/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include #include #include #include "amdgpu.h" #include "amdgpu_trace.h" /* * PASID manager * * PASIDs are global address space identifiers that can be shared * between the GPU, an IOMMU and the driver. VMs on different devices * may use the same PASID if they share the same address * space. Therefore PASIDs are allocated using a global IDA. VMs are * looked up from the PASID per amdgpu_device. */ static DEFINE_IDA(amdgpu_vm_pasid_ida); /** * amdgpu_vm_alloc_pasid - Allocate a PASID * @bits: Maximum width of the PASID in bits, must be at least 1 * * Allocates a PASID of the given width while keeping smaller PASIDs * available if possible. * * Returns a positive integer on success. Returns %-EINVAL if bits==0. * Returns %-ENOSPC if no PASID was available. Returns %-ENOMEM on * memory allocation failure. */ int amdgpu_vm_alloc_pasid(unsigned int bits) { int pasid = -EINVAL; for (bits = min(bits, 31U); bits > 0; bits--) { pasid = ida_simple_get(&amdgpu_vm_pasid_ida, 1U << (bits - 1), 1U << bits, GFP_KERNEL); if (pasid != -ENOSPC) break; } return pasid; } /** * amdgpu_vm_free_pasid - Free a PASID * @pasid: PASID to free */ void amdgpu_vm_free_pasid(unsigned int pasid) { ida_simple_remove(&amdgpu_vm_pasid_ida, pasid); } /* * GPUVM * GPUVM is similar to the legacy gart on older asics, however * rather than there being a single global gart table * for the entire GPU, there are multiple VM page tables active * at any given time. The VM page tables can contain a mix * vram pages and system memory pages and system memory pages * can be mapped as snooped (cached system pages) or unsnooped * (uncached system pages). * Each VM has an ID associated with it and there is a page table * associated with each VMID. When execting a command buffer, * the kernel tells the the ring what VMID to use for that command * buffer. VMIDs are allocated dynamically as commands are submitted. * The userspace drivers maintain their own address space and the kernel * sets up their pages tables accordingly when they submit their * command buffers and a VMID is assigned. * Cayman/Trinity support up to 8 active VMs at any given time; * SI supports 16. */ #define START(node) ((node)->start) #define LAST(node) ((node)->last) INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last, START, LAST, static, amdgpu_vm_it) #undef START #undef LAST /* Local structure. Encapsulate some VM table update parameters to reduce * the number of function parameters */ struct amdgpu_pte_update_params { /* amdgpu device we do this update for */ struct amdgpu_device *adev; /* optional amdgpu_vm we do this update for */ struct amdgpu_vm *vm; /* address where to copy page table entries from */ uint64_t src; /* indirect buffer to fill with commands */ struct amdgpu_ib *ib; /* Function which actually does the update */ void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags); /* The next two are used during VM update by CPU * DMA addresses to use for mapping * Kernel pointer of PD/PT BO that needs to be updated */ dma_addr_t *pages_addr; void *kptr; }; /* Helper to disable partial resident texture feature from a fence callback */ struct amdgpu_prt_cb { struct amdgpu_device *adev; struct dma_fence_cb cb; }; /** * amdgpu_vm_num_entries - return the number of entries in a PD/PT * * @adev: amdgpu_device pointer * * Calculate the number of entries in a page directory or page table. */ static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev, unsigned level) { if (level == 0) /* For the root directory */ return adev->vm_manager.max_pfn >> (adev->vm_manager.block_size * adev->vm_manager.num_level); else if (level == adev->vm_manager.num_level) /* For the page tables on the leaves */ return AMDGPU_VM_PTE_COUNT(adev); else /* Everything in between */ return 1 << adev->vm_manager.block_size; } /** * amdgpu_vm_bo_size - returns the size of the BOs in bytes * * @adev: amdgpu_device pointer * * Calculate the size of the BO for a page directory or page table in bytes. */ static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level) { return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8); } /** * amdgpu_vm_get_pd_bo - add the VM PD to a validation list * * @vm: vm providing the BOs * @validated: head of validation list * @entry: entry to add * * Add the page directory to the list of BOs to * validate for command submission. */ void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm, struct list_head *validated, struct amdgpu_bo_list_entry *entry) { entry->robj = vm->root.base.bo; entry->priority = 0; entry->tv.bo = &entry->robj->tbo; entry->tv.shared = true; entry->user_pages = NULL; list_add(&entry->tv.head, validated); } /** * amdgpu_vm_validate_pt_bos - validate the page table BOs * * @adev: amdgpu device pointer * @vm: vm providing the BOs * @validate: callback to do the validation * @param: parameter for the validation callback * * Validate the page table BOs on command submission if neccessary. */ int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, int (*validate)(void *p, struct amdgpu_bo *bo), void *param) { struct ttm_bo_global *glob = adev->mman.bdev.glob; int r; spin_lock(&vm->status_lock); while (!list_empty(&vm->evicted)) { struct amdgpu_vm_bo_base *bo_base; struct amdgpu_bo *bo; bo_base = list_first_entry(&vm->evicted, struct amdgpu_vm_bo_base, vm_status); spin_unlock(&vm->status_lock); bo = bo_base->bo; BUG_ON(!bo); if (bo->parent) { r = validate(param, bo); if (r) return r; spin_lock(&glob->lru_lock); ttm_bo_move_to_lru_tail(&bo->tbo); if (bo->shadow) ttm_bo_move_to_lru_tail(&bo->shadow->tbo); spin_unlock(&glob->lru_lock); } if (bo->tbo.type == ttm_bo_type_kernel && vm->use_cpu_for_update) { r = amdgpu_bo_kmap(bo, NULL); if (r) return r; } spin_lock(&vm->status_lock); if (bo->tbo.type != ttm_bo_type_kernel) list_move(&bo_base->vm_status, &vm->moved); else list_move(&bo_base->vm_status, &vm->relocated); } spin_unlock(&vm->status_lock); return 0; } /** * amdgpu_vm_ready - check VM is ready for updates * * @vm: VM to check * * Check if all VM PDs/PTs are ready for updates */ bool amdgpu_vm_ready(struct amdgpu_vm *vm) { bool ready; spin_lock(&vm->status_lock); ready = list_empty(&vm->evicted); spin_unlock(&vm->status_lock); return ready; } /** * amdgpu_vm_alloc_levels - allocate the PD/PT levels * * @adev: amdgpu_device pointer * @vm: requested vm * @saddr: start of the address range * @eaddr: end of the address range * * Make sure the page directories and page tables are allocated */ static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt *parent, uint64_t saddr, uint64_t eaddr, unsigned level) { unsigned shift = (adev->vm_manager.num_level - level) * adev->vm_manager.block_size; unsigned pt_idx, from, to; int r; u64 flags; uint64_t init_value = 0; if (!parent->entries) { unsigned num_entries = amdgpu_vm_num_entries(adev, level); parent->entries = kvmalloc_array(num_entries, sizeof(struct amdgpu_vm_pt), GFP_KERNEL | __GFP_ZERO); if (!parent->entries) return -ENOMEM; memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt)); } from = saddr >> shift; to = eaddr >> shift; if (from >= amdgpu_vm_num_entries(adev, level) || to >= amdgpu_vm_num_entries(adev, level)) return -EINVAL; if (to > parent->last_entry_used) parent->last_entry_used = to; ++level; saddr = saddr & ((1 << shift) - 1); eaddr = eaddr & ((1 << shift) - 1); flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | AMDGPU_GEM_CREATE_VRAM_CLEARED; if (vm->use_cpu_for_update) flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; else flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | AMDGPU_GEM_CREATE_SHADOW); if (vm->pte_support_ats) { init_value = AMDGPU_PTE_SYSTEM; if (level != adev->vm_manager.num_level - 1) init_value |= AMDGPU_PDE_PTE; } /* walk over the address space and allocate the page tables */ for (pt_idx = from; pt_idx <= to; ++pt_idx) { struct reservation_object *resv = vm->root.base.bo->tbo.resv; struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; struct amdgpu_bo *pt; if (!entry->base.bo) { r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, level), AMDGPU_GPU_PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_VRAM, flags, NULL, resv, init_value, &pt); if (r) return r; if (vm->use_cpu_for_update) { r = amdgpu_bo_kmap(pt, NULL); if (r) { amdgpu_bo_unref(&pt); return r; } } /* Keep a reference to the root directory to avoid * freeing them up in the wrong order. */ pt->parent = amdgpu_bo_ref(parent->base.bo); entry->base.vm = vm; entry->base.bo = pt; list_add_tail(&entry->base.bo_list, &pt->va); spin_lock(&vm->status_lock); list_add(&entry->base.vm_status, &vm->relocated); spin_unlock(&vm->status_lock); entry->addr = 0; } if (level < adev->vm_manager.num_level) { uint64_t sub_saddr = (pt_idx == from) ? saddr : 0; uint64_t sub_eaddr = (pt_idx == to) ? eaddr : ((1 << shift) - 1); r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr, sub_eaddr, level); if (r) return r; } } return 0; } /** * amdgpu_vm_alloc_pts - Allocate page tables. * * @adev: amdgpu_device pointer * @vm: VM to allocate page tables for * @saddr: Start address which needs to be allocated * @size: Size from start address we need. * * Make sure the page tables are allocated. */ int amdgpu_vm_alloc_pts(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t saddr, uint64_t size) { uint64_t last_pfn; uint64_t eaddr; /* validate the parameters */ if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK) return -EINVAL; eaddr = saddr + size - 1; last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; if (last_pfn >= adev->vm_manager.max_pfn) { dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n", last_pfn, adev->vm_manager.max_pfn); return -EINVAL; } saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0); } /** * amdgpu_vm_had_gpu_reset - check if reset occured since last use * * @adev: amdgpu_device pointer * @id: VMID structure * * Check if GPU reset occured since last use of the VMID. */ static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev, struct amdgpu_vm_id *id) { return id->current_gpu_reset_count != atomic_read(&adev->gpu_reset_counter); } static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub) { return !!vm->reserved_vmid[vmhub]; } /* idr_mgr->lock must be held */ static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm, struct amdgpu_ring *ring, struct amdgpu_sync *sync, struct dma_fence *fence, struct amdgpu_job *job) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->funcs->vmhub; uint64_t fence_context = adev->fence_context + ring->idx; struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub]; struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; struct dma_fence *updates = sync->last_vm_update; int r = 0; struct dma_fence *flushed, *tmp; bool needs_flush = vm->use_cpu_for_update; flushed = id->flushed_updates; if ((amdgpu_vm_had_gpu_reset(adev, id)) || (atomic64_read(&id->owner) != vm->client_id) || (job->vm_pd_addr != id->pd_gpu_addr) || (updates && (!flushed || updates->context != flushed->context || dma_fence_is_later(updates, flushed))) || (!id->last_flush || (id->last_flush->context != fence_context && !dma_fence_is_signaled(id->last_flush)))) { needs_flush = true; /* to prevent one context starved by another context */ id->pd_gpu_addr = 0; tmp = amdgpu_sync_peek_fence(&id->active, ring); if (tmp) { r = amdgpu_sync_fence(adev, sync, tmp); return r; } } /* Good we can use this VMID. Remember this submission as * user of the VMID. */ r = amdgpu_sync_fence(ring->adev, &id->active, fence); if (r) goto out; if (updates && (!flushed || updates->context != flushed->context || dma_fence_is_later(updates, flushed))) { dma_fence_put(id->flushed_updates); id->flushed_updates = dma_fence_get(updates); } id->pd_gpu_addr = job->vm_pd_addr; atomic64_set(&id->owner, vm->client_id); job->vm_needs_flush = needs_flush; if (needs_flush) { dma_fence_put(id->last_flush); id->last_flush = NULL; } job->vm_id = id - id_mgr->ids; trace_amdgpu_vm_grab_id(vm, ring, job); out: return r; } /** * amdgpu_vm_grab_id - allocate the next free VMID * * @vm: vm to allocate id for * @ring: ring we want to submit job to * @sync: sync object where we add dependencies * @fence: fence protecting ID from reuse * * Allocate an id for the vm, adding fences to the sync obj as necessary. */ int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring, struct amdgpu_sync *sync, struct dma_fence *fence, struct amdgpu_job *job) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->funcs->vmhub; struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; uint64_t fence_context = adev->fence_context + ring->idx; struct dma_fence *updates = sync->last_vm_update; struct amdgpu_vm_id *id, *idle; struct dma_fence **fences; unsigned i; int r = 0; mutex_lock(&id_mgr->lock); if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) { r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job); mutex_unlock(&id_mgr->lock); return r; } fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL); if (!fences) { mutex_unlock(&id_mgr->lock); return -ENOMEM; } /* Check if we have an idle VMID */ i = 0; list_for_each_entry(idle, &id_mgr->ids_lru, list) { fences[i] = amdgpu_sync_peek_fence(&idle->active, ring); if (!fences[i]) break; ++i; } /* If we can't find a idle VMID to use, wait till one becomes available */ if (&idle->list == &id_mgr->ids_lru) { u64 fence_context = adev->vm_manager.fence_context + ring->idx; unsigned seqno = ++adev->vm_manager.seqno[ring->idx]; struct dma_fence_array *array; unsigned j; for (j = 0; j < i; ++j) dma_fence_get(fences[j]); array = dma_fence_array_create(i, fences, fence_context, seqno, true); if (!array) { for (j = 0; j < i; ++j) dma_fence_put(fences[j]); kfree(fences); r = -ENOMEM; goto error; } r = amdgpu_sync_fence(ring->adev, sync, &array->base); dma_fence_put(&array->base); if (r) goto error; mutex_unlock(&id_mgr->lock); return 0; } kfree(fences); job->vm_needs_flush = vm->use_cpu_for_update; /* Check if we can use a VMID already assigned to this VM */ list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) { struct dma_fence *flushed; bool needs_flush = vm->use_cpu_for_update; /* Check all the prerequisites to using this VMID */ if (amdgpu_vm_had_gpu_reset(adev, id)) continue; if (atomic64_read(&id->owner) != vm->client_id) continue; if (job->vm_pd_addr != id->pd_gpu_addr) continue; if (!id->last_flush || (id->last_flush->context != fence_context && !dma_fence_is_signaled(id->last_flush))) needs_flush = true; flushed = id->flushed_updates; if (updates && (!flushed || dma_fence_is_later(updates, flushed))) needs_flush = true; /* Concurrent flushes are only possible starting with Vega10 */ if (adev->asic_type < CHIP_VEGA10 && needs_flush) continue; /* Good we can use this VMID. Remember this submission as * user of the VMID. */ r = amdgpu_sync_fence(ring->adev, &id->active, fence); if (r) goto error; if (updates && (!flushed || dma_fence_is_later(updates, flushed))) { dma_fence_put(id->flushed_updates); id->flushed_updates = dma_fence_get(updates); } if (needs_flush) goto needs_flush; else goto no_flush_needed; }; /* Still no ID to use? Then use the idle one found earlier */ id = idle; /* Remember this submission as user of the VMID */ r = amdgpu_sync_fence(ring->adev, &id->active, fence); if (r) goto error; id->pd_gpu_addr = job->vm_pd_addr; dma_fence_put(id->flushed_updates); id->flushed_updates = dma_fence_get(updates); atomic64_set(&id->owner, vm->client_id); needs_flush: job->vm_needs_flush = true; dma_fence_put(id->last_flush); id->last_flush = NULL; no_flush_needed: list_move_tail(&id->list, &id_mgr->ids_lru); job->vm_id = id - id_mgr->ids; trace_amdgpu_vm_grab_id(vm, ring, job); error: mutex_unlock(&id_mgr->lock); return r; } static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned vmhub) { struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; mutex_lock(&id_mgr->lock); if (vm->reserved_vmid[vmhub]) { list_add(&vm->reserved_vmid[vmhub]->list, &id_mgr->ids_lru); vm->reserved_vmid[vmhub] = NULL; atomic_dec(&id_mgr->reserved_vmid_num); } mutex_unlock(&id_mgr->lock); } static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned vmhub) { struct amdgpu_vm_id_manager *id_mgr; struct amdgpu_vm_id *idle; int r = 0; id_mgr = &adev->vm_manager.id_mgr[vmhub]; mutex_lock(&id_mgr->lock); if (vm->reserved_vmid[vmhub]) goto unlock; if (atomic_inc_return(&id_mgr->reserved_vmid_num) > AMDGPU_VM_MAX_RESERVED_VMID) { DRM_ERROR("Over limitation of reserved vmid\n"); atomic_dec(&id_mgr->reserved_vmid_num); r = -EINVAL; goto unlock; } /* Select the first entry VMID */ idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list); list_del_init(&idle->list); vm->reserved_vmid[vmhub] = idle; mutex_unlock(&id_mgr->lock); return 0; unlock: mutex_unlock(&id_mgr->lock); return r; } /** * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug * * @adev: amdgpu_device pointer */ void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev) { const struct amdgpu_ip_block *ip_block; bool has_compute_vm_bug; struct amdgpu_ring *ring; int i; has_compute_vm_bug = false; ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX); if (ip_block) { /* Compute has a VM bug for GFX version < 7. Compute has a VM bug for GFX 8 MEC firmware version < 673.*/ if (ip_block->version->major <= 7) has_compute_vm_bug = true; else if (ip_block->version->major == 8) if (adev->gfx.mec_fw_version < 673) has_compute_vm_bug = true; } for (i = 0; i < adev->num_rings; i++) { ring = adev->rings[i]; if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE) /* only compute rings */ ring->has_compute_vm_bug = has_compute_vm_bug; else ring->has_compute_vm_bug = false; } } bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring, struct amdgpu_job *job) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->funcs->vmhub; struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; struct amdgpu_vm_id *id; bool gds_switch_needed; bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug; if (job->vm_id == 0) return false; id = &id_mgr->ids[job->vm_id]; gds_switch_needed = ring->funcs->emit_gds_switch && ( id->gds_base != job->gds_base || id->gds_size != job->gds_size || id->gws_base != job->gws_base || id->gws_size != job->gws_size || id->oa_base != job->oa_base || id->oa_size != job->oa_size); if (amdgpu_vm_had_gpu_reset(adev, id)) return true; return vm_flush_needed || gds_switch_needed; } static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev) { return (adev->mc.real_vram_size == adev->mc.visible_vram_size); } /** * amdgpu_vm_flush - hardware flush the vm * * @ring: ring to use for flush * @vm_id: vmid number to use * @pd_addr: address of the page directory * * Emit a VM flush when it is necessary. */ int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync) { struct amdgpu_device *adev = ring->adev; unsigned vmhub = ring->funcs->vmhub; struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id]; bool gds_switch_needed = ring->funcs->emit_gds_switch && ( id->gds_base != job->gds_base || id->gds_size != job->gds_size || id->gws_base != job->gws_base || id->gws_size != job->gws_size || id->oa_base != job->oa_base || id->oa_size != job->oa_size); bool vm_flush_needed = job->vm_needs_flush; unsigned patch_offset = 0; int r; if (amdgpu_vm_had_gpu_reset(adev, id)) { gds_switch_needed = true; vm_flush_needed = true; } if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync) return 0; if (ring->funcs->init_cond_exec) patch_offset = amdgpu_ring_init_cond_exec(ring); if (need_pipe_sync) amdgpu_ring_emit_pipeline_sync(ring); if (ring->funcs->emit_vm_flush && vm_flush_needed) { struct dma_fence *fence; trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr); amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr); r = amdgpu_fence_emit(ring, &fence); if (r) return r; mutex_lock(&id_mgr->lock); dma_fence_put(id->last_flush); id->last_flush = fence; id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter); mutex_unlock(&id_mgr->lock); } if (ring->funcs->emit_gds_switch && gds_switch_needed) { id->gds_base = job->gds_base; id->gds_size = job->gds_size; id->gws_base = job->gws_base; id->gws_size = job->gws_size; id->oa_base = job->oa_base; id->oa_size = job->oa_size; amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base, job->gds_size, job->gws_base, job->gws_size, job->oa_base, job->oa_size); } if (ring->funcs->patch_cond_exec) amdgpu_ring_patch_cond_exec(ring, patch_offset); /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */ if (ring->funcs->emit_switch_buffer) { amdgpu_ring_emit_switch_buffer(ring); amdgpu_ring_emit_switch_buffer(ring); } return 0; } /** * amdgpu_vm_reset_id - reset VMID to zero * * @adev: amdgpu device structure * @vm_id: vmid number to use * * Reset saved GDW, GWS and OA to force switch on next flush. */ void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub, unsigned vmid) { struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub]; struct amdgpu_vm_id *id = &id_mgr->ids[vmid]; atomic64_set(&id->owner, 0); id->gds_base = 0; id->gds_size = 0; id->gws_base = 0; id->gws_size = 0; id->oa_base = 0; id->oa_size = 0; } /** * amdgpu_vm_reset_all_id - reset VMID to zero * * @adev: amdgpu device structure * * Reset VMID to force flush on next use */ void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev) { unsigned i, j; for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[i]; for (j = 1; j < id_mgr->num_ids; ++j) amdgpu_vm_reset_id(adev, i, j); } } /** * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo * * @vm: requested vm * @bo: requested buffer object * * Find @bo inside the requested vm. * Search inside the @bos vm list for the requested vm * Returns the found bo_va or NULL if none is found * * Object has to be reserved! */ struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_bo_va *bo_va; list_for_each_entry(bo_va, &bo->va, base.bo_list) { if (bo_va->base.vm == vm) { return bo_va; } } return NULL; } /** * amdgpu_vm_do_set_ptes - helper to call the right asic function * * @params: see amdgpu_pte_update_params definition * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: hw access flags * * Traces the parameters and calls the right asic functions * to setup the page table using the DMA. */ static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); if (count < 3) { amdgpu_vm_write_pte(params->adev, params->ib, pe, addr | flags, count, incr); } else { amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr, count, incr, flags); } } /** * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART * * @params: see amdgpu_pte_update_params definition * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: hw access flags * * Traces the parameters and calls the DMA function to copy the PTEs. */ static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { uint64_t src = (params->src + (addr >> 12) * 8); trace_amdgpu_vm_copy_ptes(pe, src, count); amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count); } /** * amdgpu_vm_map_gart - Resolve gart mapping of addr * * @pages_addr: optional DMA address to use for lookup * @addr: the unmapped addr * * Look up the physical address of the page that the pte resolves * to and return the pointer for the page table entry. */ static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr) { uint64_t result; /* page table offset */ result = pages_addr[addr >> PAGE_SHIFT]; /* in case cpu page size != gpu page size*/ result |= addr & (~PAGE_MASK); result &= 0xFFFFFFFFFFFFF000ULL; return result; } /** * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU * * @params: see amdgpu_pte_update_params definition * @pe: kmap addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: hw access flags * * Write count number of PT/PD entries directly. */ static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { unsigned int i; uint64_t value; trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags); for (i = 0; i < count; i++) { value = params->pages_addr ? amdgpu_vm_map_gart(params->pages_addr, addr) : addr; amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe, i, value, flags); addr += incr; } } static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm, void *owner) { struct amdgpu_sync sync; int r; amdgpu_sync_create(&sync); amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner); r = amdgpu_sync_wait(&sync, true); amdgpu_sync_free(&sync); return r; } /* * amdgpu_vm_update_level - update a single level in the hierarchy * * @adev: amdgpu_device pointer * @vm: requested vm * @parent: parent directory * * Makes sure all entries in @parent are up to date. * Returns 0 for success, error for failure. */ static int amdgpu_vm_update_level(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_vm_pt *parent) { struct amdgpu_bo *shadow; struct amdgpu_ring *ring = NULL; uint64_t pd_addr, shadow_addr = 0; uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0; unsigned count = 0, pt_idx, ndw = 0; struct amdgpu_job *job; struct amdgpu_pte_update_params params; struct dma_fence *fence = NULL; uint32_t incr; int r; if (!parent->entries) return 0; memset(¶ms, 0, sizeof(params)); params.adev = adev; shadow = parent->base.bo->shadow; if (vm->use_cpu_for_update) { pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo); r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM); if (unlikely(r)) return r; params.func = amdgpu_vm_cpu_set_ptes; } else { ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); /* padding, etc. */ ndw = 64; /* assume the worst case */ ndw += parent->last_entry_used * 6; pd_addr = amdgpu_bo_gpu_offset(parent->base.bo); if (shadow) { shadow_addr = amdgpu_bo_gpu_offset(shadow); ndw *= 2; } else { shadow_addr = 0; } r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); if (r) return r; params.ib = &job->ibs[0]; params.func = amdgpu_vm_do_set_ptes; } /* walk over the address space and update the directory */ for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; struct amdgpu_bo *bo = entry->base.bo; uint64_t pde, pt; if (bo == NULL) continue; spin_lock(&vm->status_lock); list_del_init(&entry->base.vm_status); spin_unlock(&vm->status_lock); pt = amdgpu_bo_gpu_offset(bo); pt = amdgpu_gart_get_vm_pde(adev, pt); /* Don't update huge pages here */ if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) || parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID)) continue; parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID; pde = pd_addr + pt_idx * 8; incr = amdgpu_bo_size(bo); if (((last_pde + 8 * count) != pde) || ((last_pt + incr * count) != pt) || (count == AMDGPU_VM_MAX_UPDATE_SIZE)) { if (count) { if (shadow) params.func(¶ms, last_shadow, last_pt, count, incr, AMDGPU_PTE_VALID); params.func(¶ms, last_pde, last_pt, count, incr, AMDGPU_PTE_VALID); } count = 1; last_pde = pde; last_shadow = shadow_addr + pt_idx * 8; last_pt = pt; } else { ++count; } } if (count) { if (vm->root.base.bo->shadow) params.func(¶ms, last_shadow, last_pt, count, incr, AMDGPU_PTE_VALID); params.func(¶ms, last_pde, last_pt, count, incr, AMDGPU_PTE_VALID); } if (!vm->use_cpu_for_update) { if (params.ib->length_dw == 0) { amdgpu_job_free(job); } else { amdgpu_ring_pad_ib(ring, params.ib); amdgpu_sync_resv(adev, &job->sync, parent->base.bo->tbo.resv, AMDGPU_FENCE_OWNER_VM); if (shadow) amdgpu_sync_resv(adev, &job->sync, shadow->tbo.resv, AMDGPU_FENCE_OWNER_VM); WARN_ON(params.ib->length_dw > ndw); r = amdgpu_job_submit(job, ring, &vm->entity, AMDGPU_FENCE_OWNER_VM, &fence); if (r) goto error_free; amdgpu_bo_fence(parent->base.bo, fence, true); dma_fence_put(vm->last_update); vm->last_update = fence; } } return 0; error_free: amdgpu_job_free(job); return r; } /* * amdgpu_vm_invalidate_level - mark all PD levels as invalid * * @parent: parent PD * * Mark all PD level as invalid after an error. */ static void amdgpu_vm_invalidate_level(struct amdgpu_vm *vm, struct amdgpu_vm_pt *parent) { unsigned pt_idx; /* * Recurse into the subdirectories. This recursion is harmless because * we only have a maximum of 5 layers. */ for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) { struct amdgpu_vm_pt *entry = &parent->entries[pt_idx]; if (!entry->base.bo) continue; entry->addr = ~0ULL; spin_lock(&vm->status_lock); if (list_empty(&entry->base.vm_status)) list_add(&entry->base.vm_status, &vm->relocated); spin_unlock(&vm->status_lock); amdgpu_vm_invalidate_level(vm, entry); } } /* * amdgpu_vm_update_directories - make sure that all directories are valid * * @adev: amdgpu_device pointer * @vm: requested vm * * Makes sure all directories are up to date. * Returns 0 for success, error for failure. */ int amdgpu_vm_update_directories(struct amdgpu_device *adev, struct amdgpu_vm *vm) { int r; spin_lock(&vm->status_lock); while (!list_empty(&vm->relocated)) { struct amdgpu_vm_bo_base *bo_base; struct amdgpu_bo *bo; bo_base = list_first_entry(&vm->relocated, struct amdgpu_vm_bo_base, vm_status); spin_unlock(&vm->status_lock); bo = bo_base->bo->parent; if (bo) { struct amdgpu_vm_bo_base *parent; struct amdgpu_vm_pt *pt; parent = list_first_entry(&bo->va, struct amdgpu_vm_bo_base, bo_list); pt = container_of(parent, struct amdgpu_vm_pt, base); r = amdgpu_vm_update_level(adev, vm, pt); if (r) { amdgpu_vm_invalidate_level(vm, &vm->root); return r; } spin_lock(&vm->status_lock); } else { spin_lock(&vm->status_lock); list_del_init(&bo_base->vm_status); } } spin_unlock(&vm->status_lock); if (vm->use_cpu_for_update) { /* Flush HDP */ mb(); amdgpu_gart_flush_gpu_tlb(adev, 0); } return r; } /** * amdgpu_vm_find_entry - find the entry for an address * * @p: see amdgpu_pte_update_params definition * @addr: virtual address in question * @entry: resulting entry or NULL * @parent: parent entry * * Find the vm_pt entry and it's parent for the given address. */ void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr, struct amdgpu_vm_pt **entry, struct amdgpu_vm_pt **parent) { unsigned idx, level = p->adev->vm_manager.num_level; *parent = NULL; *entry = &p->vm->root; while ((*entry)->entries) { idx = addr >> (p->adev->vm_manager.block_size * level--); idx %= amdgpu_bo_size((*entry)->base.bo) / 8; *parent = *entry; *entry = &(*entry)->entries[idx]; } if (level) *entry = NULL; } /** * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages * * @p: see amdgpu_pte_update_params definition * @entry: vm_pt entry to check * @parent: parent entry * @nptes: number of PTEs updated with this operation * @dst: destination address where the PTEs should point to * @flags: access flags fro the PTEs * * Check if we can update the PD with a huge page. */ static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p, struct amdgpu_vm_pt *entry, struct amdgpu_vm_pt *parent, unsigned nptes, uint64_t dst, uint64_t flags) { bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes); uint64_t pd_addr, pde; /* In the case of a mixed PT the PDE must point to it*/ if (p->adev->asic_type < CHIP_VEGA10 || nptes != AMDGPU_VM_PTE_COUNT(p->adev) || p->src || !(flags & AMDGPU_PTE_VALID)) { dst = amdgpu_bo_gpu_offset(entry->base.bo); dst = amdgpu_gart_get_vm_pde(p->adev, dst); flags = AMDGPU_PTE_VALID; } else { /* Set the huge page flag to stop scanning at this PDE */ flags |= AMDGPU_PDE_PTE; } if (entry->addr == (dst | flags)) return; entry->addr = (dst | flags); if (use_cpu_update) { /* In case a huge page is replaced with a system * memory mapping, p->pages_addr != NULL and * amdgpu_vm_cpu_set_ptes would try to translate dst * through amdgpu_vm_map_gart. But dst is already a * GPU address (of the page table). Disable * amdgpu_vm_map_gart temporarily. */ dma_addr_t *tmp; tmp = p->pages_addr; p->pages_addr = NULL; pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo); pde = pd_addr + (entry - parent->entries) * 8; amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags); p->pages_addr = tmp; } else { if (parent->base.bo->shadow) { pd_addr = amdgpu_bo_gpu_offset(parent->base.bo->shadow); pde = pd_addr + (entry - parent->entries) * 8; amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags); } pd_addr = amdgpu_bo_gpu_offset(parent->base.bo); pde = pd_addr + (entry - parent->entries) * 8; amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags); } } /** * amdgpu_vm_update_ptes - make sure that page tables are valid * * @params: see amdgpu_pte_update_params definition * @vm: requested vm * @start: start of GPU address range * @end: end of GPU address range * @dst: destination address to map to, the next dst inside the function * @flags: mapping flags * * Update the page tables in the range @start - @end. * Returns 0 for success, -EINVAL for failure. */ static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params, uint64_t start, uint64_t end, uint64_t dst, uint64_t flags) { struct amdgpu_device *adev = params->adev; const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1; uint64_t addr, pe_start; struct amdgpu_bo *pt; unsigned nptes; bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes); /* walk over the address space and update the page tables */ for (addr = start; addr < end; addr += nptes, dst += nptes * AMDGPU_GPU_PAGE_SIZE) { struct amdgpu_vm_pt *entry, *parent; amdgpu_vm_get_entry(params, addr, &entry, &parent); if (!entry) return -ENOENT; if ((addr & ~mask) == (end & ~mask)) nptes = end - addr; else nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask); amdgpu_vm_handle_huge_pages(params, entry, parent, nptes, dst, flags); /* We don't need to update PTEs for huge pages */ if (entry->addr & AMDGPU_PDE_PTE) continue; pt = entry->base.bo; if (use_cpu_update) { pe_start = (unsigned long)amdgpu_bo_kptr(pt); } else { if (pt->shadow) { pe_start = amdgpu_bo_gpu_offset(pt->shadow); pe_start += (addr & mask) * 8; params->func(params, pe_start, dst, nptes, AMDGPU_GPU_PAGE_SIZE, flags); } pe_start = amdgpu_bo_gpu_offset(pt); } pe_start += (addr & mask) * 8; params->func(params, pe_start, dst, nptes, AMDGPU_GPU_PAGE_SIZE, flags); } return 0; } /* * amdgpu_vm_frag_ptes - add fragment information to PTEs * * @params: see amdgpu_pte_update_params definition * @vm: requested vm * @start: first PTE to handle * @end: last PTE to handle * @dst: addr those PTEs should point to * @flags: hw mapping flags * Returns 0 for success, -EINVAL for failure. */ static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params, uint64_t start, uint64_t end, uint64_t dst, uint64_t flags) { /** * The MC L1 TLB supports variable sized pages, based on a fragment * field in the PTE. When this field is set to a non-zero value, page * granularity is increased from 4KB to (1 << (12 + frag)). The PTE * flags are considered valid for all PTEs within the fragment range * and corresponding mappings are assumed to be physically contiguous. * * The L1 TLB can store a single PTE for the whole fragment, * significantly increasing the space available for translation * caching. This leads to large improvements in throughput when the * TLB is under pressure. * * The L2 TLB distributes small and large fragments into two * asymmetric partitions. The large fragment cache is significantly * larger. Thus, we try to use large fragments wherever possible. * Userspace can support this by aligning virtual base address and * allocation size to the fragment size. */ unsigned max_frag = params->adev->vm_manager.fragment_size; int r; /* system pages are non continuously */ if (params->src || !(flags & AMDGPU_PTE_VALID)) return amdgpu_vm_update_ptes(params, start, end, dst, flags); while (start != end) { uint64_t frag_flags, frag_end; unsigned frag; /* This intentionally wraps around if no bit is set */ frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1); if (frag >= max_frag) { frag_flags = AMDGPU_PTE_FRAG(max_frag); frag_end = end & ~((1ULL << max_frag) - 1); } else { frag_flags = AMDGPU_PTE_FRAG(frag); frag_end = start + (1 << frag); } r = amdgpu_vm_update_ptes(params, start, frag_end, dst, flags | frag_flags); if (r) return r; dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE; start = frag_end; } return 0; } /** * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table * * @adev: amdgpu_device pointer * @exclusive: fence we need to sync to * @pages_addr: DMA addresses to use for mapping * @vm: requested vm * @start: start of mapped range * @last: last mapped entry * @flags: flags for the entries * @addr: addr to set the area to * @fence: optional resulting fence * * Fill in the page table entries between @start and @last. * Returns 0 for success, -EINVAL for failure. */ static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, struct dma_fence *exclusive, dma_addr_t *pages_addr, struct amdgpu_vm *vm, uint64_t start, uint64_t last, uint64_t flags, uint64_t addr, struct dma_fence **fence) { struct amdgpu_ring *ring; void *owner = AMDGPU_FENCE_OWNER_VM; unsigned nptes, ncmds, ndw; struct amdgpu_job *job; struct amdgpu_pte_update_params params; struct dma_fence *f = NULL; int r; memset(¶ms, 0, sizeof(params)); params.adev = adev; params.vm = vm; /* sync to everything on unmapping */ if (!(flags & AMDGPU_PTE_VALID)) owner = AMDGPU_FENCE_OWNER_UNDEFINED; if (vm->use_cpu_for_update) { /* params.src is used as flag to indicate system Memory */ if (pages_addr) params.src = ~0; /* Wait for PT BOs to be free. PTs share the same resv. object * as the root PD BO */ r = amdgpu_vm_wait_pd(adev, vm, owner); if (unlikely(r)) return r; params.func = amdgpu_vm_cpu_set_ptes; params.pages_addr = pages_addr; return amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); } ring = container_of(vm->entity.sched, struct amdgpu_ring, sched); nptes = last - start + 1; /* * reserve space for two commands every (1 << BLOCK_SIZE) * entries or 2k dwords (whatever is smaller) * * The second command is for the shadow pagetables. */ ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2; /* padding, etc. */ ndw = 64; /* one PDE write for each huge page */ ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6; if (pages_addr) { /* copy commands needed */ ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw; /* and also PTEs */ ndw += nptes * 2; params.func = amdgpu_vm_do_copy_ptes; } else { /* set page commands needed */ ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw; /* extra commands for begin/end fragments */ ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw * adev->vm_manager.fragment_size; params.func = amdgpu_vm_do_set_ptes; } r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job); if (r) return r; params.ib = &job->ibs[0]; if (pages_addr) { uint64_t *pte; unsigned i; /* Put the PTEs at the end of the IB. */ i = ndw - nptes * 2; pte= (uint64_t *)&(job->ibs->ptr[i]); params.src = job->ibs->gpu_addr + i * 4; for (i = 0; i < nptes; ++i) { pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i * AMDGPU_GPU_PAGE_SIZE); pte[i] |= flags; } addr = 0; } r = amdgpu_sync_fence(adev, &job->sync, exclusive); if (r) goto error_free; r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv, owner); if (r) goto error_free; r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv); if (r) goto error_free; r = amdgpu_vm_frag_ptes(¶ms, start, last + 1, addr, flags); if (r) goto error_free; amdgpu_ring_pad_ib(ring, params.ib); WARN_ON(params.ib->length_dw > ndw); r = amdgpu_job_submit(job, ring, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f); if (r) goto error_free; amdgpu_bo_fence(vm->root.base.bo, f, true); dma_fence_put(*fence); *fence = f; return 0; error_free: amdgpu_job_free(job); amdgpu_vm_invalidate_level(vm, &vm->root); return r; } /** * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks * * @adev: amdgpu_device pointer * @exclusive: fence we need to sync to * @pages_addr: DMA addresses to use for mapping * @vm: requested vm * @mapping: mapped range and flags to use for the update * @flags: HW flags for the mapping * @nodes: array of drm_mm_nodes with the MC addresses * @fence: optional resulting fence * * Split the mapping into smaller chunks so that each update fits * into a SDMA IB. * Returns 0 for success, -EINVAL for failure. */ static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev, struct dma_fence *exclusive, dma_addr_t *pages_addr, struct amdgpu_vm *vm, struct amdgpu_bo_va_mapping *mapping, uint64_t flags, struct drm_mm_node *nodes, struct dma_fence **fence) { uint64_t pfn, start = mapping->start; int r; /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here * but in case of something, we filter the flags in first place */ if (!(mapping->flags & AMDGPU_PTE_READABLE)) flags &= ~AMDGPU_PTE_READABLE; if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) flags &= ~AMDGPU_PTE_WRITEABLE; flags &= ~AMDGPU_PTE_EXECUTABLE; flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE; flags &= ~AMDGPU_PTE_MTYPE_MASK; flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK); if ((mapping->flags & AMDGPU_PTE_PRT) && (adev->asic_type >= CHIP_VEGA10)) { flags |= AMDGPU_PTE_PRT; flags &= ~AMDGPU_PTE_VALID; } trace_amdgpu_vm_bo_update(mapping); pfn = mapping->offset >> PAGE_SHIFT; if (nodes) { while (pfn >= nodes->size) { pfn -= nodes->size; ++nodes; } } do { uint64_t max_entries; uint64_t addr, last; if (nodes) { addr = nodes->start << PAGE_SHIFT; max_entries = (nodes->size - pfn) * (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE); } else { addr = 0; max_entries = S64_MAX; } if (pages_addr) { max_entries = min(max_entries, 16ull * 1024ull); addr = 0; } else if (flags & AMDGPU_PTE_VALID) { addr += adev->vm_manager.vram_base_offset; } addr += pfn << PAGE_SHIFT; last = min((uint64_t)mapping->last, start + max_entries - 1); r = amdgpu_vm_bo_update_mapping(adev, exclusive, pages_addr, vm, start, last, flags, addr, fence); if (r) return r; pfn += last - start + 1; if (nodes && nodes->size == pfn) { pfn = 0; ++nodes; } start = last + 1; } while (unlikely(start != mapping->last + 1)); return 0; } /** * amdgpu_vm_bo_update - update all BO mappings in the vm page table * * @adev: amdgpu_device pointer * @bo_va: requested BO and VM object * @clear: if true clear the entries * * Fill in the page table entries for @bo_va. * Returns 0 for success, -EINVAL for failure. */ int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, bool clear) { struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_bo_va_mapping *mapping; dma_addr_t *pages_addr = NULL; struct ttm_mem_reg *mem; struct drm_mm_node *nodes; struct dma_fence *exclusive, **last_update; uint64_t flags; int r; if (clear || !bo_va->base.bo) { mem = NULL; nodes = NULL; exclusive = NULL; } else { struct ttm_dma_tt *ttm; mem = &bo_va->base.bo->tbo.mem; nodes = mem->mm_node; if (mem->mem_type == TTM_PL_TT) { ttm = container_of(bo_va->base.bo->tbo.ttm, struct ttm_dma_tt, ttm); pages_addr = ttm->dma_address; } exclusive = reservation_object_get_excl(bo->tbo.resv); } if (bo) flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem); else flags = 0x0; if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv)) last_update = &vm->last_update; else last_update = &bo_va->last_pt_update; if (!clear && bo_va->base.moved) { bo_va->base.moved = false; list_splice_init(&bo_va->valids, &bo_va->invalids); } else if (bo_va->cleared != clear) { list_splice_init(&bo_va->valids, &bo_va->invalids); } list_for_each_entry(mapping, &bo_va->invalids, list) { r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm, mapping, flags, nodes, last_update); if (r) return r; } if (vm->use_cpu_for_update) { /* Flush HDP */ mb(); amdgpu_gart_flush_gpu_tlb(adev, 0); } spin_lock(&vm->status_lock); list_del_init(&bo_va->base.vm_status); spin_unlock(&vm->status_lock); list_splice_init(&bo_va->invalids, &bo_va->valids); bo_va->cleared = clear; if (trace_amdgpu_vm_bo_mapping_enabled()) { list_for_each_entry(mapping, &bo_va->valids, list) trace_amdgpu_vm_bo_mapping(mapping); } return 0; } /** * amdgpu_vm_update_prt_state - update the global PRT state */ static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev) { unsigned long flags; bool enable; spin_lock_irqsave(&adev->vm_manager.prt_lock, flags); enable = !!atomic_read(&adev->vm_manager.num_prt_users); adev->gart.gart_funcs->set_prt(adev, enable); spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags); } /** * amdgpu_vm_prt_get - add a PRT user */ static void amdgpu_vm_prt_get(struct amdgpu_device *adev) { if (!adev->gart.gart_funcs->set_prt) return; if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1) amdgpu_vm_update_prt_state(adev); } /** * amdgpu_vm_prt_put - drop a PRT user */ static void amdgpu_vm_prt_put(struct amdgpu_device *adev) { if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0) amdgpu_vm_update_prt_state(adev); } /** * amdgpu_vm_prt_cb - callback for updating the PRT status */ static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb) { struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb); amdgpu_vm_prt_put(cb->adev); kfree(cb); } /** * amdgpu_vm_add_prt_cb - add callback for updating the PRT status */ static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev, struct dma_fence *fence) { struct amdgpu_prt_cb *cb; if (!adev->gart.gart_funcs->set_prt) return; cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL); if (!cb) { /* Last resort when we are OOM */ if (fence) dma_fence_wait(fence, false); amdgpu_vm_prt_put(adev); } else { cb->adev = adev; if (!fence || dma_fence_add_callback(fence, &cb->cb, amdgpu_vm_prt_cb)) amdgpu_vm_prt_cb(fence, &cb->cb); } } /** * amdgpu_vm_free_mapping - free a mapping * * @adev: amdgpu_device pointer * @vm: requested vm * @mapping: mapping to be freed * @fence: fence of the unmap operation * * Free a mapping and make sure we decrease the PRT usage count if applicable. */ static void amdgpu_vm_free_mapping(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo_va_mapping *mapping, struct dma_fence *fence) { if (mapping->flags & AMDGPU_PTE_PRT) amdgpu_vm_add_prt_cb(adev, fence); kfree(mapping); } /** * amdgpu_vm_prt_fini - finish all prt mappings * * @adev: amdgpu_device pointer * @vm: requested vm * * Register a cleanup callback to disable PRT support after VM dies. */ static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct reservation_object *resv = vm->root.base.bo->tbo.resv; struct dma_fence *excl, **shared; unsigned i, shared_count; int r; r = reservation_object_get_fences_rcu(resv, &excl, &shared_count, &shared); if (r) { /* Not enough memory to grab the fence list, as last resort * block for all the fences to complete. */ reservation_object_wait_timeout_rcu(resv, true, false, MAX_SCHEDULE_TIMEOUT); return; } /* Add a callback for each fence in the reservation object */ amdgpu_vm_prt_get(adev); amdgpu_vm_add_prt_cb(adev, excl); for (i = 0; i < shared_count; ++i) { amdgpu_vm_prt_get(adev); amdgpu_vm_add_prt_cb(adev, shared[i]); } kfree(shared); } /** * amdgpu_vm_clear_freed - clear freed BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * @fence: optional resulting fence (unchanged if no work needed to be done * or if an error occurred) * * Make sure all freed BOs are cleared in the PT. * Returns 0 for success. * * PTs have to be reserved and mutex must be locked! */ int amdgpu_vm_clear_freed(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct dma_fence **fence) { struct amdgpu_bo_va_mapping *mapping; struct dma_fence *f = NULL; int r; uint64_t init_pte_value = 0; while (!list_empty(&vm->freed)) { mapping = list_first_entry(&vm->freed, struct amdgpu_bo_va_mapping, list); list_del(&mapping->list); if (vm->pte_support_ats) init_pte_value = AMDGPU_PTE_SYSTEM; r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm, mapping->start, mapping->last, init_pte_value, 0, &f); amdgpu_vm_free_mapping(adev, vm, mapping, f); if (r) { dma_fence_put(f); return r; } } if (fence && f) { dma_fence_put(*fence); *fence = f; } else { dma_fence_put(f); } return 0; } /** * amdgpu_vm_handle_moved - handle moved BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * @sync: sync object to add fences to * * Make sure all BOs which are moved are updated in the PTs. * Returns 0 for success. * * PTs have to be reserved! */ int amdgpu_vm_handle_moved(struct amdgpu_device *adev, struct amdgpu_vm *vm) { bool clear; int r = 0; spin_lock(&vm->status_lock); while (!list_empty(&vm->moved)) { struct amdgpu_bo_va *bo_va; bo_va = list_first_entry(&vm->moved, struct amdgpu_bo_va, base.vm_status); spin_unlock(&vm->status_lock); /* Per VM BOs never need to bo cleared in the page tables */ clear = bo_va->base.bo->tbo.resv != vm->root.base.bo->tbo.resv; r = amdgpu_vm_bo_update(adev, bo_va, clear); if (r) return r; spin_lock(&vm->status_lock); } spin_unlock(&vm->status_lock); return r; } /** * amdgpu_vm_bo_add - add a bo to a specific vm * * @adev: amdgpu_device pointer * @vm: requested vm * @bo: amdgpu buffer object * * Add @bo into the requested vm. * Add @bo to the list of bos associated with the vm * Returns newly added bo_va or NULL for failure * * Object has to be reserved! */ struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_bo_va *bo_va; bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); if (bo_va == NULL) { return NULL; } bo_va->base.vm = vm; bo_va->base.bo = bo; INIT_LIST_HEAD(&bo_va->base.bo_list); INIT_LIST_HEAD(&bo_va->base.vm_status); bo_va->ref_count = 1; INIT_LIST_HEAD(&bo_va->valids); INIT_LIST_HEAD(&bo_va->invalids); if (bo) list_add_tail(&bo_va->base.bo_list, &bo->va); return bo_va; } /** * amdgpu_vm_bo_insert_mapping - insert a new mapping * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @mapping: the mapping to insert * * Insert a new mapping into all structures. */ static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, struct amdgpu_bo_va_mapping *mapping) { struct amdgpu_vm *vm = bo_va->base.vm; struct amdgpu_bo *bo = bo_va->base.bo; mapping->bo_va = bo_va; list_add(&mapping->list, &bo_va->invalids); amdgpu_vm_it_insert(mapping, &vm->va); if (mapping->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) { spin_lock(&vm->status_lock); if (list_empty(&bo_va->base.vm_status)) list_add(&bo_va->base.vm_status, &vm->moved); spin_unlock(&vm->status_lock); } trace_amdgpu_vm_bo_map(bo_va, mapping); } /** * amdgpu_vm_bo_map - map bo inside a vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @saddr: where to map the BO * @offset: requested offset in the BO * @flags: attributes of pages (read/write/valid/etc.) * * Add a mapping of the BO at the specefied addr into the VM. * Returns 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr, uint64_t offset, uint64_t size, uint64_t flags) { struct amdgpu_bo_va_mapping *mapping, *tmp; struct amdgpu_bo *bo = bo_va->base.bo; struct amdgpu_vm *vm = bo_va->base.vm; uint64_t eaddr; /* validate the parameters */ if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || size == 0 || size & AMDGPU_GPU_PAGE_MASK) return -EINVAL; /* make sure object fit at this offset */ eaddr = saddr + size - 1; if (saddr >= eaddr || (bo && offset + size > amdgpu_bo_size(bo))) return -EINVAL; saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); if (tmp) { /* bo and tmp overlap, invalid addr */ dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr, tmp->start, tmp->last + 1); return -EINVAL; } mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; mapping->start = saddr; mapping->last = eaddr; mapping->offset = offset; mapping->flags = flags; amdgpu_vm_bo_insert_map(adev, bo_va, mapping); return 0; } /** * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @saddr: where to map the BO * @offset: requested offset in the BO * @flags: attributes of pages (read/write/valid/etc.) * * Add a mapping of the BO at the specefied addr into the VM. Replace existing * mappings as we do so. * Returns 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr, uint64_t offset, uint64_t size, uint64_t flags) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_bo *bo = bo_va->base.bo; uint64_t eaddr; int r; /* validate the parameters */ if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || size == 0 || size & AMDGPU_GPU_PAGE_MASK) return -EINVAL; /* make sure object fit at this offset */ eaddr = saddr + size - 1; if (saddr >= eaddr || (bo && offset + size > amdgpu_bo_size(bo))) return -EINVAL; /* Allocate all the needed memory */ mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) return -ENOMEM; r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size); if (r) { kfree(mapping); return r; } saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; mapping->start = saddr; mapping->last = eaddr; mapping->offset = offset; mapping->flags = flags; amdgpu_vm_bo_insert_map(adev, bo_va, mapping); return 0; } /** * amdgpu_vm_bo_unmap - remove bo mapping from vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to remove the address from * @saddr: where to the BO is mapped * * Remove a mapping of the BO at the specefied addr from the VM. * Returns 0 for success, error for failure. * * Object has to be reserved and unreserved outside! */ int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_vm *vm = bo_va->base.vm; bool valid = true; saddr /= AMDGPU_GPU_PAGE_SIZE; list_for_each_entry(mapping, &bo_va->valids, list) { if (mapping->start == saddr) break; } if (&mapping->list == &bo_va->valids) { valid = false; list_for_each_entry(mapping, &bo_va->invalids, list) { if (mapping->start == saddr) break; } if (&mapping->list == &bo_va->invalids) return -ENOENT; } list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); mapping->bo_va = NULL; trace_amdgpu_vm_bo_unmap(bo_va, mapping); if (valid) list_add(&mapping->list, &vm->freed); else amdgpu_vm_free_mapping(adev, vm, mapping, bo_va->last_pt_update); return 0; } /** * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range * * @adev: amdgpu_device pointer * @vm: VM structure to use * @saddr: start of the range * @size: size of the range * * Remove all mappings in a range, split them as appropriate. * Returns 0 for success, error for failure. */ int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t saddr, uint64_t size) { struct amdgpu_bo_va_mapping *before, *after, *tmp, *next; LIST_HEAD(removed); uint64_t eaddr; eaddr = saddr + size - 1; saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; /* Allocate all the needed memory */ before = kzalloc(sizeof(*before), GFP_KERNEL); if (!before) return -ENOMEM; INIT_LIST_HEAD(&before->list); after = kzalloc(sizeof(*after), GFP_KERNEL); if (!after) { kfree(before); return -ENOMEM; } INIT_LIST_HEAD(&after->list); /* Now gather all removed mappings */ tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr); while (tmp) { /* Remember mapping split at the start */ if (tmp->start < saddr) { before->start = tmp->start; before->last = saddr - 1; before->offset = tmp->offset; before->flags = tmp->flags; list_add(&before->list, &tmp->list); } /* Remember mapping split at the end */ if (tmp->last > eaddr) { after->start = eaddr + 1; after->last = tmp->last; after->offset = tmp->offset; after->offset += after->start - tmp->start; after->flags = tmp->flags; list_add(&after->list, &tmp->list); } list_del(&tmp->list); list_add(&tmp->list, &removed); tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr); } /* And free them up */ list_for_each_entry_safe(tmp, next, &removed, list) { amdgpu_vm_it_remove(tmp, &vm->va); list_del(&tmp->list); if (tmp->start < saddr) tmp->start = saddr; if (tmp->last > eaddr) tmp->last = eaddr; tmp->bo_va = NULL; list_add(&tmp->list, &vm->freed); trace_amdgpu_vm_bo_unmap(NULL, tmp); } /* Insert partial mapping before the range */ if (!list_empty(&before->list)) { amdgpu_vm_it_insert(before, &vm->va); if (before->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); } else { kfree(before); } /* Insert partial mapping after the range */ if (!list_empty(&after->list)) { amdgpu_vm_it_insert(after, &vm->va); if (after->flags & AMDGPU_PTE_PRT) amdgpu_vm_prt_get(adev); } else { kfree(after); } return 0; } /** * amdgpu_vm_bo_lookup_mapping - find mapping by address * * @vm: the requested VM * * Find a mapping by it's address. */ struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm, uint64_t addr) { return amdgpu_vm_it_iter_first(&vm->va, addr, addr); } /** * amdgpu_vm_bo_rmv - remove a bo to a specific vm * * @adev: amdgpu_device pointer * @bo_va: requested bo_va * * Remove @bo_va->bo from the requested vm. * * Object have to be reserved! */ void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va) { struct amdgpu_bo_va_mapping *mapping, *next; struct amdgpu_vm *vm = bo_va->base.vm; list_del(&bo_va->base.bo_list); spin_lock(&vm->status_lock); list_del(&bo_va->base.vm_status); spin_unlock(&vm->status_lock); list_for_each_entry_safe(mapping, next, &bo_va->valids, list) { list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); mapping->bo_va = NULL; trace_amdgpu_vm_bo_unmap(bo_va, mapping); list_add(&mapping->list, &vm->freed); } list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) { list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); amdgpu_vm_free_mapping(adev, vm, mapping, bo_va->last_pt_update); } dma_fence_put(bo_va->last_pt_update); kfree(bo_va); } /** * amdgpu_vm_bo_invalidate - mark the bo as invalid * * @adev: amdgpu_device pointer * @vm: requested vm * @bo: amdgpu buffer object * * Mark @bo as invalid. */ void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, struct amdgpu_bo *bo, bool evicted) { struct amdgpu_vm_bo_base *bo_base; list_for_each_entry(bo_base, &bo->va, bo_list) { struct amdgpu_vm *vm = bo_base->vm; bo_base->moved = true; if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) { spin_lock(&bo_base->vm->status_lock); if (bo->tbo.type == ttm_bo_type_kernel) list_move(&bo_base->vm_status, &vm->evicted); else list_move_tail(&bo_base->vm_status, &vm->evicted); spin_unlock(&bo_base->vm->status_lock); continue; } if (bo->tbo.type == ttm_bo_type_kernel) { spin_lock(&bo_base->vm->status_lock); if (list_empty(&bo_base->vm_status)) list_add(&bo_base->vm_status, &vm->relocated); spin_unlock(&bo_base->vm->status_lock); continue; } spin_lock(&bo_base->vm->status_lock); if (list_empty(&bo_base->vm_status)) list_add(&bo_base->vm_status, &vm->moved); spin_unlock(&bo_base->vm->status_lock); } } static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size) { /* Total bits covered by PD + PTs */ unsigned bits = ilog2(vm_size) + 18; /* Make sure the PD is 4K in size up to 8GB address space. Above that split equal between PD and PTs */ if (vm_size <= 8) return (bits - 9); else return ((bits + 3) / 2); } /** * amdgpu_vm_set_fragment_size - adjust fragment size in PTE * * @adev: amdgpu_device pointer * @fragment_size_default: the default fragment size if it's set auto */ void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default) { if (amdgpu_vm_fragment_size == -1) adev->vm_manager.fragment_size = fragment_size_default; else adev->vm_manager.fragment_size = amdgpu_vm_fragment_size; } /** * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size * * @adev: amdgpu_device pointer * @vm_size: the default vm size if it's set auto */ void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default) { /* adjust vm size firstly */ if (amdgpu_vm_size == -1) adev->vm_manager.vm_size = vm_size; else adev->vm_manager.vm_size = amdgpu_vm_size; /* block size depends on vm size */ if (amdgpu_vm_block_size == -1) adev->vm_manager.block_size = amdgpu_vm_get_block_size(adev->vm_manager.vm_size); else adev->vm_manager.block_size = amdgpu_vm_block_size; amdgpu_vm_set_fragment_size(adev, fragment_size_default); DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n", adev->vm_manager.vm_size, adev->vm_manager.block_size, adev->vm_manager.fragment_size); } /** * amdgpu_vm_init - initialize a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * @vm_context: Indicates if it GFX or Compute context * * Init @vm fields. */ int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm, int vm_context, unsigned int pasid) { const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, AMDGPU_VM_PTE_COUNT(adev) * 8); unsigned ring_instance; struct amdgpu_ring *ring; struct amd_sched_rq *rq; int r, i; u64 flags; uint64_t init_pde_value = 0; vm->va = RB_ROOT; vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter); for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) vm->reserved_vmid[i] = NULL; spin_lock_init(&vm->status_lock); INIT_LIST_HEAD(&vm->evicted); INIT_LIST_HEAD(&vm->relocated); INIT_LIST_HEAD(&vm->moved); INIT_LIST_HEAD(&vm->freed); /* create scheduler entity for page table updates */ ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring); ring_instance %= adev->vm_manager.vm_pte_num_rings; ring = adev->vm_manager.vm_pte_rings[ring_instance]; rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL]; r = amd_sched_entity_init(&ring->sched, &vm->entity, rq, amdgpu_sched_jobs); if (r) return r; vm->pte_support_ats = false; if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) { vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & AMDGPU_VM_USE_CPU_FOR_COMPUTE); if (adev->asic_type == CHIP_RAVEN) { vm->pte_support_ats = true; init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE; } } else vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode & AMDGPU_VM_USE_CPU_FOR_GFX); DRM_DEBUG_DRIVER("VM update mode is %s\n", vm->use_cpu_for_update ? "CPU" : "SDMA"); WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)), "CPU update of VM recommended only for large BAR system\n"); vm->last_update = NULL; flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS | AMDGPU_GEM_CREATE_VRAM_CLEARED; if (vm->use_cpu_for_update) flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED; else flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS | AMDGPU_GEM_CREATE_SHADOW); r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true, AMDGPU_GEM_DOMAIN_VRAM, flags, NULL, NULL, init_pde_value, &vm->root.base.bo); if (r) goto error_free_sched_entity; vm->root.base.vm = vm; list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va); INIT_LIST_HEAD(&vm->root.base.vm_status); if (vm->use_cpu_for_update) { r = amdgpu_bo_reserve(vm->root.base.bo, false); if (r) goto error_free_root; r = amdgpu_bo_kmap(vm->root.base.bo, NULL); amdgpu_bo_unreserve(vm->root.base.bo); if (r) goto error_free_root; } if (pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1, GFP_ATOMIC); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); if (r < 0) goto error_free_root; vm->pasid = pasid; } INIT_KFIFO(vm->faults); return 0; error_free_root: amdgpu_bo_unref(&vm->root.base.bo->shadow); amdgpu_bo_unref(&vm->root.base.bo); vm->root.base.bo = NULL; error_free_sched_entity: amd_sched_entity_fini(&ring->sched, &vm->entity); return r; } /** * amdgpu_vm_free_levels - free PD/PT levels * * @level: PD/PT starting level to free * * Free the page directory or page table level and all sub levels. */ static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level) { unsigned i; if (level->base.bo) { list_del(&level->base.bo_list); list_del(&level->base.vm_status); amdgpu_bo_unref(&level->base.bo->shadow); amdgpu_bo_unref(&level->base.bo); } if (level->entries) for (i = 0; i <= level->last_entry_used; i++) amdgpu_vm_free_levels(&level->entries[i]); kvfree(level->entries); } /** * amdgpu_vm_fini - tear down a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * * Tear down @vm. * Unbind the VM and remove all bos from the vm bo list */ void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_bo_va_mapping *mapping, *tmp; bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt; u64 fault; int i; /* Clear pending page faults from IH when the VM is destroyed */ while (kfifo_get(&vm->faults, &fault)) amdgpu_ih_clear_fault(adev, fault); if (vm->pasid) { unsigned long flags; spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags); idr_remove(&adev->vm_manager.pasid_idr, vm->pasid); spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags); } amd_sched_entity_fini(vm->entity.sched, &vm->entity); if (!RB_EMPTY_ROOT(&vm->va)) { dev_err(adev->dev, "still active bo inside vm\n"); } rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) { list_del(&mapping->list); amdgpu_vm_it_remove(mapping, &vm->va); kfree(mapping); } list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) { amdgpu_vm_prt_fini(adev, vm); prt_fini_needed = false; } list_del(&mapping->list); amdgpu_vm_free_mapping(adev, vm, mapping, NULL); } amdgpu_vm_free_levels(&vm->root); dma_fence_put(vm->last_update); for (i = 0; i < AMDGPU_MAX_VMHUBS; i++) amdgpu_vm_free_reserved_vmid(adev, vm, i); } /** * amdgpu_vm_manager_init - init the VM manager * * @adev: amdgpu_device pointer * * Initialize the VM manager structures */ void amdgpu_vm_manager_init(struct amdgpu_device *adev) { unsigned i, j; for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[i]; mutex_init(&id_mgr->lock); INIT_LIST_HEAD(&id_mgr->ids_lru); atomic_set(&id_mgr->reserved_vmid_num, 0); /* skip over VMID 0, since it is the system VM */ for (j = 1; j < id_mgr->num_ids; ++j) { amdgpu_vm_reset_id(adev, i, j); amdgpu_sync_create(&id_mgr->ids[i].active); list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru); } } adev->vm_manager.fence_context = dma_fence_context_alloc(AMDGPU_MAX_RINGS); for (i = 0; i < AMDGPU_MAX_RINGS; ++i) adev->vm_manager.seqno[i] = 0; atomic_set(&adev->vm_manager.vm_pte_next_ring, 0); atomic64_set(&adev->vm_manager.client_counter, 0); spin_lock_init(&adev->vm_manager.prt_lock); atomic_set(&adev->vm_manager.num_prt_users, 0); /* If not overridden by the user, by default, only in large BAR systems * Compute VM tables will be updated by CPU */ #ifdef CONFIG_X86_64 if (amdgpu_vm_update_mode == -1) { if (amdgpu_vm_is_large_bar(adev)) adev->vm_manager.vm_update_mode = AMDGPU_VM_USE_CPU_FOR_COMPUTE; else adev->vm_manager.vm_update_mode = 0; } else adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode; #else adev->vm_manager.vm_update_mode = 0; #endif idr_init(&adev->vm_manager.pasid_idr); spin_lock_init(&adev->vm_manager.pasid_lock); } /** * amdgpu_vm_manager_fini - cleanup VM manager * * @adev: amdgpu_device pointer * * Cleanup the VM manager and free resources. */ void amdgpu_vm_manager_fini(struct amdgpu_device *adev) { unsigned i, j; WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr)); idr_destroy(&adev->vm_manager.pasid_idr); for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) { struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[i]; mutex_destroy(&id_mgr->lock); for (j = 0; j < AMDGPU_NUM_VM; ++j) { struct amdgpu_vm_id *id = &id_mgr->ids[j]; amdgpu_sync_free(&id->active); dma_fence_put(id->flushed_updates); dma_fence_put(id->last_flush); } } } int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { union drm_amdgpu_vm *args = data; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_fpriv *fpriv = filp->driver_priv; int r; switch (args->in.op) { case AMDGPU_VM_OP_RESERVE_VMID: /* current, we only have requirement to reserve vmid from gfxhub */ r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB); if (r) return r; break; case AMDGPU_VM_OP_UNRESERVE_VMID: amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB); break; default: return -EINVAL; } return 0; }