/* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */ /* cairo - a vector graphics library with display and print output * * Copyright © 2002 University of Southern California * Copyright © 2011 Intel Corporation * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth * Chris Wilson */ #define _DEFAULT_SOURCE /* for hypot() */ #include "cairoint.h" #include "cairo-box-inline.h" #include "cairo-boxes-private.h" #include "cairo-error-private.h" #include "cairo-path-fixed-private.h" #include "cairo-slope-private.h" #include "cairo-tristrip-private.h" struct stroker { cairo_stroke_style_t style; cairo_tristrip_t *strip; const cairo_matrix_t *ctm; const cairo_matrix_t *ctm_inverse; double tolerance; cairo_bool_t ctm_det_positive; cairo_pen_t pen; cairo_bool_t has_sub_path; cairo_point_t first_point; cairo_bool_t has_current_face; cairo_stroke_face_t current_face; cairo_bool_t has_first_face; cairo_stroke_face_t first_face; cairo_box_t limit; cairo_bool_t has_limits; }; static inline double normalize_slope (double *dx, double *dy); static void compute_face (const cairo_point_t *point, const cairo_slope_t *dev_slope, struct stroker *stroker, cairo_stroke_face_t *face); static void translate_point (cairo_point_t *point, const cairo_point_t *offset) { point->x += offset->x; point->y += offset->y; } static int slope_compare_sgn (double dx1, double dy1, double dx2, double dy2) { double c = (dx1 * dy2 - dx2 * dy1); if (c > 0) return 1; if (c < 0) return -1; return 0; } static inline int range_step (int i, int step, int max) { i += step; if (i < 0) i = max - 1; if (i >= max) i = 0; return i; } /* * Construct a fan around the midpoint using the vertices from pen between * inpt and outpt. */ static void add_fan (struct stroker *stroker, const cairo_slope_t *in_vector, const cairo_slope_t *out_vector, const cairo_point_t *midpt, const cairo_point_t *inpt, const cairo_point_t *outpt, cairo_bool_t clockwise) { int start, stop, step, i, npoints; if (clockwise) { step = 1; start = _cairo_pen_find_active_cw_vertex_index (&stroker->pen, in_vector); if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_cw, in_vector) < 0) start = range_step (start, 1, stroker->pen.num_vertices); stop = _cairo_pen_find_active_cw_vertex_index (&stroker->pen, out_vector); if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw, out_vector) > 0) { stop = range_step (stop, -1, stroker->pen.num_vertices); if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw, in_vector) < 0) return; } npoints = stop - start; } else { step = -1; start = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen, in_vector); if (_cairo_slope_compare (&stroker->pen.vertices[start].slope_ccw, in_vector) < 0) start = range_step (start, -1, stroker->pen.num_vertices); stop = _cairo_pen_find_active_ccw_vertex_index (&stroker->pen, out_vector); if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_cw, out_vector) > 0) { stop = range_step (stop, 1, stroker->pen.num_vertices); if (_cairo_slope_compare (&stroker->pen.vertices[stop].slope_ccw, in_vector) < 0) return; } npoints = start - stop; } stop = range_step (stop, step, stroker->pen.num_vertices); if (npoints < 0) npoints += stroker->pen.num_vertices; if (npoints <= 1) return; for (i = start; i != stop; i = range_step (i, step, stroker->pen.num_vertices)) { cairo_point_t p = *midpt; translate_point (&p, &stroker->pen.vertices[i].point); //contour_add_point (stroker, c, &p); } } static int join_is_clockwise (const cairo_stroke_face_t *in, const cairo_stroke_face_t *out) { return _cairo_slope_compare (&in->dev_vector, &out->dev_vector) < 0; } static void inner_join (struct stroker *stroker, const cairo_stroke_face_t *in, const cairo_stroke_face_t *out, int clockwise) { const cairo_point_t *outpt; if (clockwise) { outpt = &out->ccw; } else { outpt = &out->cw; } //contour_add_point (stroker, inner, &in->point); //contour_add_point (stroker, inner, outpt); } static void inner_close (struct stroker *stroker, const cairo_stroke_face_t *in, cairo_stroke_face_t *out) { const cairo_point_t *inpt; if (join_is_clockwise (in, out)) { inpt = &out->ccw; } else { inpt = &out->cw; } //contour_add_point (stroker, inner, &in->point); //contour_add_point (stroker, inner, inpt); //*_cairo_contour_first_point (&inner->contour) = //*_cairo_contour_last_point (&inner->contour); } static void outer_close (struct stroker *stroker, const cairo_stroke_face_t *in, const cairo_stroke_face_t *out) { const cairo_point_t *inpt, *outpt; int clockwise; if (in->cw.x == out->cw.x && in->cw.y == out->cw.y && in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y) { return; } clockwise = join_is_clockwise (in, out); if (clockwise) { inpt = &in->cw; outpt = &out->cw; } else { inpt = &in->ccw; outpt = &out->ccw; } switch (stroker->style.line_join) { case CAIRO_LINE_JOIN_ROUND: /* construct a fan around the common midpoint */ add_fan (stroker, &in->dev_vector, &out->dev_vector, &in->point, inpt, outpt, clockwise); break; case CAIRO_LINE_JOIN_MITER: default: { /* dot product of incoming slope vector with outgoing slope vector */ double in_dot_out = -in->usr_vector.x * out->usr_vector.x + -in->usr_vector.y * out->usr_vector.y; double ml = stroker->style.miter_limit; /* Check the miter limit -- lines meeting at an acute angle * can generate long miters, the limit converts them to bevel * * Consider the miter join formed when two line segments * meet at an angle psi: * * /.\ * /. .\ * /./ \.\ * /./psi\.\ * * We can zoom in on the right half of that to see: * * |\ * | \ psi/2 * | \ * | \ * | \ * | \ * miter \ * length \ * | \ * | .\ * | . \ * |. line \ * \ width \ * \ \ * * * The right triangle in that figure, (the line-width side is * shown faintly with three '.' characters), gives us the * following expression relating miter length, angle and line * width: * * 1 /sin (psi/2) = miter_length / line_width * * The right-hand side of this relationship is the same ratio * in which the miter limit (ml) is expressed. We want to know * when the miter length is within the miter limit. That is * when the following condition holds: * * 1/sin(psi/2) <= ml * 1 <= ml sin(psi/2) * 1 <= ml² sin²(psi/2) * 2 <= ml² 2 sin²(psi/2) * 2·sin²(psi/2) = 1-cos(psi) * 2 <= ml² (1-cos(psi)) * * in · out = |in| |out| cos (psi) * * in and out are both unit vectors, so: * * in · out = cos (psi) * * 2 <= ml² (1 - in · out) * */ if (2 <= ml * ml * (1 - in_dot_out)) { double x1, y1, x2, y2; double mx, my; double dx1, dx2, dy1, dy2; double ix, iy; double fdx1, fdy1, fdx2, fdy2; double mdx, mdy; /* * we've got the points already transformed to device * space, but need to do some computation with them and * also need to transform the slope from user space to * device space */ /* outer point of incoming line face */ x1 = _cairo_fixed_to_double (inpt->x); y1 = _cairo_fixed_to_double (inpt->y); dx1 = in->usr_vector.x; dy1 = in->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1); /* outer point of outgoing line face */ x2 = _cairo_fixed_to_double (outpt->x); y2 = _cairo_fixed_to_double (outpt->y); dx2 = out->usr_vector.x; dy2 = out->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); /* * Compute the location of the outer corner of the miter. * That's pretty easy -- just the intersection of the two * outer edges. We've got slopes and points on each * of those edges. Compute my directly, then compute * mx by using the edge with the larger dy; that avoids * dividing by values close to zero. */ my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) / (dx1 * dy2 - dx2 * dy1)); if (fabs (dy1) >= fabs (dy2)) mx = (my - y1) * dx1 / dy1 + x1; else mx = (my - y2) * dx2 / dy2 + x2; /* * When the two outer edges are nearly parallel, slight * perturbations in the position of the outer points of the lines * caused by representing them in fixed point form can cause the * intersection point of the miter to move a large amount. If * that moves the miter intersection from between the two faces, * then draw a bevel instead. */ ix = _cairo_fixed_to_double (in->point.x); iy = _cairo_fixed_to_double (in->point.y); /* slope of one face */ fdx1 = x1 - ix; fdy1 = y1 - iy; /* slope of the other face */ fdx2 = x2 - ix; fdy2 = y2 - iy; /* slope from the intersection to the miter point */ mdx = mx - ix; mdy = my - iy; /* * Make sure the miter point line lies between the two * faces by comparing the slopes */ if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) != slope_compare_sgn (fdx2, fdy2, mdx, mdy)) { cairo_point_t p; p.x = _cairo_fixed_from_double (mx); p.y = _cairo_fixed_from_double (my); //*_cairo_contour_last_point (&outer->contour) = p; //*_cairo_contour_first_point (&outer->contour) = p; return; } } break; } case CAIRO_LINE_JOIN_BEVEL: break; } //contour_add_point (stroker, outer, outpt); } static void outer_join (struct stroker *stroker, const cairo_stroke_face_t *in, const cairo_stroke_face_t *out, int clockwise) { const cairo_point_t *inpt, *outpt; if (in->cw.x == out->cw.x && in->cw.y == out->cw.y && in->ccw.x == out->ccw.x && in->ccw.y == out->ccw.y) { return; } if (clockwise) { inpt = &in->cw; outpt = &out->cw; } else { inpt = &in->ccw; outpt = &out->ccw; } switch (stroker->style.line_join) { case CAIRO_LINE_JOIN_ROUND: /* construct a fan around the common midpoint */ add_fan (stroker, &in->dev_vector, &out->dev_vector, &in->point, inpt, outpt, clockwise); break; case CAIRO_LINE_JOIN_MITER: default: { /* dot product of incoming slope vector with outgoing slope vector */ double in_dot_out = -in->usr_vector.x * out->usr_vector.x + -in->usr_vector.y * out->usr_vector.y; double ml = stroker->style.miter_limit; /* Check the miter limit -- lines meeting at an acute angle * can generate long miters, the limit converts them to bevel * * Consider the miter join formed when two line segments * meet at an angle psi: * * /.\ * /. .\ * /./ \.\ * /./psi\.\ * * We can zoom in on the right half of that to see: * * |\ * | \ psi/2 * | \ * | \ * | \ * | \ * miter \ * length \ * | \ * | .\ * | . \ * |. line \ * \ width \ * \ \ * * * The right triangle in that figure, (the line-width side is * shown faintly with three '.' characters), gives us the * following expression relating miter length, angle and line * width: * * 1 /sin (psi/2) = miter_length / line_width * * The right-hand side of this relationship is the same ratio * in which the miter limit (ml) is expressed. We want to know * when the miter length is within the miter limit. That is * when the following condition holds: * * 1/sin(psi/2) <= ml * 1 <= ml sin(psi/2) * 1 <= ml² sin²(psi/2) * 2 <= ml² 2 sin²(psi/2) * 2·sin²(psi/2) = 1-cos(psi) * 2 <= ml² (1-cos(psi)) * * in · out = |in| |out| cos (psi) * * in and out are both unit vectors, so: * * in · out = cos (psi) * * 2 <= ml² (1 - in · out) * */ if (2 <= ml * ml * (1 - in_dot_out)) { double x1, y1, x2, y2; double mx, my; double dx1, dx2, dy1, dy2; double ix, iy; double fdx1, fdy1, fdx2, fdy2; double mdx, mdy; /* * we've got the points already transformed to device * space, but need to do some computation with them and * also need to transform the slope from user space to * device space */ /* outer point of incoming line face */ x1 = _cairo_fixed_to_double (inpt->x); y1 = _cairo_fixed_to_double (inpt->y); dx1 = in->usr_vector.x; dy1 = in->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx1, &dy1); /* outer point of outgoing line face */ x2 = _cairo_fixed_to_double (outpt->x); y2 = _cairo_fixed_to_double (outpt->y); dx2 = out->usr_vector.x; dy2 = out->usr_vector.y; cairo_matrix_transform_distance (stroker->ctm, &dx2, &dy2); /* * Compute the location of the outer corner of the miter. * That's pretty easy -- just the intersection of the two * outer edges. We've got slopes and points on each * of those edges. Compute my directly, then compute * mx by using the edge with the larger dy; that avoids * dividing by values close to zero. */ my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) / (dx1 * dy2 - dx2 * dy1)); if (fabs (dy1) >= fabs (dy2)) mx = (my - y1) * dx1 / dy1 + x1; else mx = (my - y2) * dx2 / dy2 + x2; /* * When the two outer edges are nearly parallel, slight * perturbations in the position of the outer points of the lines * caused by representing them in fixed point form can cause the * intersection point of the miter to move a large amount. If * that moves the miter intersection from between the two faces, * then draw a bevel instead. */ ix = _cairo_fixed_to_double (in->point.x); iy = _cairo_fixed_to_double (in->point.y); /* slope of one face */ fdx1 = x1 - ix; fdy1 = y1 - iy; /* slope of the other face */ fdx2 = x2 - ix; fdy2 = y2 - iy; /* slope from the intersection to the miter point */ mdx = mx - ix; mdy = my - iy; /* * Make sure the miter point line lies between the two * faces by comparing the slopes */ if (slope_compare_sgn (fdx1, fdy1, mdx, mdy) != slope_compare_sgn (fdx2, fdy2, mdx, mdy)) { cairo_point_t p; p.x = _cairo_fixed_from_double (mx); p.y = _cairo_fixed_from_double (my); //*_cairo_contour_last_point (&outer->contour) = p; return; } } break; } case CAIRO_LINE_JOIN_BEVEL: break; } //contour_add_point (stroker,outer, outpt); } static void add_cap (struct stroker *stroker, const cairo_stroke_face_t *f) { switch (stroker->style.line_cap) { case CAIRO_LINE_CAP_ROUND: { cairo_slope_t slope; slope.dx = -f->dev_vector.dx; slope.dy = -f->dev_vector.dy; add_fan (stroker, &f->dev_vector, &slope, &f->point, &f->ccw, &f->cw, FALSE); break; } case CAIRO_LINE_CAP_SQUARE: { double dx, dy; cairo_slope_t fvector; cairo_point_t quad[4]; dx = f->usr_vector.x; dy = f->usr_vector.y; dx *= stroker->style.line_width / 2.0; dy *= stroker->style.line_width / 2.0; cairo_matrix_transform_distance (stroker->ctm, &dx, &dy); fvector.dx = _cairo_fixed_from_double (dx); fvector.dy = _cairo_fixed_from_double (dy); quad[0] = f->ccw; quad[1].x = f->ccw.x + fvector.dx; quad[1].y = f->ccw.y + fvector.dy; quad[2].x = f->cw.x + fvector.dx; quad[2].y = f->cw.y + fvector.dy; quad[3] = f->cw; //contour_add_point (stroker, c, &quad[1]); //contour_add_point (stroker, c, &quad[2]); } case CAIRO_LINE_CAP_BUTT: default: break; } //contour_add_point (stroker, c, &f->cw); } static void add_leading_cap (struct stroker *stroker, const cairo_stroke_face_t *face) { cairo_stroke_face_t reversed; cairo_point_t t; reversed = *face; /* The initial cap needs an outward facing vector. Reverse everything */ reversed.usr_vector.x = -reversed.usr_vector.x; reversed.usr_vector.y = -reversed.usr_vector.y; reversed.dev_vector.dx = -reversed.dev_vector.dx; reversed.dev_vector.dy = -reversed.dev_vector.dy; t = reversed.cw; reversed.cw = reversed.ccw; reversed.ccw = t; add_cap (stroker, &reversed); } static void add_trailing_cap (struct stroker *stroker, const cairo_stroke_face_t *face) { add_cap (stroker, face); } static inline double normalize_slope (double *dx, double *dy) { double dx0 = *dx, dy0 = *dy; double mag; assert (dx0 != 0.0 || dy0 != 0.0); if (dx0 == 0.0) { *dx = 0.0; if (dy0 > 0.0) { mag = dy0; *dy = 1.0; } else { mag = -dy0; *dy = -1.0; } } else if (dy0 == 0.0) { *dy = 0.0; if (dx0 > 0.0) { mag = dx0; *dx = 1.0; } else { mag = -dx0; *dx = -1.0; } } else { mag = hypot (dx0, dy0); *dx = dx0 / mag; *dy = dy0 / mag; } return mag; } static void compute_face (const cairo_point_t *point, const cairo_slope_t *dev_slope, struct stroker *stroker, cairo_stroke_face_t *face) { double face_dx, face_dy; cairo_point_t offset_ccw, offset_cw; double slope_dx, slope_dy; slope_dx = _cairo_fixed_to_double (dev_slope->dx); slope_dy = _cairo_fixed_to_double (dev_slope->dy); face->length = normalize_slope (&slope_dx, &slope_dy); face->dev_slope.x = slope_dx; face->dev_slope.y = slope_dy; /* * rotate to get a line_width/2 vector along the face, note that * the vector must be rotated the right direction in device space, * but by 90° in user space. So, the rotation depends on * whether the ctm reflects or not, and that can be determined * by looking at the determinant of the matrix. */ if (! _cairo_matrix_is_identity (stroker->ctm_inverse)) { /* Normalize the matrix! */ cairo_matrix_transform_distance (stroker->ctm_inverse, &slope_dx, &slope_dy); normalize_slope (&slope_dx, &slope_dy); if (stroker->ctm_det_positive) { face_dx = - slope_dy * (stroker->style.line_width / 2.0); face_dy = slope_dx * (stroker->style.line_width / 2.0); } else { face_dx = slope_dy * (stroker->style.line_width / 2.0); face_dy = - slope_dx * (stroker->style.line_width / 2.0); } /* back to device space */ cairo_matrix_transform_distance (stroker->ctm, &face_dx, &face_dy); } else { face_dx = - slope_dy * (stroker->style.line_width / 2.0); face_dy = slope_dx * (stroker->style.line_width / 2.0); } offset_ccw.x = _cairo_fixed_from_double (face_dx); offset_ccw.y = _cairo_fixed_from_double (face_dy); offset_cw.x = -offset_ccw.x; offset_cw.y = -offset_ccw.y; face->ccw = *point; translate_point (&face->ccw, &offset_ccw); face->point = *point; face->cw = *point; translate_point (&face->cw, &offset_cw); face->usr_vector.x = slope_dx; face->usr_vector.y = slope_dy; face->dev_vector = *dev_slope; } static void add_caps (struct stroker *stroker) { /* check for a degenerative sub_path */ if (stroker->has_sub_path && ! stroker->has_first_face && ! stroker->has_current_face && stroker->style.line_cap == CAIRO_LINE_CAP_ROUND) { /* pick an arbitrary slope to use */ cairo_slope_t slope = { CAIRO_FIXED_ONE, 0 }; cairo_stroke_face_t face; /* arbitrarily choose first_point */ compute_face (&stroker->first_point, &slope, stroker, &face); add_leading_cap (stroker, &face); add_trailing_cap (stroker, &face); /* ensure the circle is complete */ //_cairo_contour_add_point (&stroker->ccw.contour, //_cairo_contour_first_point (&stroker->ccw.contour)); } else { if (stroker->has_current_face) add_trailing_cap (stroker, &stroker->current_face); //_cairo_polygon_add_contour (stroker->polygon, &stroker->ccw.contour); //_cairo_contour_reset (&stroker->ccw.contour); if (stroker->has_first_face) { //_cairo_contour_add_point (&stroker->ccw.contour, //&stroker->first_face.cw); add_leading_cap (stroker, &stroker->first_face); //_cairo_polygon_add_contour (stroker->polygon, //&stroker->ccw.contour); //_cairo_contour_reset (&stroker->ccw.contour); } } } static cairo_status_t move_to (void *closure, const cairo_point_t *point) { struct stroker *stroker = closure; /* Cap the start and end of the previous sub path as needed */ add_caps (stroker); stroker->has_first_face = FALSE; stroker->has_current_face = FALSE; stroker->has_sub_path = FALSE; stroker->first_point = *point; stroker->current_face.point = *point; return CAIRO_STATUS_SUCCESS; } static cairo_status_t line_to (void *closure, const cairo_point_t *point) { struct stroker *stroker = closure; cairo_stroke_face_t start; cairo_point_t *p1 = &stroker->current_face.point; cairo_slope_t dev_slope; stroker->has_sub_path = TRUE; if (p1->x == point->x && p1->y == point->y) return CAIRO_STATUS_SUCCESS; _cairo_slope_init (&dev_slope, p1, point); compute_face (p1, &dev_slope, stroker, &start); if (stroker->has_current_face) { int clockwise = join_is_clockwise (&stroker->current_face, &start); /* Join with final face from previous segment */ outer_join (stroker, &stroker->current_face, &start, clockwise); inner_join (stroker, &stroker->current_face, &start, clockwise); } else { if (! stroker->has_first_face) { /* Save sub path's first face in case needed for closing join */ stroker->first_face = start; _cairo_tristrip_move_to (stroker->strip, &start.cw); stroker->has_first_face = TRUE; } stroker->has_current_face = TRUE; _cairo_tristrip_add_point (stroker->strip, &start.cw); _cairo_tristrip_add_point (stroker->strip, &start.ccw); } stroker->current_face = start; stroker->current_face.point = *point; stroker->current_face.ccw.x += dev_slope.dx; stroker->current_face.ccw.y += dev_slope.dy; stroker->current_face.cw.x += dev_slope.dx; stroker->current_face.cw.y += dev_slope.dy; _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.cw); _cairo_tristrip_add_point (stroker->strip, &stroker->current_face.ccw); return CAIRO_STATUS_SUCCESS; } static cairo_status_t spline_to (void *closure, const cairo_point_t *point, const cairo_slope_t *tangent) { struct stroker *stroker = closure; cairo_stroke_face_t face; if (tangent->dx == 0 && tangent->dy == 0) { const cairo_point_t *inpt, *outpt; cairo_point_t t; int clockwise; face = stroker->current_face; face.usr_vector.x = -face.usr_vector.x; face.usr_vector.y = -face.usr_vector.y; face.dev_vector.dx = -face.dev_vector.dx; face.dev_vector.dy = -face.dev_vector.dy; t = face.cw; face.cw = face.ccw; face.ccw = t; clockwise = join_is_clockwise (&stroker->current_face, &face); if (clockwise) { inpt = &stroker->current_face.cw; outpt = &face.cw; } else { inpt = &stroker->current_face.ccw; outpt = &face.ccw; } add_fan (stroker, &stroker->current_face.dev_vector, &face.dev_vector, &stroker->current_face.point, inpt, outpt, clockwise); } else { compute_face (point, tangent, stroker, &face); if (face.dev_slope.x * stroker->current_face.dev_slope.x + face.dev_slope.y * stroker->current_face.dev_slope.y < 0) { const cairo_point_t *inpt, *outpt; int clockwise = join_is_clockwise (&stroker->current_face, &face); stroker->current_face.cw.x += face.point.x - stroker->current_face.point.x; stroker->current_face.cw.y += face.point.y - stroker->current_face.point.y; //contour_add_point (stroker, &stroker->cw, &stroker->current_face.cw); stroker->current_face.ccw.x += face.point.x - stroker->current_face.point.x; stroker->current_face.ccw.y += face.point.y - stroker->current_face.point.y; //contour_add_point (stroker, &stroker->ccw, &stroker->current_face.ccw); if (clockwise) { inpt = &stroker->current_face.cw; outpt = &face.cw; } else { inpt = &stroker->current_face.ccw; outpt = &face.ccw; } add_fan (stroker, &stroker->current_face.dev_vector, &face.dev_vector, &stroker->current_face.point, inpt, outpt, clockwise); } _cairo_tristrip_add_point (stroker->strip, &face.cw); _cairo_tristrip_add_point (stroker->strip, &face.ccw); } stroker->current_face = face; return CAIRO_STATUS_SUCCESS; } static cairo_status_t curve_to (void *closure, const cairo_point_t *b, const cairo_point_t *c, const cairo_point_t *d) { struct stroker *stroker = closure; cairo_spline_t spline; cairo_stroke_face_t face; if (stroker->has_limits) { if (! _cairo_spline_intersects (&stroker->current_face.point, b, c, d, &stroker->limit)) return line_to (closure, d); } if (! _cairo_spline_init (&spline, spline_to, stroker, &stroker->current_face.point, b, c, d)) return line_to (closure, d); compute_face (&stroker->current_face.point, &spline.initial_slope, stroker, &face); if (stroker->has_current_face) { int clockwise = join_is_clockwise (&stroker->current_face, &face); /* Join with final face from previous segment */ outer_join (stroker, &stroker->current_face, &face, clockwise); inner_join (stroker, &stroker->current_face, &face, clockwise); } else { if (! stroker->has_first_face) { /* Save sub path's first face in case needed for closing join */ stroker->first_face = face; _cairo_tristrip_move_to (stroker->strip, &face.cw); stroker->has_first_face = TRUE; } stroker->has_current_face = TRUE; _cairo_tristrip_add_point (stroker->strip, &face.cw); _cairo_tristrip_add_point (stroker->strip, &face.ccw); } stroker->current_face = face; return _cairo_spline_decompose (&spline, stroker->tolerance); } static cairo_status_t close_path (void *closure) { struct stroker *stroker = closure; cairo_status_t status; status = line_to (stroker, &stroker->first_point); if (unlikely (status)) return status; if (stroker->has_first_face && stroker->has_current_face) { /* Join first and final faces of sub path */ outer_close (stroker, &stroker->current_face, &stroker->first_face); inner_close (stroker, &stroker->current_face, &stroker->first_face); } else { /* Cap the start and end of the sub path as needed */ add_caps (stroker); } stroker->has_sub_path = FALSE; stroker->has_first_face = FALSE; stroker->has_current_face = FALSE; return CAIRO_STATUS_SUCCESS; } cairo_int_status_t _cairo_path_fixed_stroke_to_tristrip (const cairo_path_fixed_t *path, const cairo_stroke_style_t*style, const cairo_matrix_t *ctm, const cairo_matrix_t *ctm_inverse, double tolerance, cairo_tristrip_t *strip) { struct stroker stroker; cairo_int_status_t status; int i; if (style->num_dashes) return CAIRO_INT_STATUS_UNSUPPORTED; stroker.style = *style; stroker.ctm = ctm; stroker.ctm_inverse = ctm_inverse; stroker.tolerance = tolerance; stroker.ctm_det_positive = _cairo_matrix_compute_determinant (ctm) >= 0.0; status = _cairo_pen_init (&stroker.pen, style->line_width / 2.0, tolerance, ctm); if (unlikely (status)) return status; if (stroker.pen.num_vertices <= 1) return CAIRO_INT_STATUS_NOTHING_TO_DO; stroker.has_current_face = FALSE; stroker.has_first_face = FALSE; stroker.has_sub_path = FALSE; stroker.has_limits = strip->num_limits > 0; stroker.limit = strip->limits[0]; for (i = 1; i < strip->num_limits; i++) _cairo_box_add_box (&stroker.limit, &strip->limits[i]); stroker.strip = strip; status = _cairo_path_fixed_interpret (path, move_to, line_to, curve_to, close_path, &stroker); /* Cap the start and end of the final sub path as needed */ if (likely (status == CAIRO_INT_STATUS_SUCCESS)) add_caps (&stroker); _cairo_pen_fini (&stroker.pen); return status; }