/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse * Christian König */ #include #include #include #include #include "amdgpu.h" #include "atom.h" #define AMDGPU_IB_TEST_TIMEOUT msecs_to_jiffies(1000) /* * IB * IBs (Indirect Buffers) and areas of GPU accessible memory where * commands are stored. You can put a pointer to the IB in the * command ring and the hw will fetch the commands from the IB * and execute them. Generally userspace acceleration drivers * produce command buffers which are send to the kernel and * put in IBs for execution by the requested ring. */ static int amdgpu_debugfs_sa_init(struct amdgpu_device *adev); /** * amdgpu_ib_get - request an IB (Indirect Buffer) * * @ring: ring index the IB is associated with * @size: requested IB size * @ib: IB object returned * * Request an IB (all asics). IBs are allocated using the * suballocator. * Returns 0 on success, error on failure. */ int amdgpu_ib_get(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned size, struct amdgpu_ib *ib) { int r; if (size) { r = amdgpu_sa_bo_new(&adev->ring_tmp_bo, &ib->sa_bo, size, 256); if (r) { dev_err(adev->dev, "failed to get a new IB (%d)\n", r); return r; } ib->ptr = amdgpu_sa_bo_cpu_addr(ib->sa_bo); if (!vm) ib->gpu_addr = amdgpu_sa_bo_gpu_addr(ib->sa_bo); } return 0; } /** * amdgpu_ib_free - free an IB (Indirect Buffer) * * @adev: amdgpu_device pointer * @ib: IB object to free * @f: the fence SA bo need wait on for the ib alloation * * Free an IB (all asics). */ void amdgpu_ib_free(struct amdgpu_device *adev, struct amdgpu_ib *ib, struct dma_fence *f) { amdgpu_sa_bo_free(adev, &ib->sa_bo, f); } /** * amdgpu_ib_schedule - schedule an IB (Indirect Buffer) on the ring * * @adev: amdgpu_device pointer * @num_ibs: number of IBs to schedule * @ibs: IB objects to schedule * @f: fence created during this submission * * Schedule an IB on the associated ring (all asics). * Returns 0 on success, error on failure. * * On SI, there are two parallel engines fed from the primary ring, * the CE (Constant Engine) and the DE (Drawing Engine). Since * resource descriptors have moved to memory, the CE allows you to * prime the caches while the DE is updating register state so that * the resource descriptors will be already in cache when the draw is * processed. To accomplish this, the userspace driver submits two * IBs, one for the CE and one for the DE. If there is a CE IB (called * a CONST_IB), it will be put on the ring prior to the DE IB. Prior * to SI there was just a DE IB. */ int amdgpu_ib_schedule(struct amdgpu_ring *ring, unsigned num_ibs, struct amdgpu_ib *ibs, struct amdgpu_job *job, struct dma_fence **f) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib *ib = &ibs[0]; struct dma_fence *tmp = NULL; bool skip_preamble, need_ctx_switch; unsigned patch_offset = ~0; struct amdgpu_vm *vm; uint64_t fence_ctx; uint32_t status = 0, alloc_size; unsigned i; int r = 0; bool need_pipe_sync = false; if (num_ibs == 0) return -EINVAL; /* ring tests don't use a job */ if (job) { vm = job->vm; fence_ctx = job->fence_ctx; } else { vm = NULL; fence_ctx = 0; } if (!ring->ready) { dev_err(adev->dev, "couldn't schedule ib on ring <%s>\n", ring->name); return -EINVAL; } if (vm && !job->vm_id) { dev_err(adev->dev, "VM IB without ID\n"); return -EINVAL; } alloc_size = ring->funcs->emit_frame_size + num_ibs * ring->funcs->emit_ib_size; r = amdgpu_ring_alloc(ring, alloc_size); if (r) { dev_err(adev->dev, "scheduling IB failed (%d).\n", r); return r; } if (ring->funcs->emit_pipeline_sync && job && ((tmp = amdgpu_sync_get_fence(&job->sched_sync)) || amdgpu_vm_need_pipeline_sync(ring, job))) { need_pipe_sync = true; dma_fence_put(tmp); } if (ring->funcs->insert_start) ring->funcs->insert_start(ring); if (job) { r = amdgpu_vm_flush(ring, job, need_pipe_sync); if (r) { amdgpu_ring_undo(ring); return r; } } if (ring->funcs->init_cond_exec) patch_offset = amdgpu_ring_init_cond_exec(ring); if (ring->funcs->emit_hdp_flush #ifdef CONFIG_X86_64 && !(adev->flags & AMD_IS_APU) #endif ) amdgpu_ring_emit_hdp_flush(ring); skip_preamble = ring->current_ctx == fence_ctx; need_ctx_switch = ring->current_ctx != fence_ctx; if (job && ring->funcs->emit_cntxcntl) { if (need_ctx_switch) status |= AMDGPU_HAVE_CTX_SWITCH; status |= job->preamble_status; amdgpu_ring_emit_cntxcntl(ring, status); } for (i = 0; i < num_ibs; ++i) { ib = &ibs[i]; /* drop preamble IBs if we don't have a context switch */ if ((ib->flags & AMDGPU_IB_FLAG_PREAMBLE) && skip_preamble && !(status & AMDGPU_PREAMBLE_IB_PRESENT_FIRST) && !amdgpu_sriov_vf(adev)) /* for SRIOV preemption, Preamble CE ib must be inserted anyway */ continue; amdgpu_ring_emit_ib(ring, ib, job ? job->vm_id : 0, need_ctx_switch); need_ctx_switch = false; } if (ring->funcs->emit_tmz) amdgpu_ring_emit_tmz(ring, false); if (ring->funcs->emit_hdp_invalidate #ifdef CONFIG_X86_64 && !(adev->flags & AMD_IS_APU) #endif ) amdgpu_ring_emit_hdp_invalidate(ring); r = amdgpu_fence_emit(ring, f); if (r) { dev_err(adev->dev, "failed to emit fence (%d)\n", r); if (job && job->vm_id) amdgpu_vm_reset_id(adev, ring->funcs->vmhub, job->vm_id); amdgpu_ring_undo(ring); return r; } if (ring->funcs->insert_end) ring->funcs->insert_end(ring); /* wrap the last IB with fence */ if (job && job->uf_addr) { amdgpu_ring_emit_fence(ring, job->uf_addr, job->uf_sequence, AMDGPU_FENCE_FLAG_64BIT); } if (patch_offset != ~0 && ring->funcs->patch_cond_exec) amdgpu_ring_patch_cond_exec(ring, patch_offset); ring->current_ctx = fence_ctx; if (vm && ring->funcs->emit_switch_buffer) amdgpu_ring_emit_switch_buffer(ring); amdgpu_ring_commit(ring); return 0; } /** * amdgpu_ib_pool_init - Init the IB (Indirect Buffer) pool * * @adev: amdgpu_device pointer * * Initialize the suballocator to manage a pool of memory * for use as IBs (all asics). * Returns 0 on success, error on failure. */ int amdgpu_ib_pool_init(struct amdgpu_device *adev) { int r; if (adev->ib_pool_ready) { return 0; } r = amdgpu_sa_bo_manager_init(adev, &adev->ring_tmp_bo, AMDGPU_IB_POOL_SIZE*64*1024, AMDGPU_GPU_PAGE_SIZE, AMDGPU_GEM_DOMAIN_GTT); if (r) { return r; } r = amdgpu_sa_bo_manager_start(adev, &adev->ring_tmp_bo); if (r) { return r; } adev->ib_pool_ready = true; if (amdgpu_debugfs_sa_init(adev)) { dev_err(adev->dev, "failed to register debugfs file for SA\n"); } return 0; } /** * amdgpu_ib_pool_fini - Free the IB (Indirect Buffer) pool * * @adev: amdgpu_device pointer * * Tear down the suballocator managing the pool of memory * for use as IBs (all asics). */ void amdgpu_ib_pool_fini(struct amdgpu_device *adev) { if (adev->ib_pool_ready) { amdgpu_sa_bo_manager_suspend(adev, &adev->ring_tmp_bo); amdgpu_sa_bo_manager_fini(adev, &adev->ring_tmp_bo); adev->ib_pool_ready = false; } } /** * amdgpu_ib_ring_tests - test IBs on the rings * * @adev: amdgpu_device pointer * * Test an IB (Indirect Buffer) on each ring. * If the test fails, disable the ring. * Returns 0 on success, error if the primary GFX ring * IB test fails. */ int amdgpu_ib_ring_tests(struct amdgpu_device *adev) { unsigned i; int r, ret = 0; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_ring *ring = adev->rings[i]; if (!ring || !ring->ready) continue; r = amdgpu_ring_test_ib(ring, AMDGPU_IB_TEST_TIMEOUT); if (r) { ring->ready = false; if (ring == &adev->gfx.gfx_ring[0]) { /* oh, oh, that's really bad */ DRM_ERROR("amdgpu: failed testing IB on GFX ring (%d).\n", r); adev->accel_working = false; return r; } else { /* still not good, but we can live with it */ DRM_ERROR("amdgpu: failed testing IB on ring %d (%d).\n", i, r); ret = r; } } } return ret; } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static int amdgpu_debugfs_sa_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct amdgpu_device *adev = dev->dev_private; amdgpu_sa_bo_dump_debug_info(&adev->ring_tmp_bo, m); return 0; } static const struct drm_info_list amdgpu_debugfs_sa_list[] = { {"amdgpu_sa_info", &amdgpu_debugfs_sa_info, 0, NULL}, }; #endif static int amdgpu_debugfs_sa_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) return amdgpu_debugfs_add_files(adev, amdgpu_debugfs_sa_list, 1); #else return 0; #endif }