mapping_table->entries[i].vid_7bit == 0) { for (j = i + 1; j < SUMO_MAX_NUMBER_VOLTAGES; j++) { if (vid_mapping_table->entries[j].vid_7bit != 0) { vid_mapping_table->entries[i] = vid_mapping_table->entries[j]; vid_mapping_table->entries[j].vid_7bit = 0; break; } } if (j == SUMO_MAX_NUMBER_VOLTAGES) break; } } vid_mapping_table->num_entries = i; } union igp_info { struct _ATOM_INTEGRATED_SYSTEM_INFO info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5; struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6; }; static int sumo_parse_sys_info_table(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); union igp_info *igp_info; u8 frev, crev; u16 data_offset; int i; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { igp_info = (union igp_info *)(mode_info->atom_context->bios + data_offset); if (crev != 6) { DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); return -EINVAL; } pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_6.ulBootUpEngineClock); pi->sys_info.min_sclk = le32_to_cpu(igp_info->info_6.ulMinEngineClock); pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_6.ulBootUpUMAClock); pi->sys_info.bootup_nb_voltage_index = le16_to_cpu(igp_info->info_6.usBootUpNBVoltage); if (igp_info->info_6.ucHtcTmpLmt == 0) pi->sys_info.htc_tmp_lmt = 203; else pi->sys_info.htc_tmp_lmt = igp_info->info_6.ucHtcTmpLmt; if (igp_info->info_6.ucHtcHystLmt == 0) pi->sys_info.htc_hyst_lmt = 5; else pi->sys_info.htc_hyst_lmt = igp_info->info_6.ucHtcHystLmt; if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) { DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n"); } for (i = 0; i < NUMBER_OF_M3ARB_PARAM_SETS; i++) { pi->sys_info.csr_m3_arb_cntl_default[i] = le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_DEFAULT[i]); pi->sys_info.csr_m3_arb_cntl_uvd[i] = le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_UVD[i]); pi->sys_info.csr_m3_arb_cntl_fs3d[i] = le32_to_cpu(igp_info->info_6.ulCSR_M3_ARB_CNTL_FS3D[i]); } pi->sys_info.sclk_dpm_boost_margin = le32_to_cpu(igp_info->info_6.SclkDpmBoostMargin); pi->sys_info.sclk_dpm_throttle_margin = le32_to_cpu(igp_info->info_6.SclkDpmThrottleMargin); pi->sys_info.sclk_dpm_tdp_limit_pg = le16_to_cpu(igp_info->info_6.SclkDpmTdpLimitPG); pi->sys_info.gnb_tdp_limit = le16_to_cpu(igp_info->info_6.GnbTdpLimit); pi->sys_info.sclk_dpm_tdp_limit_boost = le16_to_cpu(igp_info->info_6.SclkDpmTdpLimitBoost); pi->sys_info.boost_sclk = le32_to_cpu(igp_info->info_6.ulBoostEngineCLock); pi->sys_info.boost_vid_2bit = igp_info->info_6.ulBoostVid_2bit; if (igp_info->info_6.EnableBoost) pi->sys_info.enable_boost = true; else pi->sys_info.enable_boost = false; sumo_construct_display_voltage_mapping_table(rdev, &pi->sys_info.disp_clk_voltage_mapping_table, igp_info->info_6.sDISPCLK_Voltage); sumo_construct_sclk_voltage_mapping_table(rdev, &pi->sys_info.sclk_voltage_mapping_table, igp_info->info_6.sAvail_SCLK); sumo_construct_vid_mapping_table(rdev, &pi->sys_info.vid_mapping_table, igp_info->info_6.sAvail_SCLK); } return 0; } static void sumo_construct_boot_and_acpi_state(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); pi->boot_pl.sclk = pi->sys_info.bootup_sclk; pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index; pi->boot_pl.ds_divider_index = 0; pi->boot_pl.ss_divider_index = 0; pi->boot_pl.allow_gnb_slow = 1; pi->acpi_pl = pi->boot_pl; pi->current_ps.num_levels = 1; pi->current_ps.levels[0] = pi->boot_pl; } int sumo_dpm_init(struct radeon_device *rdev) { struct sumo_power_info *pi; u32 hw_rev = (RREG32(HW_REV) & ATI_REV_ID_MASK) >> ATI_REV_ID_SHIFT; int ret; pi = kzalloc(sizeof(struct sumo_power_info), GFP_KERNEL); if (pi == NULL) return -ENOMEM; rdev->pm.dpm.priv = pi; pi->driver_nbps_policy_disable = false; if ((rdev->family == CHIP_PALM) && (hw_rev < 3)) pi->disable_gfx_power_gating_in_uvd = true; else pi->disable_gfx_power_gating_in_uvd = false; pi->enable_alt_vddnb = true; pi->enable_sclk_ds = true; pi->enable_dynamic_m3_arbiter = false; pi->enable_dynamic_patch_ps = true; /* Some PALM chips don't seem to properly ungate gfx when UVD is in use; * for now just disable gfx PG. */ if (rdev->family == CHIP_PALM) pi->enable_gfx_power_gating = false; else pi->enable_gfx_power_gating = true; pi->enable_gfx_clock_gating = true; pi->enable_mg_clock_gating = true; pi->enable_auto_thermal_throttling = true; ret = sumo_parse_sys_info_table(rdev); if (ret) return ret; sumo_construct_boot_and_acpi_state(rdev); ret = r600_get_platform_caps(rdev); if (ret) return ret; ret = sumo_parse_power_table(rdev); if (ret) return ret; pi->pasi = CYPRESS_HASI_DFLT; pi->asi = RV770_ASI_DFLT; pi->thermal_auto_throttling = pi->sys_info.htc_tmp_lmt; pi->enable_boost = pi->sys_info.enable_boost; pi->enable_dpm = true; return 0; } void sumo_dpm_print_power_state(struct radeon_device *rdev, struct radeon_ps *rps) { int i; struct sumo_ps *ps = sumo_get_ps(rps); r600_dpm_print_class_info(rps->class, rps->class2); r600_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); for (i = 0; i < ps->num_levels; i++) { struct sumo_pl *pl = &ps->levels[i]; printk("\t\tpower level %d sclk: %u vddc: %u\n", i, pl->sclk, sumo_convert_voltage_index_to_value(rdev, pl->vddc_index)); } r600_dpm_print_ps_status(rdev, rps); } void sumo_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev, struct seq_file *m) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct radeon_ps *rps = &pi->current_rps; struct sumo_ps *ps = sumo_get_ps(rps); struct sumo_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) >> CURR_INDEX_SHIFT; if (current_index == BOOST_DPM_LEVEL) { pl = &pi->boost_pl; seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); seq_printf(m, "power level %d sclk: %u vddc: %u\n", current_index, pl->sclk, sumo_convert_voltage_index_to_value(rdev, pl->vddc_index)); } else if (current_index >= ps->num_levels) { seq_printf(m, "invalid dpm profile %d\n", current_index); } else { pl = &ps->levels[current_index]; seq_printf(m, "uvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); seq_printf(m, "power level %d sclk: %u vddc: %u\n", current_index, pl->sclk, sumo_convert_voltage_index_to_value(rdev, pl->vddc_index)); } } u32 sumo_dpm_get_current_sclk(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct radeon_ps *rps = &pi->current_rps; struct sumo_ps *ps = sumo_get_ps(rps); struct sumo_pl *pl; u32 current_index = (RREG32(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_INDEX_MASK) >> CURR_INDEX_SHIFT; if (current_index == BOOST_DPM_LEVEL) { pl = &pi->boost_pl; return pl->sclk; } else if (current_index >= ps->num_levels) { return 0; } else { pl = &ps->levels[current_index]; return pl->sclk; } } u32 sumo_dpm_get_current_mclk(struct radeon_device *rdev) { struct sumo_power_info *pi = sumo_get_pi(rdev); return pi->sys_info.bootup_uma_clk; } void sumo_dpm_fini(struct radeon_device *rdev) { int i; sumo_cleanup_asic(rdev); /* ??? */ for (i = 0; i < rdev->pm.dpm.num_ps; i++) { kfree(rdev->pm.dpm.ps[i].ps_priv); } kfree(rdev->pm.dpm.ps); kfree(rdev->pm.dpm.priv); } u32 sumo_dpm_get_sclk(struct radeon_device *rdev, bool low) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct sumo_ps *requested_state = sumo_get_ps(&pi->requested_rps); if (low) return requested_state->levels[0].sclk; else return requested_state->levels[requested_state->num_levels - 1].sclk; } u32 sumo_dpm_get_mclk(struct radeon_device *rdev, bool low) { struct sumo_power_info *pi = sumo_get_pi(rdev); return pi->sys_info.bootup_uma_clk; } int sumo_dpm_force_performance_level(struct radeon_device *rdev, enum radeon_dpm_forced_level level) { struct sumo_power_info *pi = sumo_get_pi(rdev); struct radeon_ps *rps = &pi->current_rps; struct sumo_ps *ps = sumo_get_ps(rps); int i; if (ps->num_levels <= 1) return 0; if (level == RADEON_DPM_FORCED_LEVEL_HIGH) { if (pi->enable_boost) sumo_enable_boost(rdev, rps, false); sumo_power_level_enable(rdev, ps->num_levels - 1, true); sumo_set_forced_level(rdev, ps->num_levels - 1); sumo_set_forced_mode_enabled(rdev); for (i = 0; i < ps->num_levels - 1; i++) { sumo_power_level_enable(rdev, i, false); } sumo_set_forced_mode(rdev, false); sumo_set_forced_mode_enabled(rdev); sumo_set_forced_mode(rdev, false); } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) { if (pi->enable_boost) sumo_enable_boost(rdev, rps, false); sumo_power_level_enable(rdev, 0, true); sumo_set_forced_level(rdev, 0); sumo_set_forced_mode_enabled(rdev); for (i = 1; i < ps->num_levels; i++) { sumo_power_level_enable(rdev, i, false); } sumo_set_forced_mode(rdev, false); sumo_set_forced_mode_enabled(rdev); sumo_set_forced_mode(rdev, false); } else { for (i = 0; i < ps->num_levels; i++) { sumo_power_level_enable(rdev, i, true); } if (pi->enable_boost) sumo_enable_boost(rdev, rps, true); } rdev->pm.dpm.forced_level = level; return 0; }