/* cairo - a vector graphics library with display and print output * * Copyright © 2003 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" cairo_fixed_t _cairo_fixed_from_int (int i) { return i << 16; } /* This is the "magic number" approach to converting a double into fixed * point as described here: * * http://www.stereopsis.com/sree/fpu2006.html (an overview) * http://www.d6.com/users/checker/pdfs/gdmfp.pdf (in detail) * * The basic idea is to add a large enough number to the double that the * literal floating point is moved up to the extent that it forces the * double's value to be shifted down to the bottom of the mantissa (to make * room for the large number being added in). Since the mantissa is, at a * given moment in time, a fixed point integer itself, one can convert a * float to various fixed point representations by moving around the point * of a floating point number through arithmetic operations. This behavior * is reliable on most modern platforms as it is mandated by the IEEE-754 * standard for floating point arithmetic. * * For our purposes, a "magic number" must be carefully selected that is * both large enough to produce the desired point-shifting effect, and also * has no lower bits in its representation that would interfere with our * value at the bottom of the mantissa. The magic number is calculated as * follows: * * (2 ^ (MANTISSA_SIZE - FRACTIONAL_SIZE)) * 1.5 * * where in our case: * - MANTISSA_SIZE for 64-bit doubles is 52 * - FRACTIONAL_SIZE for 16.16 fixed point is 16 * * Although this approach provides a very large speedup of this function * on a wide-array of systems, it does come with two caveats: * * 1) It uses banker's rounding as opposed to arithmetic rounding. * 2) It doesn't function properly if the FPU is in single-precision * mode. */ #define CAIRO_MAGIC_NUMBER_FIXED_16_16 (103079215104.0) cairo_fixed_t _cairo_fixed_from_double (double d) { union { double d; int32_t i[2]; } u; u.d = d + CAIRO_MAGIC_NUMBER_FIXED_16_16; #ifdef FLOAT_WORDS_BIGENDIAN return u.i[1]; #else return u.i[0]; #endif } cairo_fixed_t _cairo_fixed_from_26_6 (uint32_t i) { return i << 10; } double _cairo_fixed_to_double (cairo_fixed_t f) { return ((double) f) / 65536.0; } int _cairo_fixed_is_integer (cairo_fixed_t f) { return (f & 0xFFFF) == 0; } int _cairo_fixed_integer_part (cairo_fixed_t f) { return f >> 16; } int _cairo_fixed_integer_floor (cairo_fixed_t f) { if (f >= 0) return f >> 16; else return -((-f - 1) >> 16) - 1; } int _cairo_fixed_integer_ceil (cairo_fixed_t f) { if (f > 0) return ((f - 1)>>16) + 1; else return - (-f >> 16); }