// SPDX-License-Identifier: GPL-2.0+ #include #include #include #include #include #include "vkms_drv.h" static u32 get_pixel_from_buffer(int x, int y, const u8 *buffer, const struct vkms_composer *composer) { u32 pixel; int src_offset = composer->offset + (y * composer->pitch) + (x * composer->cpp); pixel = *(u32 *)&buffer[src_offset]; return pixel; } /** * compute_crc - Compute CRC value on output frame * * @vaddr: address to final framebuffer * @composer: framebuffer's metadata * * returns CRC value computed using crc32 on the visible portion of * the final framebuffer at vaddr_out */ static uint32_t compute_crc(const u8 *vaddr, const struct vkms_composer *composer) { int x, y; u32 crc = 0, pixel = 0; int x_src = composer->src.x1 >> 16; int y_src = composer->src.y1 >> 16; int h_src = drm_rect_height(&composer->src) >> 16; int w_src = drm_rect_width(&composer->src) >> 16; for (y = y_src; y < y_src + h_src; ++y) { for (x = x_src; x < x_src + w_src; ++x) { pixel = get_pixel_from_buffer(x, y, vaddr, composer); crc = crc32_le(crc, (void *)&pixel, sizeof(u32)); } } return crc; } static u8 blend_channel(u8 src, u8 dst, u8 alpha) { u32 pre_blend; u8 new_color; pre_blend = (src * 255 + dst * (255 - alpha)); /* Faster div by 255 */ new_color = ((pre_blend + ((pre_blend + 257) >> 8)) >> 8); return new_color; } static void alpha_blending(const u8 *argb_src, u8 *argb_dst) { u8 alpha; alpha = argb_src[3]; argb_dst[0] = blend_channel(argb_src[0], argb_dst[0], alpha); argb_dst[1] = blend_channel(argb_src[1], argb_dst[1], alpha); argb_dst[2] = blend_channel(argb_src[2], argb_dst[2], alpha); /* Opaque primary */ argb_dst[3] = 0xFF; } /** * blend - blend value at vaddr_src with value at vaddr_dst * @vaddr_dst: destination address * @vaddr_src: source address * @dst_composer: destination framebuffer's metadata * @src_composer: source framebuffer's metadata * * Blend the vaddr_src value with the vaddr_dst value using the pre-multiplied * alpha blending equation, since DRM currently assumes that the pixel color * values have already been pre-multiplied with the alpha channel values. See * more drm_plane_create_blend_mode_property(). This function uses buffer's * metadata to locate the new composite values at vaddr_dst. */ static void blend(void *vaddr_dst, void *vaddr_src, struct vkms_composer *dst_composer, struct vkms_composer *src_composer) { int i, j, j_dst, i_dst; int offset_src, offset_dst; u8 *pixel_dst, *pixel_src; int x_src = src_composer->src.x1 >> 16; int y_src = src_composer->src.y1 >> 16; int x_dst = src_composer->dst.x1; int y_dst = src_composer->dst.y1; int h_dst = drm_rect_height(&src_composer->dst); int w_dst = drm_rect_width(&src_composer->dst); int y_limit = y_src + h_dst; int x_limit = x_src + w_dst; for (i = y_src, i_dst = y_dst; i < y_limit; ++i) { for (j = x_src, j_dst = x_dst; j < x_limit; ++j) { offset_dst = dst_composer->offset + (i_dst * dst_composer->pitch) + (j_dst++ * dst_composer->cpp); offset_src = src_composer->offset + (i * src_composer->pitch) + (j * src_composer->cpp); pixel_src = (u8 *)(vaddr_src + offset_src); pixel_dst = (u8 *)(vaddr_dst + offset_dst); alpha_blending(pixel_src, pixel_dst); } i_dst++; } } static void compose_cursor(struct vkms_composer *cursor_composer, struct vkms_composer *primary_composer, void *vaddr_out) { struct drm_gem_object *cursor_obj; struct vkms_gem_object *cursor_vkms_obj; cursor_obj = drm_gem_fb_get_obj(&cursor_composer->fb, 0); cursor_vkms_obj = drm_gem_to_vkms_gem(cursor_obj); if (WARN_ON(!cursor_vkms_obj->vaddr)) return; blend(vaddr_out, cursor_vkms_obj->vaddr, primary_composer, cursor_composer); } static int compose_planes(void **vaddr_out, struct vkms_composer *primary_composer, struct vkms_composer *cursor_composer) { struct drm_framebuffer *fb = &primary_composer->fb; struct drm_gem_object *gem_obj = drm_gem_fb_get_obj(fb, 0); struct vkms_gem_object *vkms_obj = drm_gem_to_vkms_gem(gem_obj); if (!*vaddr_out) { *vaddr_out = kzalloc(vkms_obj->gem.size, GFP_KERNEL); if (!*vaddr_out) { DRM_ERROR("Cannot allocate memory for output frame."); return -ENOMEM; } } if (WARN_ON(!vkms_obj->vaddr)) return -EINVAL; memcpy(*vaddr_out, vkms_obj->vaddr, vkms_obj->gem.size); if (cursor_composer) compose_cursor(cursor_composer, primary_composer, *vaddr_out); return 0; } /** * vkms_composer_worker - ordered work_struct to compute CRC * * @work: work_struct * * Work handler for composing and computing CRCs. work_struct scheduled in * an ordered workqueue that's periodically scheduled to run by * _vblank_handle() and flushed at vkms_atomic_crtc_destroy_state(). */ void vkms_composer_worker(struct work_struct *work) { struct vkms_crtc_state *crtc_state = container_of(work, struct vkms_crtc_state, composer_work); struct drm_crtc *crtc = crtc_state->base.crtc; struct vkms_output *out = drm_crtc_to_vkms_output(crtc); struct vkms_composer *primary_composer = NULL; struct vkms_composer *cursor_composer = NULL; bool crc_pending, wb_pending; void *vaddr_out = NULL; u32 crc32 = 0; u64 frame_start, frame_end; int ret; spin_lock_irq(&out->composer_lock); frame_start = crtc_state->frame_start; frame_end = crtc_state->frame_end; crc_pending = crtc_state->crc_pending; wb_pending = crtc_state->wb_pending; crtc_state->frame_start = 0; crtc_state->frame_end = 0; crtc_state->crc_pending = false; spin_unlock_irq(&out->composer_lock); /* * We raced with the vblank hrtimer and previous work already computed * the crc, nothing to do. */ if (!crc_pending) return; if (crtc_state->num_active_planes >= 1) primary_composer = crtc_state->active_planes[0]->composer; if (crtc_state->num_active_planes == 2) cursor_composer = crtc_state->active_planes[1]->composer; if (!primary_composer) return; if (wb_pending) vaddr_out = crtc_state->active_writeback; ret = compose_planes(&vaddr_out, primary_composer, cursor_composer); if (ret) { if (ret == -EINVAL && !wb_pending) kfree(vaddr_out); return; } crc32 = compute_crc(vaddr_out, primary_composer); if (wb_pending) { drm_writeback_signal_completion(&out->wb_connector, 0); spin_lock_irq(&out->composer_lock); crtc_state->wb_pending = false; spin_unlock_irq(&out->composer_lock); } else { kfree(vaddr_out); } /* * The worker can fall behind the vblank hrtimer, make sure we catch up. */ while (frame_start <= frame_end) drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32); } static const char * const pipe_crc_sources[] = {"auto"}; const char *const *vkms_get_crc_sources(struct drm_crtc *crtc, size_t *count) { *count = ARRAY_SIZE(pipe_crc_sources); return pipe_crc_sources; } static int vkms_crc_parse_source(const char *src_name, bool *enabled) { int ret = 0; if (!src_name) { *enabled = false; } else if (strcmp(src_name, "auto") == 0) { *enabled = true; } else { *enabled = false; ret = -EINVAL; } return ret; } int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name, size_t *values_cnt) { bool enabled; if (vkms_crc_parse_source(src_name, &enabled) < 0) { DRM_DEBUG_DRIVER("unknown source %s\n", src_name); return -EINVAL; } *values_cnt = 1; return 0; } void vkms_set_composer(struct vkms_output *out, bool enabled) { bool old_enabled; if (enabled) drm_crtc_vblank_get(&out->crtc); spin_lock_irq(&out->lock); old_enabled = out->composer_enabled; out->composer_enabled = enabled; spin_unlock_irq(&out->lock); if (old_enabled) drm_crtc_vblank_put(&out->crtc); } int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name) { struct vkms_output *out = drm_crtc_to_vkms_output(crtc); bool enabled = false; int ret = 0; ret = vkms_crc_parse_source(src_name, &enabled); vkms_set_composer(out, enabled); return ret; }