/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD */ #include "dm_services.h" #include "dc.h" #include "core_status.h" #include "core_types.h" #include "hw_sequencer.h" #include "dce/dce_hwseq.h" #include "resource.h" #include "clock_source.h" #include "dc_bios_types.h" #include "bios_parser_interface.h" #include "include/irq_service_interface.h" #include "transform.h" #include "dpp.h" #include "timing_generator.h" #include "virtual/virtual_link_encoder.h" #include "link_hwss.h" #include "link_encoder.h" #include "dc_link_ddc.h" #include "dm_helpers.h" #include "mem_input.h" #include "hubp.h" /******************************************************************************* * Private functions ******************************************************************************/ static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new) { if (new > *original) *original = new; } static void destroy_links(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) { if (NULL != dc->links[i]) link_destroy(&dc->links[i]); } } static bool create_links( struct dc *dc, uint32_t num_virtual_links) { int i; int connectors_num; struct dc_bios *bios = dc->ctx->dc_bios; dc->link_count = 0; connectors_num = bios->funcs->get_connectors_number(bios); if (connectors_num > ENUM_ID_COUNT) { dm_error( "DC: Number of connectors %d exceeds maximum of %d!\n", connectors_num, ENUM_ID_COUNT); return false; } if (connectors_num == 0 && num_virtual_links == 0) { dm_error("DC: Number of connectors is zero!\n"); } dm_output_to_console( "DC: %s: connectors_num: physical:%d, virtual:%d\n", __func__, connectors_num, num_virtual_links); for (i = 0; i < connectors_num; i++) { struct link_init_data link_init_params = {0}; struct dc_link *link; link_init_params.ctx = dc->ctx; /* next BIOS object table connector */ link_init_params.connector_index = i; link_init_params.link_index = dc->link_count; link_init_params.dc = dc; link = link_create(&link_init_params); if (link) { dc->links[dc->link_count] = link; link->dc = dc; ++dc->link_count; } } for (i = 0; i < num_virtual_links; i++) { struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL); struct encoder_init_data enc_init = {0}; if (link == NULL) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_index = dc->link_count; dc->links[dc->link_count] = link; dc->link_count++; link->ctx = dc->ctx; link->dc = dc; link->connector_signal = SIGNAL_TYPE_VIRTUAL; link->link_id.type = OBJECT_TYPE_CONNECTOR; link->link_id.id = CONNECTOR_ID_VIRTUAL; link->link_id.enum_id = ENUM_ID_1; link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL); if (!link->link_enc) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_status.dpcd_caps = &link->dpcd_caps; enc_init.ctx = dc->ctx; enc_init.channel = CHANNEL_ID_UNKNOWN; enc_init.hpd_source = HPD_SOURCEID_UNKNOWN; enc_init.transmitter = TRANSMITTER_UNKNOWN; enc_init.connector = link->link_id; enc_init.encoder.type = OBJECT_TYPE_ENCODER; enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL; enc_init.encoder.enum_id = ENUM_ID_1; virtual_link_encoder_construct(link->link_enc, &enc_init); } return true; failed_alloc: return false; } bool dc_stream_adjust_vmin_vmax(struct dc *dc, struct dc_stream_state **streams, int num_streams, int vmin, int vmax) { /* TODO: Support multiple streams */ struct dc_stream_state *stream = streams[0]; int i = 0; bool ret = false; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.stream_enc) { dc->hwss.set_drr(&pipe, 1, vmin, vmax); /* build and update the info frame */ resource_build_info_frame(pipe); dc->hwss.update_info_frame(pipe); ret = true; } } return ret; } bool dc_stream_get_crtc_position(struct dc *dc, struct dc_stream_state **streams, int num_streams, unsigned int *v_pos, unsigned int *nom_v_pos) { /* TODO: Support multiple streams */ struct dc_stream_state *stream = streams[0]; int i = 0; bool ret = false; struct crtc_position position; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.stream_enc) { dc->hwss.get_position(&pipe, 1, &position); *v_pos = position.vertical_count; *nom_v_pos = position.nominal_vcount; ret = true; } } return ret; } /** * dc_stream_configure_crc: Configure CRC capture for the given stream. * @dc: DC Object * @stream: The stream to configure CRC on. * @enable: Enable CRC if true, disable otherwise. * @continuous: Capture CRC on every frame if true. Otherwise, only capture * once. * * By default, only CRC0 is configured, and the entire frame is used to * calculate the crc. */ bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream, bool enable, bool continuous) { int i; struct pipe_ctx *pipe; struct crc_params param; struct timing_generator *tg; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found */ if (i == MAX_PIPES) return false; /* Always capture the full frame */ param.windowa_x_start = 0; param.windowa_y_start = 0; param.windowa_x_end = pipe->stream->timing.h_addressable; param.windowa_y_end = pipe->stream->timing.v_addressable; param.windowb_x_start = 0; param.windowb_y_start = 0; param.windowb_x_end = pipe->stream->timing.h_addressable; param.windowb_y_end = pipe->stream->timing.v_addressable; /* Default to the union of both windows */ param.selection = UNION_WINDOW_A_B; param.continuous_mode = continuous; param.enable = enable; tg = pipe->stream_res.tg; /* Only call if supported */ if (tg->funcs->configure_crc) return tg->funcs->configure_crc(tg, ¶m); dm_logger_write(dc->ctx->logger, LOG_WARNING, "CRC capture not supported."); return false; } /** * dc_stream_get_crc: Get CRC values for the given stream. * @dc: DC object * @stream: The DC stream state of the stream to get CRCs from. * @r_cr, g_y, b_cb: CRC values for the three channels are stored here. * * dc_stream_configure_crc needs to be called beforehand to enable CRCs. * Return false if stream is not found, or if CRCs are not enabled. */ bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) { int i; struct pipe_ctx *pipe; struct timing_generator *tg; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found */ if (i == MAX_PIPES) return false; tg = pipe->stream_res.tg; if (tg->funcs->get_crc) return tg->funcs->get_crc(tg, r_cr, g_y, b_cb); dm_logger_write(dc->ctx->logger, LOG_WARNING, "CRC capture not supported."); return false; } void dc_stream_set_static_screen_events(struct dc *dc, struct dc_stream_state **streams, int num_streams, const struct dc_static_screen_events *events) { int i = 0; int j = 0; struct pipe_ctx *pipes_affected[MAX_PIPES]; int num_pipes_affected = 0; for (i = 0; i < num_streams; i++) { struct dc_stream_state *stream = streams[i]; for (j = 0; j < MAX_PIPES; j++) { if (dc->current_state->res_ctx.pipe_ctx[j].stream == stream) { pipes_affected[num_pipes_affected++] = &dc->current_state->res_ctx.pipe_ctx[j]; } } } dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, events); } static void destruct(struct dc *dc) { dc_release_state(dc->current_state); dc->current_state = NULL; destroy_links(dc); dc_destroy_resource_pool(dc); if (dc->ctx->gpio_service) dal_gpio_service_destroy(&dc->ctx->gpio_service); if (dc->ctx->i2caux) dal_i2caux_destroy(&dc->ctx->i2caux); if (dc->ctx->created_bios) dal_bios_parser_destroy(&dc->ctx->dc_bios); if (dc->ctx->logger) dal_logger_destroy(&dc->ctx->logger); kfree(dc->ctx); dc->ctx = NULL; kfree(dc->bw_vbios); dc->bw_vbios = NULL; kfree(dc->bw_dceip); dc->bw_dceip = NULL; #ifdef CONFIG_DRM_AMD_DC_DCN1_0 kfree(dc->dcn_soc); dc->dcn_soc = NULL; kfree(dc->dcn_ip); dc->dcn_ip = NULL; #endif } static bool construct(struct dc *dc, const struct dc_init_data *init_params) { struct dal_logger *logger; struct dc_context *dc_ctx; struct bw_calcs_dceip *dc_dceip; struct bw_calcs_vbios *dc_vbios; #ifdef CONFIG_DRM_AMD_DC_DCN1_0 struct dcn_soc_bounding_box *dcn_soc; struct dcn_ip_params *dcn_ip; #endif enum dce_version dc_version = DCE_VERSION_UNKNOWN; dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL); if (!dc_dceip) { dm_error("%s: failed to create dceip\n", __func__); goto fail; } dc->bw_dceip = dc_dceip; dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL); if (!dc_vbios) { dm_error("%s: failed to create vbios\n", __func__); goto fail; } dc->bw_vbios = dc_vbios; #ifdef CONFIG_DRM_AMD_DC_DCN1_0 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL); if (!dcn_soc) { dm_error("%s: failed to create dcn_soc\n", __func__); goto fail; } dc->dcn_soc = dcn_soc; dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL); if (!dcn_ip) { dm_error("%s: failed to create dcn_ip\n", __func__); goto fail; } dc->dcn_ip = dcn_ip; #endif dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL); if (!dc_ctx) { dm_error("%s: failed to create ctx\n", __func__); goto fail; } dc_ctx->cgs_device = init_params->cgs_device; dc_ctx->driver_context = init_params->driver; dc_ctx->dc = dc; dc_ctx->asic_id = init_params->asic_id; dc->ctx = dc_ctx; dc->current_state = dc_create_state(); if (!dc->current_state) { dm_error("%s: failed to create validate ctx\n", __func__); goto fail; } /* Create logger */ logger = dal_logger_create(dc_ctx, init_params->log_mask); if (!logger) { /* can *not* call logger. call base driver 'print error' */ dm_error("%s: failed to create Logger!\n", __func__); goto fail; } dc_ctx->logger = logger; dc_ctx->dce_environment = init_params->dce_environment; dc_version = resource_parse_asic_id(init_params->asic_id); dc_ctx->dce_version = dc_version; /* Resource should construct all asic specific resources. * This should be the only place where we need to parse the asic id */ if (init_params->vbios_override) dc_ctx->dc_bios = init_params->vbios_override; else { /* Create BIOS parser */ struct bp_init_data bp_init_data; bp_init_data.ctx = dc_ctx; bp_init_data.bios = init_params->asic_id.atombios_base_address; dc_ctx->dc_bios = dal_bios_parser_create( &bp_init_data, dc_version); if (!dc_ctx->dc_bios) { ASSERT_CRITICAL(false); goto fail; } dc_ctx->created_bios = true; } /* Create I2C AUX */ dc_ctx->i2caux = dal_i2caux_create(dc_ctx); if (!dc_ctx->i2caux) { ASSERT_CRITICAL(false); goto fail; } /* Create GPIO service */ dc_ctx->gpio_service = dal_gpio_service_create( dc_version, dc_ctx->dce_environment, dc_ctx); if (!dc_ctx->gpio_service) { ASSERT_CRITICAL(false); goto fail; } dc->res_pool = dc_create_resource_pool( dc, init_params->num_virtual_links, dc_version, init_params->asic_id); if (!dc->res_pool) goto fail; dc_resource_state_construct(dc, dc->current_state); if (!create_links(dc, init_params->num_virtual_links)) goto fail; return true; fail: destruct(dc); return false; } static void disable_dangling_plane(struct dc *dc, struct dc_state *context) { int i, j; struct dc_state *dangling_context = dc_create_state(); struct dc_state *current_ctx; if (dangling_context == NULL) return; dc_resource_state_copy_construct(dc->current_state, dangling_context); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dc_stream_state *old_stream = dc->current_state->res_ctx.pipe_ctx[i].stream; bool should_disable = true; for (j = 0; j < context->stream_count; j++) { if (old_stream == context->streams[j]) { should_disable = false; break; } } if (should_disable && old_stream) { dc_rem_all_planes_for_stream(dc, old_stream, dangling_context); dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context); } } current_ctx = dc->current_state; dc->current_state = dangling_context; dc_release_state(current_ctx); } /******************************************************************************* * Public functions ******************************************************************************/ struct dc *dc_create(const struct dc_init_data *init_params) { struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL); unsigned int full_pipe_count; if (NULL == dc) goto alloc_fail; if (false == construct(dc, init_params)) goto construct_fail; /*TODO: separate HW and SW initialization*/ dc->hwss.init_hw(dc); full_pipe_count = dc->res_pool->pipe_count; if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE) full_pipe_count--; dc->caps.max_streams = min( full_pipe_count, dc->res_pool->stream_enc_count); dc->caps.max_links = dc->link_count; dc->caps.max_audios = dc->res_pool->audio_count; dc->caps.linear_pitch_alignment = 64; dc->config = init_params->flags; dm_logger_write(dc->ctx->logger, LOG_DC, "Display Core initialized\n"); /* TODO: missing feature to be enabled */ dc->debug.disable_dfs_bypass = true; return dc; construct_fail: kfree(dc); alloc_fail: return NULL; } void dc_destroy(struct dc **dc) { destruct(*dc); kfree(*dc); *dc = NULL; } static void enable_timing_multisync( struct dc *dc, struct dc_state *ctx) { int i = 0, multisync_count = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled) continue; if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source) continue; multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i]; multisync_count++; } if (multisync_count > 0) { dc->hwss.enable_per_frame_crtc_position_reset( dc, multisync_count, multisync_pipes); } } static void program_timing_sync( struct dc *dc, struct dc_state *ctx) { int i, j; int group_index = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe) continue; unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i]; } for (i = 0; i < pipe_count; i++) { int group_size = 1; struct pipe_ctx *pipe_set[MAX_PIPES]; if (!unsynced_pipes[i]) continue; pipe_set[0] = unsynced_pipes[i]; unsynced_pipes[i] = NULL; /* Add tg to the set, search rest of the tg's for ones with * same timing, add all tgs with same timing to the group */ for (j = i + 1; j < pipe_count; j++) { if (!unsynced_pipes[j]) continue; if (resource_are_streams_timing_synchronizable( unsynced_pipes[j]->stream, pipe_set[0]->stream)) { pipe_set[group_size] = unsynced_pipes[j]; unsynced_pipes[j] = NULL; group_size++; } } /* set first unblanked pipe as master */ for (j = 0; j < group_size; j++) { struct pipe_ctx *temp; if (pipe_set[j]->stream_res.tg->funcs->is_blanked && !pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg)) { if (j == 0) break; temp = pipe_set[0]; pipe_set[0] = pipe_set[j]; pipe_set[j] = temp; break; } } /* remove any other unblanked pipes as they have already been synced */ for (j = j + 1; j < group_size; j++) { if (pipe_set[j]->stream_res.tg->funcs->is_blanked && !pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg)) { group_size--; pipe_set[j] = pipe_set[group_size]; j--; } } if (group_size > 1) { dc->hwss.enable_timing_synchronization( dc, group_index, group_size, pipe_set); group_index++; } } } static bool context_changed( struct dc *dc, struct dc_state *context) { uint8_t i; if (context->stream_count != dc->current_state->stream_count) return true; for (i = 0; i < dc->current_state->stream_count; i++) { if (dc->current_state->streams[i] != context->streams[i]) return true; } return false; } bool dc_enable_stereo( struct dc *dc, struct dc_state *context, struct dc_stream_state *streams[], uint8_t stream_count) { bool ret = true; int i, j; struct pipe_ctx *pipe; for (i = 0; i < MAX_PIPES; i++) { if (context != NULL) pipe = &context->res_ctx.pipe_ctx[i]; else pipe = &dc->current_state->res_ctx.pipe_ctx[i]; for (j = 0 ; pipe && j < stream_count; j++) { if (streams[j] && streams[j] == pipe->stream && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } return ret; } /* * Applies given context to HW and copy it into current context. * It's up to the user to release the src context afterwards. */ static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context) { struct dc_bios *dcb = dc->ctx->dc_bios; enum dc_status result = DC_ERROR_UNEXPECTED; struct pipe_ctx *pipe; int i, k, l; struct dc_stream_state *dc_streams[MAX_STREAMS] = {0}; disable_dangling_plane(dc, context); for (i = 0; i < context->stream_count; i++) dc_streams[i] = context->streams[i]; if (!dcb->funcs->is_accelerated_mode(dcb)) dc->hwss.enable_accelerated_mode(dc, context); /* re-program planes for existing stream, in case we need to * free up plane resource for later use */ for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->mode_changed) continue; dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); /* use new pipe config in new context */ } /* Program hardware */ dc->hwss.ready_shared_resources(dc, context); for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe); } result = dc->hwss.apply_ctx_to_hw(dc, context); if (result != DC_OK) return result; if (context->stream_count > 1) { enable_timing_multisync(dc, context); program_timing_sync(dc, context); } /* Program all planes within new context*/ for (i = 0; i < context->stream_count; i++) { const struct dc_sink *sink = context->streams[i]->sink; if (!context->streams[i]->mode_changed) continue; dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); /* * enable stereo * TODO rework dc_enable_stereo call to work with validation sets? */ for (k = 0; k < MAX_PIPES; k++) { pipe = &context->res_ctx.pipe_ctx[k]; for (l = 0 ; pipe && l < context->stream_count; l++) { if (context->streams[l] && context->streams[l] == pipe->stream && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } CONN_MSG_MODE(sink->link, "{%dx%d, %dx%d@%dKhz}", context->streams[i]->timing.h_addressable, context->streams[i]->timing.v_addressable, context->streams[i]->timing.h_total, context->streams[i]->timing.v_total, context->streams[i]->timing.pix_clk_khz); } dc_enable_stereo(dc, context, dc_streams, context->stream_count); dc_release_state(dc->current_state); dc->current_state = context; dc_retain_state(dc->current_state); dc->hwss.optimize_shared_resources(dc); return result; } bool dc_commit_state(struct dc *dc, struct dc_state *context) { enum dc_status result = DC_ERROR_UNEXPECTED; int i; if (false == context_changed(dc, context)) return DC_OK; dm_logger_write(dc->ctx->logger, LOG_DC, "%s: %d streams\n", __func__, context->stream_count); for (i = 0; i < context->stream_count; i++) { struct dc_stream_state *stream = context->streams[i]; dc_stream_log(stream, dc->ctx->logger, LOG_DC); } result = dc_commit_state_no_check(dc, context); return (result == DC_OK); } bool dc_post_update_surfaces_to_stream(struct dc *dc) { int i; struct dc_state *context = dc->current_state; post_surface_trace(dc); for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].stream == NULL || context->res_ctx.pipe_ctx[i].plane_state == NULL) { context->res_ctx.pipe_ctx[i].pipe_idx = i; dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]); } dc->optimized_required = false; /* 3rd param should be true, temp w/a for RV*/ #if defined(CONFIG_DRM_AMD_DC_DCN1_0) dc->hwss.set_bandwidth(dc, context, dc->ctx->dce_version < DCN_VERSION_1_0); #else dc->hwss.set_bandwidth(dc, context, true); #endif return true; } /* * TODO this whole function needs to go * * dc_surface_update is needlessly complex. See if we can just replace this * with a dc_plane_state and follow the atomic model a bit more closely here. */ bool dc_commit_planes_to_stream( struct dc *dc, struct dc_plane_state **plane_states, uint8_t new_plane_count, struct dc_stream_state *dc_stream, struct dc_state *state) { /* no need to dynamically allocate this. it's pretty small */ struct dc_surface_update updates[MAX_SURFACES]; struct dc_flip_addrs *flip_addr; struct dc_plane_info *plane_info; struct dc_scaling_info *scaling_info; int i; struct dc_stream_update *stream_update = kzalloc(sizeof(struct dc_stream_update), GFP_KERNEL); if (!stream_update) { BREAK_TO_DEBUGGER(); return false; } flip_addr = kcalloc(MAX_SURFACES, sizeof(struct dc_flip_addrs), GFP_KERNEL); plane_info = kcalloc(MAX_SURFACES, sizeof(struct dc_plane_info), GFP_KERNEL); scaling_info = kcalloc(MAX_SURFACES, sizeof(struct dc_scaling_info), GFP_KERNEL); if (!flip_addr || !plane_info || !scaling_info) { kfree(flip_addr); kfree(plane_info); kfree(scaling_info); kfree(stream_update); return false; } memset(updates, 0, sizeof(updates)); stream_update->src = dc_stream->src; stream_update->dst = dc_stream->dst; stream_update->out_transfer_func = dc_stream->out_transfer_func; for (i = 0; i < new_plane_count; i++) { updates[i].surface = plane_states[i]; updates[i].gamma = (struct dc_gamma *)plane_states[i]->gamma_correction; updates[i].in_transfer_func = plane_states[i]->in_transfer_func; flip_addr[i].address = plane_states[i]->address; flip_addr[i].flip_immediate = plane_states[i]->flip_immediate; plane_info[i].color_space = plane_states[i]->color_space; plane_info[i].input_tf = plane_states[i]->input_tf; plane_info[i].format = plane_states[i]->format; plane_info[i].plane_size = plane_states[i]->plane_size; plane_info[i].rotation = plane_states[i]->rotation; plane_info[i].horizontal_mirror = plane_states[i]->horizontal_mirror; plane_info[i].stereo_format = plane_states[i]->stereo_format; plane_info[i].tiling_info = plane_states[i]->tiling_info; plane_info[i].visible = plane_states[i]->visible; plane_info[i].per_pixel_alpha = plane_states[i]->per_pixel_alpha; plane_info[i].dcc = plane_states[i]->dcc; scaling_info[i].scaling_quality = plane_states[i]->scaling_quality; scaling_info[i].src_rect = plane_states[i]->src_rect; scaling_info[i].dst_rect = plane_states[i]->dst_rect; scaling_info[i].clip_rect = plane_states[i]->clip_rect; updates[i].flip_addr = &flip_addr[i]; updates[i].plane_info = &plane_info[i]; updates[i].scaling_info = &scaling_info[i]; } dc_commit_updates_for_stream( dc, updates, new_plane_count, dc_stream, stream_update, plane_states, state); kfree(flip_addr); kfree(plane_info); kfree(scaling_info); kfree(stream_update); return true; } struct dc_state *dc_create_state(void) { struct dc_state *context = kzalloc(sizeof(struct dc_state), GFP_KERNEL); if (!context) return NULL; kref_init(&context->refcount); return context; } void dc_retain_state(struct dc_state *context) { kref_get(&context->refcount); } static void dc_state_free(struct kref *kref) { struct dc_state *context = container_of(kref, struct dc_state, refcount); dc_resource_state_destruct(context); kfree(context); } void dc_release_state(struct dc_state *context) { kref_put(&context->refcount, dc_state_free); } static bool is_surface_in_context( const struct dc_state *context, const struct dc_plane_state *plane_state) { int j; for (j = 0; j < MAX_PIPES; j++) { const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (plane_state == pipe_ctx->plane_state) { return true; } } return false; } static unsigned int pixel_format_to_bpp(enum surface_pixel_format format) { switch (format) { case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb: return 12; case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555: case SURFACE_PIXEL_FORMAT_GRPH_RGB565: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr: case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb: return 16; case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888: case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888: case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010: case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010: return 32; case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616: case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F: case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F: return 64; default: ASSERT_CRITICAL(false); return -1; } } static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; if (!u->plane_info) return UPDATE_TYPE_FAST; if (u->plane_info->color_space != u->surface->color_space) update_flags->bits.color_space_change = 1; if (u->plane_info->input_tf != u->surface->input_tf) update_flags->bits.input_tf_change = 1; if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) update_flags->bits.horizontal_mirror_change = 1; if (u->plane_info->rotation != u->surface->rotation) update_flags->bits.rotation_change = 1; if (u->plane_info->stereo_format != u->surface->stereo_format) update_flags->bits.stereo_format_change = 1; if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) update_flags->bits.per_pixel_alpha_change = 1; if (u->plane_info->dcc.enable != u->surface->dcc.enable || u->plane_info->dcc.grph.independent_64b_blks != u->surface->dcc.grph.independent_64b_blks || u->plane_info->dcc.grph.meta_pitch != u->surface->dcc.grph.meta_pitch) update_flags->bits.dcc_change = 1; if (pixel_format_to_bpp(u->plane_info->format) != pixel_format_to_bpp(u->surface->format)) /* different bytes per element will require full bandwidth * and DML calculation */ update_flags->bits.bpp_change = 1; if (u->gamma && dce_use_lut(u->plane_info->format)) update_flags->bits.gamma_change = 1; if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info, sizeof(union dc_tiling_info)) != 0) { update_flags->bits.swizzle_change = 1; /* todo: below are HW dependent, we should add a hook to * DCE/N resource and validated there. */ if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) /* swizzled mode requires RQ to be setup properly, * thus need to run DML to calculate RQ settings */ update_flags->bits.bandwidth_change = 1; } if (update_flags->bits.rotation_change || update_flags->bits.stereo_format_change || update_flags->bits.gamma_change || update_flags->bits.bpp_change || update_flags->bits.bandwidth_change) return UPDATE_TYPE_FULL; return UPDATE_TYPE_MED; } static enum surface_update_type get_scaling_info_update_type( const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; if (!u->scaling_info) return UPDATE_TYPE_FAST; if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width || u->scaling_info->clip_rect.height != u->surface->clip_rect.height || u->scaling_info->dst_rect.width != u->surface->dst_rect.width || u->scaling_info->dst_rect.height != u->surface->dst_rect.height) { update_flags->bits.scaling_change = 1; if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width || u->scaling_info->dst_rect.height < u->surface->dst_rect.height) && (u->scaling_info->dst_rect.width < u->surface->src_rect.width || u->scaling_info->dst_rect.height < u->surface->src_rect.height)) /* Making dst rect smaller requires a bandwidth change */ update_flags->bits.bandwidth_change = 1; } if (u->scaling_info->src_rect.width != u->surface->src_rect.width || u->scaling_info->src_rect.height != u->surface->src_rect.height) { update_flags->bits.scaling_change = 1; if (u->scaling_info->src_rect.width > u->surface->src_rect.width && u->scaling_info->src_rect.height > u->surface->src_rect.height) /* Making src rect bigger requires a bandwidth change */ update_flags->bits.clock_change = 1; } if (u->scaling_info->src_rect.x != u->surface->src_rect.x || u->scaling_info->src_rect.y != u->surface->src_rect.y || u->scaling_info->clip_rect.x != u->surface->clip_rect.x || u->scaling_info->clip_rect.y != u->surface->clip_rect.y || u->scaling_info->dst_rect.x != u->surface->dst_rect.x || u->scaling_info->dst_rect.y != u->surface->dst_rect.y) update_flags->bits.position_change = 1; if (update_flags->bits.clock_change || update_flags->bits.bandwidth_change) return UPDATE_TYPE_FULL; if (update_flags->bits.scaling_change || update_flags->bits.position_change) return UPDATE_TYPE_MED; return UPDATE_TYPE_FAST; } static enum surface_update_type det_surface_update(const struct dc *dc, const struct dc_surface_update *u) { const struct dc_state *context = dc->current_state; enum surface_update_type type; enum surface_update_type overall_type = UPDATE_TYPE_FAST; union surface_update_flags *update_flags = &u->surface->update_flags; update_flags->raw = 0; // Reset all flags if (!is_surface_in_context(context, u->surface)) { update_flags->bits.new_plane = 1; return UPDATE_TYPE_FULL; } type = get_plane_info_update_type(u); elevate_update_type(&overall_type, type); type = get_scaling_info_update_type(u); elevate_update_type(&overall_type, type); if (u->in_transfer_func) update_flags->bits.in_transfer_func_change = 1; if (u->input_csc_color_matrix) update_flags->bits.input_csc_change = 1; if (update_flags->bits.in_transfer_func_change || update_flags->bits.input_csc_change) { type = UPDATE_TYPE_MED; elevate_update_type(&overall_type, type); } return overall_type; } static enum surface_update_type check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type overall_type = UPDATE_TYPE_FAST; if (stream_status == NULL || stream_status->plane_count != surface_count) return UPDATE_TYPE_FULL; if (stream_update) return UPDATE_TYPE_FULL; for (i = 0 ; i < surface_count; i++) { enum surface_update_type type = det_surface_update(dc, &updates[i]); if (type == UPDATE_TYPE_FULL) return type; elevate_update_type(&overall_type, type); } return overall_type; } enum surface_update_type dc_check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type type; for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.raw = 0; type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status); if (type == UPDATE_TYPE_FULL) for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.bits.full_update = 1; return type; } static struct dc_stream_status *stream_get_status( struct dc_state *ctx, struct dc_stream_state *stream) { uint8_t i; for (i = 0; i < ctx->stream_count; i++) { if (stream == ctx->streams[i]) { return &ctx->stream_status[i]; } } return NULL; } static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL; static void commit_planes_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int i, j; if (update_type == UPDATE_TYPE_FULL) { dc->hwss.set_bandwidth(dc, context, false); context_clock_trace(dc, context); } if (surface_count == 0) { /* * In case of turning off screen, no need to program front end a second time. * just return after program front end. */ dc->hwss.apply_ctx_for_surface(dc, stream, surface_count, context); return; } /* Full fe update*/ for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (update_type == UPDATE_TYPE_FAST || !pipe_ctx->plane_state) continue; if (!pipe_ctx->top_pipe && pipe_ctx->stream && pipe_ctx->stream == stream) { struct dc_stream_status *stream_status = stream_get_status(context, pipe_ctx->stream); dc->hwss.apply_ctx_for_surface( dc, pipe_ctx->stream, stream_status->plane_count, context); } } if (update_type == UPDATE_TYPE_FULL) context_timing_trace(dc, &context->res_ctx); /* Perform requested Updates */ for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->stream != stream) continue; if (pipe_ctx->plane_state != plane_state) continue; if (update_type == UPDATE_TYPE_FAST && srf_updates[i].flip_addr) dc->hwss.update_plane_addr(dc, pipe_ctx); } } if (stream && stream_update && update_type > UPDATE_TYPE_FAST) for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->stream != stream) continue; if (stream_update->hdr_static_metadata) { resource_build_info_frame(pipe_ctx); dc->hwss.update_info_frame(pipe_ctx); } } } void dc_commit_updates_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, struct dc_plane_state **plane_states, struct dc_state *state) { const struct dc_stream_status *stream_status; enum surface_update_type update_type; struct dc_state *context; struct dc_context *dc_ctx = dc->ctx; int i, j; stream_status = dc_stream_get_status(stream); context = dc->current_state; update_type = dc_check_update_surfaces_for_stream( dc, srf_updates, surface_count, stream_update, stream_status); if (update_type >= update_surface_trace_level) update_surface_trace(dc, srf_updates, surface_count); if (update_type >= UPDATE_TYPE_FULL) { /* initialize scratch memory for building context */ context = dc_create_state(); if (context == NULL) { DC_ERROR("Failed to allocate new validate context!\n"); return; } dc_resource_state_copy_construct(state, context); } for (i = 0; i < surface_count; i++) { struct dc_plane_state *surface = srf_updates[i].surface; /* TODO: On flip we don't build the state, so it still has the * old address. Which is why we are updating the address here */ if (srf_updates[i].flip_addr) { surface->address = srf_updates[i].flip_addr->address; surface->flip_immediate = srf_updates[i].flip_addr->flip_immediate; } if (update_type >= UPDATE_TYPE_MED) { for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->plane_state != surface) continue; resource_build_scaling_params(pipe_ctx); } } } commit_planes_for_stream( dc, srf_updates, surface_count, stream, stream_update, update_type, context); /*update current_State*/ if (dc->current_state != context) { struct dc_state *old = dc->current_state; dc->current_state = context; dc_release_state(old); } /*let's use current_state to update watermark etc*/ if (update_type >= UPDATE_TYPE_FULL) dc_post_update_surfaces_to_stream(dc); return; } uint8_t dc_get_current_stream_count(struct dc *dc) { return dc->current_state->stream_count; } struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i) { if (i < dc->current_state->stream_count) return dc->current_state->streams[i]; return NULL; } enum dc_irq_source dc_interrupt_to_irq_source( struct dc *dc, uint32_t src_id, uint32_t ext_id) { return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id); } void dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable) { if (dc == NULL) return; dal_irq_service_set(dc->res_pool->irqs, src, enable); } void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src) { dal_irq_service_ack(dc->res_pool->irqs, src); } void dc_set_power_state( struct dc *dc, enum dc_acpi_cm_power_state power_state) { struct kref refcount; switch (power_state) { case DC_ACPI_CM_POWER_STATE_D0: dc_resource_state_construct(dc, dc->current_state); dc->hwss.init_hw(dc); break; default: dc->hwss.power_down(dc); /* Zero out the current context so that on resume we start with * clean state, and dc hw programming optimizations will not * cause any trouble. */ /* Preserve refcount */ refcount = dc->current_state->refcount; dc_resource_state_destruct(dc->current_state); memset(dc->current_state, 0, sizeof(*dc->current_state)); dc->current_state->refcount = refcount; break; } } void dc_resume(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) core_link_resume(dc->links[i]); } bool dc_submit_i2c( struct dc *dc, uint32_t link_index, struct i2c_command *cmd) { struct dc_link *link = dc->links[link_index]; struct ddc_service *ddc = link->ddc; return dal_i2caux_submit_i2c_command( ddc->ctx->i2caux, ddc->ddc_pin, cmd); } static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink) { if (dc_link->sink_count >= MAX_SINKS_PER_LINK) { BREAK_TO_DEBUGGER(); return false; } dc_sink_retain(sink); dc_link->remote_sinks[dc_link->sink_count] = sink; dc_link->sink_count++; return true; } struct dc_sink *dc_link_add_remote_sink( struct dc_link *link, const uint8_t *edid, int len, struct dc_sink_init_data *init_data) { struct dc_sink *dc_sink; enum dc_edid_status edid_status; if (len > MAX_EDID_BUFFER_SIZE) { dm_error("Max EDID buffer size breached!\n"); return NULL; } if (!init_data) { BREAK_TO_DEBUGGER(); return NULL; } if (!init_data->link) { BREAK_TO_DEBUGGER(); return NULL; } dc_sink = dc_sink_create(init_data); if (!dc_sink) return NULL; memmove(dc_sink->dc_edid.raw_edid, edid, len); dc_sink->dc_edid.length = len; if (!link_add_remote_sink_helper( link, dc_sink)) goto fail_add_sink; edid_status = dm_helpers_parse_edid_caps( link->ctx, &dc_sink->dc_edid, &dc_sink->edid_caps); if (edid_status != EDID_OK) goto fail; return dc_sink; fail: dc_link_remove_remote_sink(link, dc_sink); fail_add_sink: dc_sink_release(dc_sink); return NULL; } void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink) { int i; if (!link->sink_count) { BREAK_TO_DEBUGGER(); return; } for (i = 0; i < link->sink_count; i++) { if (link->remote_sinks[i] == sink) { dc_sink_release(sink); link->remote_sinks[i] = NULL; /* shrink array to remove empty place */ while (i < link->sink_count - 1) { link->remote_sinks[i] = link->remote_sinks[i+1]; i++; } link->remote_sinks[i] = NULL; link->sink_count--; return; } } }