/* * Copyright 2012 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include "amdgpu.h" #include "amdgpu_ih.h" #include "cikd.h" #include "bif/bif_4_1_d.h" #include "bif/bif_4_1_sh_mask.h" #include "oss/oss_2_0_d.h" #include "oss/oss_2_0_sh_mask.h" /* * Interrupts * Starting with r6xx, interrupts are handled via a ring buffer. * Ring buffers are areas of GPU accessible memory that the GPU * writes interrupt vectors into and the host reads vectors out of. * There is a rptr (read pointer) that determines where the * host is currently reading, and a wptr (write pointer) * which determines where the GPU has written. When the * pointers are equal, the ring is idle. When the GPU * writes vectors to the ring buffer, it increments the * wptr. When there is an interrupt, the host then starts * fetching commands and processing them until the pointers are * equal again at which point it updates the rptr. */ static void cik_ih_set_interrupt_funcs(struct amdgpu_device *adev); /** * cik_ih_enable_interrupts - Enable the interrupt ring buffer * * @adev: amdgpu_device pointer * * Enable the interrupt ring buffer (CIK). */ static void cik_ih_enable_interrupts(struct amdgpu_device *adev) { u32 ih_cntl = RREG32(mmIH_CNTL); u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL); ih_cntl |= IH_CNTL__ENABLE_INTR_MASK; ih_rb_cntl |= IH_RB_CNTL__RB_ENABLE_MASK; WREG32(mmIH_CNTL, ih_cntl); WREG32(mmIH_RB_CNTL, ih_rb_cntl); adev->irq.ih.enabled = true; } /** * cik_ih_disable_interrupts - Disable the interrupt ring buffer * * @adev: amdgpu_device pointer * * Disable the interrupt ring buffer (CIK). */ static void cik_ih_disable_interrupts(struct amdgpu_device *adev) { u32 ih_rb_cntl = RREG32(mmIH_RB_CNTL); u32 ih_cntl = RREG32(mmIH_CNTL); ih_rb_cntl &= ~IH_RB_CNTL__RB_ENABLE_MASK; ih_cntl &= ~IH_CNTL__ENABLE_INTR_MASK; WREG32(mmIH_RB_CNTL, ih_rb_cntl); WREG32(mmIH_CNTL, ih_cntl); /* set rptr, wptr to 0 */ WREG32(mmIH_RB_RPTR, 0); WREG32(mmIH_RB_WPTR, 0); adev->irq.ih.enabled = false; adev->irq.ih.rptr = 0; } /** * cik_ih_irq_init - init and enable the interrupt ring * * @adev: amdgpu_device pointer * * Allocate a ring buffer for the interrupt controller, * enable the RLC, disable interrupts, enable the IH * ring buffer and enable it (CIK). * Called at device load and reume. * Returns 0 for success, errors for failure. */ static int cik_ih_irq_init(struct amdgpu_device *adev) { int rb_bufsz; u32 interrupt_cntl, ih_cntl, ih_rb_cntl; u64 wptr_off; /* disable irqs */ cik_ih_disable_interrupts(adev); /* setup interrupt control */ WREG32(mmINTERRUPT_CNTL2, adev->dummy_page_addr >> 8); interrupt_cntl = RREG32(mmINTERRUPT_CNTL); /* INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=0 - dummy read disabled with msi, enabled without msi * INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK=1 - dummy read controlled by IH_DUMMY_RD_EN */ interrupt_cntl &= ~INTERRUPT_CNTL__IH_DUMMY_RD_OVERRIDE_MASK; /* INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK=1 if ring is in non-cacheable memory, e.g., vram */ interrupt_cntl &= ~INTERRUPT_CNTL__IH_REQ_NONSNOOP_EN_MASK; WREG32(mmINTERRUPT_CNTL, interrupt_cntl); WREG32(mmIH_RB_BASE, adev->irq.ih.gpu_addr >> 8); rb_bufsz = order_base_2(adev->irq.ih.ring_size / 4); ih_rb_cntl = (IH_RB_CNTL__WPTR_OVERFLOW_ENABLE_MASK | IH_RB_CNTL__WPTR_OVERFLOW_CLEAR_MASK | (rb_bufsz << 1)); ih_rb_cntl |= IH_RB_CNTL__WPTR_WRITEBACK_ENABLE_MASK; /* set the writeback address whether it's enabled or not */ wptr_off = adev->wb.gpu_addr + (adev->irq.ih.wptr_offs * 4); WREG32(mmIH_RB_WPTR_ADDR_LO, lower_32_bits(wptr_off)); WREG32(mmIH_RB_WPTR_ADDR_HI, upper_32_bits(wptr_off) & 0xFF); WREG32(mmIH_RB_CNTL, ih_rb_cntl); /* set rptr, wptr to 0 */ WREG32(mmIH_RB_RPTR, 0); WREG32(mmIH_RB_WPTR, 0); /* Default settings for IH_CNTL (disabled at first) */ ih_cntl = (0x10 << IH_CNTL__MC_WRREQ_CREDIT__SHIFT) | (0x10 << IH_CNTL__MC_WR_CLEAN_CNT__SHIFT) | (0 << IH_CNTL__MC_VMID__SHIFT); /* IH_CNTL__RPTR_REARM_MASK only works if msi's are enabled */ if (adev->irq.msi_enabled) ih_cntl |= IH_CNTL__RPTR_REARM_MASK; WREG32(mmIH_CNTL, ih_cntl); pci_set_master(adev->pdev); /* enable irqs */ cik_ih_enable_interrupts(adev); return 0; } /** * cik_ih_irq_disable - disable interrupts * * @adev: amdgpu_device pointer * * Disable interrupts on the hw (CIK). */ static void cik_ih_irq_disable(struct amdgpu_device *adev) { cik_ih_disable_interrupts(adev); /* Wait and acknowledge irq */ mdelay(1); } /** * cik_ih_get_wptr - get the IH ring buffer wptr * * @adev: amdgpu_device pointer * * Get the IH ring buffer wptr from either the register * or the writeback memory buffer (CIK). Also check for * ring buffer overflow and deal with it. * Used by cik_irq_process(). * Returns the value of the wptr. */ static u32 cik_ih_get_wptr(struct amdgpu_device *adev) { u32 wptr, tmp; wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]); if (wptr & IH_RB_WPTR__RB_OVERFLOW_MASK) { wptr &= ~IH_RB_WPTR__RB_OVERFLOW_MASK; /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n", wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask); adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask; tmp = RREG32(mmIH_RB_CNTL); tmp |= IH_RB_CNTL__WPTR_OVERFLOW_CLEAR_MASK; WREG32(mmIH_RB_CNTL, tmp); } return (wptr & adev->irq.ih.ptr_mask); } /* CIK IV Ring * Each IV ring entry is 128 bits: * [7:0] - interrupt source id * [31:8] - reserved * [59:32] - interrupt source data * [63:60] - reserved * [71:64] - RINGID * CP: * ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0] * QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher * - for gfx, hw shader state (0=PS...5=LS, 6=CS) * ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes * PIPE_ID - ME0 0=3D * - ME1&2 compute dispatcher (4 pipes each) * SDMA: * INSTANCE_ID [1:0], QUEUE_ID[1:0] * INSTANCE_ID - 0 = sdma0, 1 = sdma1 * QUEUE_ID - 0 = gfx, 1 = rlc0, 2 = rlc1 * [79:72] - VMID * [95:80] - PASID * [127:96] - reserved */ /** * cik_ih_prescreen_iv - prescreen an interrupt vector * * @adev: amdgpu_device pointer * * Returns true if the interrupt vector should be further processed. */ static bool cik_ih_prescreen_iv(struct amdgpu_device *adev) { u32 ring_index = adev->irq.ih.rptr >> 2; u16 pasid; switch (le32_to_cpu(adev->irq.ih.ring[ring_index]) & 0xff) { case 146: case 147: pasid = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]) >> 16; if (!pasid || amdgpu_vm_pasid_fault_credit(adev, pasid)) return true; break; default: /* Not a VM fault */ return true; } adev->irq.ih.rptr += 16; return false; } /** * cik_ih_decode_iv - decode an interrupt vector * * @adev: amdgpu_device pointer * * Decodes the interrupt vector at the current rptr * position and also advance the position. */ static void cik_ih_decode_iv(struct amdgpu_device *adev, struct amdgpu_iv_entry *entry) { /* wptr/rptr are in bytes! */ u32 ring_index = adev->irq.ih.rptr >> 2; uint32_t dw[4]; dw[0] = le32_to_cpu(adev->irq.ih.ring[ring_index + 0]); dw[1] = le32_to_cpu(adev->irq.ih.ring[ring_index + 1]); dw[2] = le32_to_cpu(adev->irq.ih.ring[ring_index + 2]); dw[3] = le32_to_cpu(adev->irq.ih.ring[ring_index + 3]); entry->client_id = AMDGPU_IH_CLIENTID_LEGACY; entry->src_id = dw[0] & 0xff; entry->src_data[0] = dw[1] & 0xfffffff; entry->ring_id = dw[2] & 0xff; entry->vmid = (dw[2] >> 8) & 0xff; entry->pasid = (dw[2] >> 16) & 0xffff; /* wptr/rptr are in bytes! */ adev->irq.ih.rptr += 16; } /** * cik_ih_set_rptr - set the IH ring buffer rptr * * @adev: amdgpu_device pointer * * Set the IH ring buffer rptr. */ static void cik_ih_set_rptr(struct amdgpu_device *adev) { WREG32(mmIH_RB_RPTR, adev->irq.ih.rptr); } static int cik_ih_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int ret; ret = amdgpu_irq_add_domain(adev); if (ret) return ret; cik_ih_set_interrupt_funcs(adev); return 0; } static int cik_ih_sw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = amdgpu_ih_ring_init(adev, 64 * 1024, false); if (r) return r; r = amdgpu_irq_init(adev); return r; } static int cik_ih_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; amdgpu_irq_fini(adev); amdgpu_ih_ring_fini(adev); amdgpu_irq_remove_domain(adev); return 0; } static int cik_ih_hw_init(void *handle) { int r; struct amdgpu_device *adev = (struct amdgpu_device *)handle; r = cik_ih_irq_init(adev); if (r) return r; return 0; } static int cik_ih_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; cik_ih_irq_disable(adev); return 0; } static int cik_ih_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return cik_ih_hw_fini(adev); } static int cik_ih_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return cik_ih_hw_init(adev); } static bool cik_ih_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp = RREG32(mmSRBM_STATUS); if (tmp & SRBM_STATUS__IH_BUSY_MASK) return false; return true; } static int cik_ih_wait_for_idle(void *handle) { unsigned i; u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { /* read MC_STATUS */ tmp = RREG32(mmSRBM_STATUS) & SRBM_STATUS__IH_BUSY_MASK; if (!tmp) return 0; udelay(1); } return -ETIMEDOUT; } static int cik_ih_soft_reset(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 srbm_soft_reset = 0; u32 tmp = RREG32(mmSRBM_STATUS); if (tmp & SRBM_STATUS__IH_BUSY_MASK) srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_IH_MASK; if (srbm_soft_reset) { tmp = RREG32(mmSRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(mmSRBM_SOFT_RESET, tmp); tmp = RREG32(mmSRBM_SOFT_RESET); /* Wait a little for things to settle down */ udelay(50); } return 0; } static int cik_ih_set_clockgating_state(void *handle, enum amd_clockgating_state state) { return 0; } static int cik_ih_set_powergating_state(void *handle, enum amd_powergating_state state) { return 0; } static const struct amd_ip_funcs cik_ih_ip_funcs = { .name = "cik_ih", .early_init = cik_ih_early_init, .late_init = NULL, .sw_init = cik_ih_sw_init, .sw_fini = cik_ih_sw_fini, .hw_init = cik_ih_hw_init, .hw_fini = cik_ih_hw_fini, .suspend = cik_ih_suspend, .resume = cik_ih_resume, .is_idle = cik_ih_is_idle, .wait_for_idle = cik_ih_wait_for_idle, .soft_reset = cik_ih_soft_reset, .set_clockgating_state = cik_ih_set_clockgating_state, .set_powergating_state = cik_ih_set_powergating_state, }; static const struct amdgpu_ih_funcs cik_ih_funcs = { .get_wptr = cik_ih_get_wptr, .prescreen_iv = cik_ih_prescreen_iv, .decode_iv = cik_ih_decode_iv, .set_rptr = cik_ih_set_rptr }; static void cik_ih_set_interrupt_funcs(struct amdgpu_device *adev) { if (adev->irq.ih_funcs == NULL) adev->irq.ih_funcs = &cik_ih_funcs; } const struct amdgpu_ip_block_version cik_ih_ip_block = { .type = AMD_IP_BLOCK_TYPE_IH, .major = 2, .minor = 0, .rev = 0, .funcs = &cik_ih_ip_funcs, };