/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * DOC: Panel Self Refresh (PSR/SRD) * * Since Haswell Display controller supports Panel Self-Refresh on display * panels witch have a remote frame buffer (RFB) implemented according to PSR * spec in eDP1.3. PSR feature allows the display to go to lower standby states * when system is idle but display is on as it eliminates display refresh * request to DDR memory completely as long as the frame buffer for that * display is unchanged. * * Panel Self Refresh must be supported by both Hardware (source) and * Panel (sink). * * PSR saves power by caching the framebuffer in the panel RFB, which allows us * to power down the link and memory controller. For DSI panels the same idea * is called "manual mode". * * The implementation uses the hardware-based PSR support which automatically * enters/exits self-refresh mode. The hardware takes care of sending the * required DP aux message and could even retrain the link (that part isn't * enabled yet though). The hardware also keeps track of any frontbuffer * changes to know when to exit self-refresh mode again. Unfortunately that * part doesn't work too well, hence why the i915 PSR support uses the * software frontbuffer tracking to make sure it doesn't miss a screen * update. For this integration intel_psr_invalidate() and intel_psr_flush() * get called by the frontbuffer tracking code. Note that because of locking * issues the self-refresh re-enable code is done from a work queue, which * must be correctly synchronized/cancelled when shutting down the pipe." */ #include #include "intel_drv.h" #include "i915_drv.h" static inline enum intel_display_power_domain psr_aux_domain(struct intel_dp *intel_dp) { /* CNL HW requires corresponding AUX IOs to be powered up for PSR. * However, for non-A AUX ports the corresponding non-EDP transcoders * would have already enabled power well 2 and DC_OFF. This means we can * acquire a wider POWER_DOMAIN_AUX_{B,C,D,F} reference instead of a * specific AUX_IO reference without powering up any extra wells. * Note that PSR is enabled only on Port A even though this function * returns the correct domain for other ports too. */ return intel_dp->aux_ch == AUX_CH_A ? POWER_DOMAIN_AUX_IO_A : intel_dp->aux_power_domain; } static void psr_aux_io_power_get(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); if (INTEL_GEN(dev_priv) < 10) return; intel_display_power_get(dev_priv, psr_aux_domain(intel_dp)); } static void psr_aux_io_power_put(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); if (INTEL_GEN(dev_priv) < 10) return; intel_display_power_put(dev_priv, psr_aux_domain(intel_dp)); } static bool intel_dp_get_y_cord_status(struct intel_dp *intel_dp) { uint8_t psr_caps = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_CAPS, &psr_caps) != 1) return false; return psr_caps & DP_PSR2_SU_Y_COORDINATE_REQUIRED; } static bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp) { uint8_t dprx = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &dprx) != 1) return false; return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED; } static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp) { uint8_t alpm_caps = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, &alpm_caps) != 1) return false; return alpm_caps & DP_ALPM_CAP; } void intel_psr_init_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, sizeof(intel_dp->psr_dpcd)); if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) { dev_priv->psr.sink_support = true; DRM_DEBUG_KMS("Detected EDP PSR Panel.\n"); } if (INTEL_GEN(dev_priv) >= 9 && (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) { uint8_t frame_sync_cap; dev_priv->psr.sink_support = true; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP, &frame_sync_cap) != 1) frame_sync_cap = 0; dev_priv->psr.aux_frame_sync = frame_sync_cap & DP_AUX_FRAME_SYNC_CAP; /* PSR2 needs frame sync as well */ dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync; DRM_DEBUG_KMS("PSR2 %s on sink", dev_priv->psr.psr2_support ? "supported" : "not supported"); if (dev_priv->psr.psr2_support) { dev_priv->psr.y_cord_support = intel_dp_get_y_cord_status(intel_dp); dev_priv->psr.colorimetry_support = intel_dp_get_colorimetry_status(intel_dp); dev_priv->psr.alpm = intel_dp_get_alpm_status(intel_dp); } } } static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe) { struct drm_i915_private *dev_priv = to_i915(dev); uint32_t val; val = I915_READ(VLV_PSRSTAT(pipe)) & VLV_EDP_PSR_CURR_STATE_MASK; return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) || (val == VLV_EDP_PSR_ACTIVE_SF_UPDATE); } static void vlv_psr_setup_vsc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); uint32_t val; /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */ val = I915_READ(VLV_VSCSDP(crtc->pipe)); val &= ~VLV_EDP_PSR_SDP_FREQ_MASK; val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME; I915_WRITE(VLV_VSCSDP(crtc->pipe), val); } static void hsw_psr_setup_vsc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); struct edp_vsc_psr psr_vsc; if (dev_priv->psr.psr2_support) { /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; if (dev_priv->psr.colorimetry_support && dev_priv->psr.y_cord_support) { psr_vsc.sdp_header.HB2 = 0x5; psr_vsc.sdp_header.HB3 = 0x13; } else if (dev_priv->psr.y_cord_support) { psr_vsc.sdp_header.HB2 = 0x4; psr_vsc.sdp_header.HB3 = 0xe; } else { psr_vsc.sdp_header.HB2 = 0x3; psr_vsc.sdp_header.HB3 = 0xc; } } else { /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; psr_vsc.sdp_header.HB2 = 0x2; psr_vsc.sdp_header.HB3 = 0x8; } intel_dig_port->write_infoframe(&intel_dig_port->base.base, crtc_state, DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc)); } static void vlv_psr_enable_sink(struct intel_dp *intel_dp) { drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); } static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv, enum port port) { if (INTEL_GEN(dev_priv) >= 9) return DP_AUX_CH_CTL(port); else return EDP_PSR_AUX_CTL; } static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv, enum port port, int index) { if (INTEL_GEN(dev_priv) >= 9) return DP_AUX_CH_DATA(port, index); else return EDP_PSR_AUX_DATA(index); } static void hsw_psr_enable_sink(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); uint32_t aux_clock_divider; i915_reg_t aux_ctl_reg; static const uint8_t aux_msg[] = { [0] = DP_AUX_NATIVE_WRITE << 4, [1] = DP_SET_POWER >> 8, [2] = DP_SET_POWER & 0xff, [3] = 1 - 1, [4] = DP_SET_POWER_D0, }; enum port port = dig_port->base.port; u32 aux_ctl; int i; BUILD_BUG_ON(sizeof(aux_msg) > 20); aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); /* Enable AUX frame sync at sink */ if (dev_priv->psr.aux_frame_sync) drm_dp_dpcd_writeb(&intel_dp->aux, DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, DP_AUX_FRAME_SYNC_ENABLE); /* Enable ALPM at sink for psr2 */ if (dev_priv->psr.psr2_support && dev_priv->psr.alpm) drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, DP_ALPM_ENABLE); if (dev_priv->psr.link_standby) drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE); else drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, DP_PSR_ENABLE); aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port); /* Setup AUX registers */ for (i = 0; i < sizeof(aux_msg); i += 4) I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2), intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, 0, sizeof(aux_msg), aux_clock_divider); I915_WRITE(aux_ctl_reg, aux_ctl); } static void vlv_psr_enable_source(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); /* Transition from PSR_state 0 (disabled) to PSR_state 1 (inactive) */ I915_WRITE(VLV_PSRCTL(crtc->pipe), VLV_EDP_PSR_MODE_SW_TIMER | VLV_EDP_PSR_SRC_TRANSMITTER_STATE | VLV_EDP_PSR_ENABLE); } static void vlv_psr_activate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_crtc *crtc = dig_port->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; /* * Let's do the transition from PSR_state 1 (inactive) to * PSR_state 2 (transition to active - static frame transmission). * Then Hardware is responsible for the transition to * PSR_state 3 (active - no Remote Frame Buffer (RFB) update). */ I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) | VLV_EDP_PSR_ACTIVE_ENTRY); } static void hsw_activate_psr1(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); uint32_t max_sleep_time = 0x1f; /* * Let's respect VBT in case VBT asks a higher idle_frame value. * Let's use 6 as the minimum to cover all known cases including * the off-by-one issue that HW has in some cases. Also there are * cases where sink should be able to train * with the 5 or 6 idle patterns. */ uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames); uint32_t val = EDP_PSR_ENABLE; val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT; val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT; if (IS_HASWELL(dev_priv)) val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; if (dev_priv->psr.link_standby) val |= EDP_PSR_LINK_STANDBY; if (dev_priv->vbt.psr.tp1_wakeup_time > 5) val |= EDP_PSR_TP1_TIME_2500us; else if (dev_priv->vbt.psr.tp1_wakeup_time > 1) val |= EDP_PSR_TP1_TIME_500us; else if (dev_priv->vbt.psr.tp1_wakeup_time > 0) val |= EDP_PSR_TP1_TIME_100us; else val |= EDP_PSR_TP1_TIME_0us; if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5) val |= EDP_PSR_TP2_TP3_TIME_2500us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1) val |= EDP_PSR_TP2_TP3_TIME_500us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0) val |= EDP_PSR_TP2_TP3_TIME_100us; else val |= EDP_PSR_TP2_TP3_TIME_0us; if (intel_dp_source_supports_hbr2(intel_dp) && drm_dp_tps3_supported(intel_dp->dpcd)) val |= EDP_PSR_TP1_TP3_SEL; else val |= EDP_PSR_TP1_TP2_SEL; val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK; I915_WRITE(EDP_PSR_CTL, val); } static void hsw_activate_psr2(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); /* * Let's respect VBT in case VBT asks a higher idle_frame value. * Let's use 6 as the minimum to cover all known cases including * the off-by-one issue that HW has in some cases. Also there are * cases where sink should be able to train * with the 5 or 6 idle patterns. */ uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames); uint32_t val; uint8_t sink_latency; val = idle_frames << EDP_PSR_IDLE_FRAME_SHIFT; /* FIXME: selective update is probably totally broken because it doesn't * mesh at all with our frontbuffer tracking. And the hw alone isn't * good enough. */ val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SYNCHRONIZATION_LATENCY_IN_SINK, &sink_latency) == 1) { sink_latency &= DP_MAX_RESYNC_FRAME_COUNT_MASK; } else { sink_latency = 0; } val |= EDP_PSR2_FRAME_BEFORE_SU(sink_latency + 1); if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 5) val |= EDP_PSR2_TP2_TIME_2500; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 1) val |= EDP_PSR2_TP2_TIME_500; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time > 0) val |= EDP_PSR2_TP2_TIME_100; else val |= EDP_PSR2_TP2_TIME_50; I915_WRITE(EDP_PSR2_CTL, val); } static void hsw_psr_activate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); /* On HSW+ after we enable PSR on source it will activate it * as soon as it match configure idle_frame count. So * we just actually enable it here on activation time. */ /* psr1 and psr2 are mutually exclusive.*/ if (dev_priv->psr.psr2_support) hsw_activate_psr2(intel_dp); else hsw_activate_psr1(intel_dp); } static bool intel_psr2_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay; int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay; int psr_max_h = 0, psr_max_v = 0; /* * FIXME psr2_support is messed up. It's both computed * dynamically during PSR enable, and extracted from sink * caps during eDP detection. */ if (!dev_priv->psr.psr2_support) return false; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { psr_max_h = 4096; psr_max_v = 2304; } else if (IS_GEN9(dev_priv)) { psr_max_h = 3640; psr_max_v = 2304; } if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) { DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", crtc_hdisplay, crtc_vdisplay, psr_max_h, psr_max_v); return false; } /* * FIXME:enable psr2 only for y-cordinate psr2 panels * After gtc implementation , remove this restriction. */ if (!dev_priv->psr.y_cord_support) { DRM_DEBUG_KMS("PSR2 not enabled, panel does not support Y coordinate\n"); return false; } return true; } void intel_psr_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode; int psr_setup_time; if (!CAN_PSR(dev_priv)) return; if (!i915_modparams.enable_psr) { DRM_DEBUG_KMS("PSR disable by flag\n"); return; } /* * HSW spec explicitly says PSR is tied to port A. * BDW+ platforms with DDI implementation of PSR have different * PSR registers per transcoder and we only implement transcoder EDP * ones. Since by Display design transcoder EDP is tied to port A * we can safely escape based on the port A. */ if (HAS_DDI(dev_priv) && dig_port->base.port != PORT_A) { DRM_DEBUG_KMS("PSR condition failed: Port not supported\n"); return; } if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && !dev_priv->psr.link_standby) { DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n"); return; } if (IS_HASWELL(dev_priv) && I915_READ(HSW_STEREO_3D_CTL(crtc_state->cpu_transcoder)) & S3D_ENABLE) { DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n"); return; } if (IS_HASWELL(dev_priv) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n"); return; } psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); if (psr_setup_time < 0) { DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n", intel_dp->psr_dpcd[1]); return; } if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n", psr_setup_time); return; } if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { DRM_DEBUG_KMS("PSR condition failed: panel lacks power state control\n"); return; } crtc_state->has_psr = true; crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state); DRM_DEBUG_KMS("Enabling PSR%s\n", crtc_state->has_psr2 ? "2" : ""); } static void intel_psr_activate(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (dev_priv->psr.psr2_support) WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); else WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); WARN_ON(dev_priv->psr.active); lockdep_assert_held(&dev_priv->psr.lock); dev_priv->psr.activate(intel_dp); dev_priv->psr.active = true; } static void hsw_psr_enable_source(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 chicken; psr_aux_io_power_get(intel_dp); if (dev_priv->psr.psr2_support) { chicken = PSR2_VSC_ENABLE_PROG_HEADER; if (dev_priv->psr.y_cord_support) chicken |= PSR2_ADD_VERTICAL_LINE_COUNT; I915_WRITE(CHICKEN_TRANS(cpu_transcoder), chicken); I915_WRITE(EDP_PSR_DEBUG, EDP_PSR_DEBUG_MASK_MEMUP | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP | EDP_PSR_DEBUG_MASK_MAX_SLEEP | EDP_PSR_DEBUG_MASK_DISP_REG_WRITE); } else { /* * Per Spec: Avoid continuous PSR exit by masking MEMUP * and HPD. also mask LPSP to avoid dependency on other * drivers that might block runtime_pm besides * preventing other hw tracking issues now we can rely * on frontbuffer tracking. */ I915_WRITE(EDP_PSR_DEBUG, EDP_PSR_DEBUG_MASK_MEMUP | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP); } } /** * intel_psr_enable - Enable PSR * @intel_dp: Intel DP * @crtc_state: new CRTC state * * This function can only be called after the pipe is fully trained and enabled. */ void intel_psr_enable(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (!crtc_state->has_psr) return; if (WARN_ON(!CAN_PSR(dev_priv))) return; WARN_ON(dev_priv->drrs.dp); mutex_lock(&dev_priv->psr.lock); if (dev_priv->psr.enabled) { DRM_DEBUG_KMS("PSR already in use\n"); goto unlock; } dev_priv->psr.psr2_support = crtc_state->has_psr2; dev_priv->psr.busy_frontbuffer_bits = 0; dev_priv->psr.setup_vsc(intel_dp, crtc_state); dev_priv->psr.enable_sink(intel_dp); dev_priv->psr.enable_source(intel_dp, crtc_state); dev_priv->psr.enabled = intel_dp; if (INTEL_GEN(dev_priv) >= 9) { intel_psr_activate(intel_dp); } else { /* * FIXME: Activation should happen immediately since this * function is just called after pipe is fully trained and * enabled. * However on some platforms we face issues when first * activation follows a modeset so quickly. * - On VLV/CHV we get bank screen on first activation * - On HSW/BDW we get a recoverable frozen screen until * next exit-activate sequence. */ schedule_delayed_work(&dev_priv->psr.work, msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5)); } unlock: mutex_unlock(&dev_priv->psr.lock); } static void vlv_psr_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); uint32_t val; if (dev_priv->psr.active) { /* Put VLV PSR back to PSR_state 0 (disabled). */ if (intel_wait_for_register(dev_priv, VLV_PSRSTAT(crtc->pipe), VLV_EDP_PSR_IN_TRANS, 0, 1)) WARN(1, "PSR transition took longer than expected\n"); val = I915_READ(VLV_PSRCTL(crtc->pipe)); val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; val &= ~VLV_EDP_PSR_ENABLE; val &= ~VLV_EDP_PSR_MODE_MASK; I915_WRITE(VLV_PSRCTL(crtc->pipe), val); dev_priv->psr.active = false; } else { WARN_ON(vlv_is_psr_active_on_pipe(dev, crtc->pipe)); } } static void hsw_psr_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (dev_priv->psr.active) { i915_reg_t psr_status; u32 psr_status_mask; if (dev_priv->psr.aux_frame_sync) drm_dp_dpcd_writeb(&intel_dp->aux, DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, 0); if (dev_priv->psr.psr2_support) { psr_status = EDP_PSR2_STATUS; psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; I915_WRITE(EDP_PSR2_CTL, I915_READ(EDP_PSR2_CTL) & ~(EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE)); } else { psr_status = EDP_PSR_STATUS; psr_status_mask = EDP_PSR_STATUS_STATE_MASK; I915_WRITE(EDP_PSR_CTL, I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE); } /* Wait till PSR is idle */ if (intel_wait_for_register(dev_priv, psr_status, psr_status_mask, 0, 2000)) DRM_ERROR("Timed out waiting for PSR Idle State\n"); dev_priv->psr.active = false; } else { if (dev_priv->psr.psr2_support) WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE); else WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE); } psr_aux_io_power_put(intel_dp); } /** * intel_psr_disable - Disable PSR * @intel_dp: Intel DP * @old_crtc_state: old CRTC state * * This function needs to be called before disabling pipe. */ void intel_psr_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_device *dev = intel_dig_port->base.base.dev; struct drm_i915_private *dev_priv = to_i915(dev); if (!old_crtc_state->has_psr) return; if (WARN_ON(!CAN_PSR(dev_priv))) return; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } dev_priv->psr.disable_source(intel_dp, old_crtc_state); /* Disable PSR on Sink */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); dev_priv->psr.enabled = NULL; mutex_unlock(&dev_priv->psr.lock); cancel_delayed_work_sync(&dev_priv->psr.work); } static void intel_psr_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), psr.work.work); struct intel_dp *intel_dp = dev_priv->psr.enabled; struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; /* We have to make sure PSR is ready for re-enable * otherwise it keeps disabled until next full enable/disable cycle. * PSR might take some time to get fully disabled * and be ready for re-enable. */ if (HAS_DDI(dev_priv)) { if (dev_priv->psr.psr2_support) { if (intel_wait_for_register(dev_priv, EDP_PSR2_STATUS, EDP_PSR2_STATUS_STATE_MASK, 0, 50)) { DRM_ERROR("Timed out waiting for PSR2 Idle for re-enable\n"); return; } } else { if (intel_wait_for_register(dev_priv, EDP_PSR_STATUS, EDP_PSR_STATUS_STATE_MASK, 0, 50)) { DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); return; } } } else { if (intel_wait_for_register(dev_priv, VLV_PSRSTAT(pipe), VLV_EDP_PSR_IN_TRANS, 0, 1)) { DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n"); return; } } mutex_lock(&dev_priv->psr.lock); intel_dp = dev_priv->psr.enabled; if (!intel_dp) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. Since psr_flush first clears this and then reschedules we * won't ever miss a flush when bailing out here. */ if (dev_priv->psr.busy_frontbuffer_bits) goto unlock; intel_psr_activate(intel_dp); unlock: mutex_unlock(&dev_priv->psr.lock); } static void intel_psr_exit(struct drm_i915_private *dev_priv) { struct intel_dp *intel_dp = dev_priv->psr.enabled; struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; enum pipe pipe = to_intel_crtc(crtc)->pipe; u32 val; if (!dev_priv->psr.active) return; if (HAS_DDI(dev_priv)) { if (dev_priv->psr.aux_frame_sync) drm_dp_dpcd_writeb(&intel_dp->aux, DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF, 0); if (dev_priv->psr.psr2_support) { val = I915_READ(EDP_PSR2_CTL); WARN_ON(!(val & EDP_PSR2_ENABLE)); I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE); } else { val = I915_READ(EDP_PSR_CTL); WARN_ON(!(val & EDP_PSR_ENABLE)); I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE); } } else { val = I915_READ(VLV_PSRCTL(pipe)); /* * Here we do the transition drirectly from * PSR_state 3 (active - no Remote Frame Buffer (RFB) update) to * PSR_state 5 (exit). * PSR State 4 (active with single frame update) can be skipped. * On PSR_state 5 (exit) Hardware is responsible to transition * back to PSR_state 1 (inactive). * Now we are at Same state after vlv_psr_enable_source. */ val &= ~VLV_EDP_PSR_ACTIVE_ENTRY; I915_WRITE(VLV_PSRCTL(pipe), val); /* * Send AUX wake up - Spec says after transitioning to PSR * active we have to send AUX wake up by writing 01h in DPCD * 600h of sink device. * XXX: This might slow down the transition, but without this * HW doesn't complete the transition to PSR_state 1 and we * never get the screen updated. */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } dev_priv->psr.active = false; } /** * intel_psr_single_frame_update - Single Frame Update * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * Some platforms support a single frame update feature that is used to * send and update only one frame on Remote Frame Buffer. * So far it is only implemented for Valleyview and Cherryview because * hardware requires this to be done before a page flip. */ void intel_psr_single_frame_update(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits) { struct drm_crtc *crtc; enum pipe pipe; u32 val; if (!CAN_PSR(dev_priv)) return; /* * Single frame update is already supported on BDW+ but it requires * many W/A and it isn't really needed. */ if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) return; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) { val = I915_READ(VLV_PSRCTL(pipe)); /* * We need to set this bit before writing registers for a flip. * This bit will be self-clear when it gets to the PSR active state. */ I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE); } mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_invalidate - Invalidade PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be * disabled if the frontbuffer mask contains a buffer relevant to PSR. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." */ void intel_psr_invalidate(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits) { struct drm_crtc *crtc; enum pipe pipe; if (!CAN_PSR(dev_priv)) return; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; if (frontbuffer_bits) intel_psr_exit(dev_priv); mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_flush - Flush PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the flush * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering has completed and flushed out to memory. PSR * can be enabled again if no other frontbuffer relevant to PSR is dirty. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. */ void intel_psr_flush(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits, enum fb_op_origin origin) { struct drm_crtc *crtc; enum pipe pipe; if (!CAN_PSR(dev_priv)) return; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; /* By definition flush = invalidate + flush */ if (frontbuffer_bits) intel_psr_exit(dev_priv); if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) if (!work_busy(&dev_priv->psr.work.work)) schedule_delayed_work(&dev_priv->psr.work, msecs_to_jiffies(100)); mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_init - Init basic PSR work and mutex. * @dev_priv: i915 device private * * This function is called only once at driver load to initialize basic * PSR stuff. */ void intel_psr_init(struct drm_i915_private *dev_priv) { if (!HAS_PSR(dev_priv)) return; dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ? HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE; if (!dev_priv->psr.sink_support) return; /* Per platform default: all disabled. */ if (i915_modparams.enable_psr == -1) i915_modparams.enable_psr = 0; /* Set link_standby x link_off defaults */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) /* HSW and BDW require workarounds that we don't implement. */ dev_priv->psr.link_standby = false; else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) /* On VLV and CHV only standby mode is supported. */ dev_priv->psr.link_standby = true; else /* For new platforms let's respect VBT back again */ dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link; /* Override link_standby x link_off defaults */ if (i915_modparams.enable_psr == 2 && !dev_priv->psr.link_standby) { DRM_DEBUG_KMS("PSR: Forcing link standby\n"); dev_priv->psr.link_standby = true; } if (i915_modparams.enable_psr == 3 && dev_priv->psr.link_standby) { DRM_DEBUG_KMS("PSR: Forcing main link off\n"); dev_priv->psr.link_standby = false; } INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work); mutex_init(&dev_priv->psr.lock); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { dev_priv->psr.enable_source = vlv_psr_enable_source; dev_priv->psr.disable_source = vlv_psr_disable; dev_priv->psr.enable_sink = vlv_psr_enable_sink; dev_priv->psr.activate = vlv_psr_activate; dev_priv->psr.setup_vsc = vlv_psr_setup_vsc; } else { dev_priv->psr.enable_source = hsw_psr_enable_source; dev_priv->psr.disable_source = hsw_psr_disable; dev_priv->psr.enable_sink = hsw_psr_enable_sink; dev_priv->psr.activate = hsw_psr_activate; dev_priv->psr.setup_vsc = hsw_psr_setup_vsc; } }