/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * This file implements the st_draw_vbo() function which is called from * Mesa's VBO module. All point/line/triangle rendering is done through * this function whether the user called glBegin/End, glDrawArrays, * glDrawElements, glEvalMesh, or glCalList, etc. * * We basically convert the VBO's vertex attribute/array information into * Gallium vertex state, bind the vertex buffer objects and call * pipe->draw_elements(), pipe->draw_range_elements() or pipe->draw_arrays(). * * Authors: * Keith Whitwell */ #include "main/imports.h" #include "main/image.h" #include "main/macros.h" #include "shader/prog_uniform.h" #include "vbo/vbo.h" #include "st_context.h" #include "st_atom.h" #include "st_cb_bufferobjects.h" #include "st_draw.h" #include "st_program.h" #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_inlines.h" static GLuint double_types[4] = { PIPE_FORMAT_R64_FLOAT, PIPE_FORMAT_R64G64_FLOAT, PIPE_FORMAT_R64G64B64_FLOAT, PIPE_FORMAT_R64G64B64A64_FLOAT }; static GLuint float_types[4] = { PIPE_FORMAT_R32_FLOAT, PIPE_FORMAT_R32G32_FLOAT, PIPE_FORMAT_R32G32B32_FLOAT, PIPE_FORMAT_R32G32B32A32_FLOAT }; static GLuint uint_types_norm[4] = { PIPE_FORMAT_R32_UNORM, PIPE_FORMAT_R32G32_UNORM, PIPE_FORMAT_R32G32B32_UNORM, PIPE_FORMAT_R32G32B32A32_UNORM }; static GLuint uint_types_scale[4] = { PIPE_FORMAT_R32_USCALED, PIPE_FORMAT_R32G32_USCALED, PIPE_FORMAT_R32G32B32_USCALED, PIPE_FORMAT_R32G32B32A32_USCALED }; static GLuint int_types_norm[4] = { PIPE_FORMAT_R32_SNORM, PIPE_FORMAT_R32G32_SNORM, PIPE_FORMAT_R32G32B32_SNORM, PIPE_FORMAT_R32G32B32A32_SNORM }; static GLuint int_types_scale[4] = { PIPE_FORMAT_R32_SSCALED, PIPE_FORMAT_R32G32_SSCALED, PIPE_FORMAT_R32G32B32_SSCALED, PIPE_FORMAT_R32G32B32A32_SSCALED }; static GLuint ushort_types_norm[4] = { PIPE_FORMAT_R16_UNORM, PIPE_FORMAT_R16G16_UNORM, PIPE_FORMAT_R16G16B16_UNORM, PIPE_FORMAT_R16G16B16A16_UNORM }; static GLuint ushort_types_scale[4] = { PIPE_FORMAT_R16_USCALED, PIPE_FORMAT_R16G16_USCALED, PIPE_FORMAT_R16G16B16_USCALED, PIPE_FORMAT_R16G16B16A16_USCALED }; static GLuint short_types_norm[4] = { PIPE_FORMAT_R16_SNORM, PIPE_FORMAT_R16G16_SNORM, PIPE_FORMAT_R16G16B16_SNORM, PIPE_FORMAT_R16G16B16A16_SNORM }; static GLuint short_types_scale[4] = { PIPE_FORMAT_R16_SSCALED, PIPE_FORMAT_R16G16_SSCALED, PIPE_FORMAT_R16G16B16_SSCALED, PIPE_FORMAT_R16G16B16A16_SSCALED }; static GLuint ubyte_types_norm[4] = { PIPE_FORMAT_R8_UNORM, PIPE_FORMAT_R8G8_UNORM, PIPE_FORMAT_R8G8B8_UNORM, PIPE_FORMAT_R8G8B8A8_UNORM }; static GLuint ubyte_types_scale[4] = { PIPE_FORMAT_R8_USCALED, PIPE_FORMAT_R8G8_USCALED, PIPE_FORMAT_R8G8B8_USCALED, PIPE_FORMAT_R8G8B8A8_USCALED }; static GLuint byte_types_norm[4] = { PIPE_FORMAT_R8_SNORM, PIPE_FORMAT_R8G8_SNORM, PIPE_FORMAT_R8G8B8_SNORM, PIPE_FORMAT_R8G8B8A8_SNORM }; static GLuint byte_types_scale[4] = { PIPE_FORMAT_R8_SSCALED, PIPE_FORMAT_R8G8_SSCALED, PIPE_FORMAT_R8G8B8_SSCALED, PIPE_FORMAT_R8G8B8A8_SSCALED }; static GLuint fixed_types[4] = { PIPE_FORMAT_R32_FIXED, PIPE_FORMAT_R32G32_FIXED, PIPE_FORMAT_R32G32B32_FIXED, PIPE_FORMAT_R32G32B32A32_FIXED }; /** * Return a PIPE_FORMAT_x for the given GL datatype and size. */ GLuint st_pipe_vertex_format(GLenum type, GLuint size, GLenum format, GLboolean normalized) { assert((type >= GL_BYTE && type <= GL_DOUBLE) || type == GL_FIXED); assert(size >= 1); assert(size <= 4); assert(format == GL_RGBA || format == GL_BGRA); if (format == GL_BGRA) { /* this is an odd-ball case */ assert(type == GL_UNSIGNED_BYTE); assert(normalized); return PIPE_FORMAT_B8G8R8A8_UNORM; } if (normalized) { switch (type) { case GL_DOUBLE: return double_types[size-1]; case GL_FLOAT: return float_types[size-1]; case GL_INT: return int_types_norm[size-1]; case GL_SHORT: return short_types_norm[size-1]; case GL_BYTE: return byte_types_norm[size-1]; case GL_UNSIGNED_INT: return uint_types_norm[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_norm[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_norm[size-1]; case GL_FIXED: return fixed_types[size-1]; default: assert(0); return 0; } } else { switch (type) { case GL_DOUBLE: return double_types[size-1]; case GL_FLOAT: return float_types[size-1]; case GL_INT: return int_types_scale[size-1]; case GL_SHORT: return short_types_scale[size-1]; case GL_BYTE: return byte_types_scale[size-1]; case GL_UNSIGNED_INT: return uint_types_scale[size-1]; case GL_UNSIGNED_SHORT: return ushort_types_scale[size-1]; case GL_UNSIGNED_BYTE: return ubyte_types_scale[size-1]; case GL_FIXED: return fixed_types[size-1]; default: assert(0); return 0; } } return 0; /* silence compiler warning */ } /* * If edge flags are needed, setup an bitvector of flags and call * pipe->set_edgeflags(). * XXX memleak: need to free the returned pointer at some point */ static void * setup_edgeflags(GLcontext *ctx, GLenum primMode, GLint start, GLint count, const struct gl_client_array *array) { struct pipe_context *pipe = ctx->st->pipe; if ((primMode == GL_TRIANGLES || primMode == GL_QUADS || primMode == GL_POLYGON) && (ctx->Polygon.FrontMode != GL_FILL || ctx->Polygon.BackMode != GL_FILL)) { /* need edge flags */ GLint i; unsigned *vec; struct st_buffer_object *stobj = st_buffer_object(array->BufferObj); ubyte *map; if (!stobj || stobj->Base.Name == 0) { /* edge flags are not in a VBO */ return NULL; } vec = (unsigned *) _mesa_calloc(sizeof(unsigned) * ((count + 31) / 32)); if (!vec) return NULL; map = pipe_buffer_map(pipe->screen, stobj->buffer, PIPE_BUFFER_USAGE_CPU_READ); map = ADD_POINTERS(map, array->Ptr); for (i = 0; i < count; i++) { if (*((float *) map)) vec[i/32] |= 1 << (i % 32); map += array->StrideB; } pipe_buffer_unmap(pipe->screen, stobj->buffer); pipe->set_edgeflags(pipe, vec); return vec; } else { /* edge flags not needed */ pipe->set_edgeflags(pipe, NULL); return NULL; } } /** * Examine the active arrays to determine if we have interleaved * vertex arrays all living in one VBO, or all living in user space. * \param userSpace returns whether the arrays are in user space. */ static GLboolean is_interleaved_arrays(const struct st_vertex_program *vp, const struct gl_client_array **arrays, GLboolean *userSpace) { GLuint attr; const struct gl_buffer_object *firstBufObj = NULL; GLint firstStride = -1; GLuint num_client_arrays = 0; const GLubyte *client_addr = NULL; for (attr = 0; attr < vp->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const struct gl_buffer_object *bufObj = arrays[mesaAttr]->BufferObj; const GLsizei stride = arrays[mesaAttr]->StrideB; /* in bytes */ if (firstStride < 0) { firstStride = stride; } else if (firstStride != stride) { return GL_FALSE; } if (!bufObj || !bufObj->Name) { num_client_arrays++; /* Try to detect if the client-space arrays are * "close" to each other. */ if (!client_addr) { client_addr = arrays[mesaAttr]->Ptr; } else if (abs(arrays[mesaAttr]->Ptr - client_addr) > firstStride) { /* arrays start too far apart */ return GL_FALSE; } } else if (!firstBufObj) { firstBufObj = bufObj; } else if (bufObj != firstBufObj) { return GL_FALSE; } } *userSpace = (num_client_arrays == vp->num_inputs); /* printf("user space: %d (%d %d)\n", (int) *userSpace,num_client_arrays,vp->num_inputs); */ return GL_TRUE; } /** * Compute the memory range occupied by the arrays. */ static void get_arrays_bounds(const struct st_vertex_program *vp, const struct gl_client_array **arrays, GLuint max_index, const GLubyte **low, const GLubyte **high) { const GLubyte *low_addr = NULL; const GLubyte *high_addr = NULL; GLuint attr; for (attr = 0; attr < vp->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; const GLint stride = arrays[mesaAttr]->StrideB; const GLubyte *start = arrays[mesaAttr]->Ptr; const unsigned sz = (arrays[mesaAttr]->Size * _mesa_sizeof_type(arrays[mesaAttr]->Type)); const GLubyte *end = start + (max_index * stride) + sz; if (attr == 0) { low_addr = start; high_addr = end; } else { low_addr = MIN2(low_addr, start); high_addr = MAX2(high_addr, end); } } *low = low_addr; *high = high_addr; } /** * Set up for drawing interleaved arrays that all live in one VBO * or all live in user space. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info */ static void setup_interleaved_attribs(GLcontext *ctx, const struct st_vertex_program *vp, const struct gl_client_array **arrays, GLuint max_index, GLboolean userSpace, struct pipe_vertex_buffer *vbuffer, struct pipe_vertex_element velements[]) { struct pipe_context *pipe = ctx->st->pipe; GLuint attr; const GLubyte *offset0 = NULL; for (attr = 0; attr < vp->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; struct gl_buffer_object *bufobj = arrays[mesaAttr]->BufferObj; struct st_buffer_object *stobj = st_buffer_object(bufobj); GLsizei stride = arrays[mesaAttr]->StrideB; /*printf("stobj %u = %p\n", attr, (void*)stobj);*/ if (attr == 0) { const GLubyte *low, *high; get_arrays_bounds(vp, arrays, max_index, &low, &high); /*printf("buffer range: %p %p %d\n", low, high, high-low);*/ offset0 = low; if (userSpace) { vbuffer->buffer = pipe_user_buffer_create(pipe->screen, (void *) low, high - low); vbuffer->buffer_offset = 0; } else { vbuffer->buffer = NULL; pipe_buffer_reference(&vbuffer->buffer, stobj->buffer); vbuffer->buffer_offset = pointer_to_offset(low); } vbuffer->stride = stride; /* in bytes */ vbuffer->max_index = max_index; } velements[attr].src_offset = (unsigned) (arrays[mesaAttr]->Ptr - offset0); velements[attr].vertex_buffer_index = 0; velements[attr].nr_components = arrays[mesaAttr]->Size; velements[attr].src_format = st_pipe_vertex_format(arrays[mesaAttr]->Type, arrays[mesaAttr]->Size, arrays[mesaAttr]->Format, arrays[mesaAttr]->Normalized); assert(velements[attr].src_format); } } /** * Set up a separate pipe_vertex_buffer and pipe_vertex_element for each * vertex attribute. * \param vbuffer returns vertex buffer info * \param velements returns vertex element info */ static void setup_non_interleaved_attribs(GLcontext *ctx, const struct st_vertex_program *vp, const struct gl_client_array **arrays, GLuint max_index, GLboolean *userSpace, struct pipe_vertex_buffer vbuffer[], struct pipe_vertex_element velements[]) { struct pipe_context *pipe = ctx->st->pipe; GLuint attr; for (attr = 0; attr < vp->num_inputs; attr++) { const GLuint mesaAttr = vp->index_to_input[attr]; struct gl_buffer_object *bufobj = arrays[mesaAttr]->BufferObj; GLsizei stride = arrays[mesaAttr]->StrideB; *userSpace = GL_FALSE; if (bufobj && bufobj->Name) { /* Attribute data is in a VBO. * Recall that for VBOs, the gl_client_array->Ptr field is * really an offset from the start of the VBO, not a pointer. */ struct st_buffer_object *stobj = st_buffer_object(bufobj); assert(stobj->buffer); /*printf("stobj %u = %p\n", attr, (void*) stobj);*/ vbuffer[attr].buffer = NULL; pipe_buffer_reference(&vbuffer[attr].buffer, stobj->buffer); vbuffer[attr].buffer_offset = pointer_to_offset(arrays[mesaAttr]->Ptr); velements[attr].src_offset = 0; } else { /* attribute data is in user-space memory, not a VBO */ uint bytes; /*printf("user-space array %d stride %d\n", attr, stride);*/ *userSpace = GL_TRUE; /* wrap user data */ if (arrays[mesaAttr]->Ptr) { /* user's vertex array */ if (arrays[mesaAttr]->StrideB) { bytes = arrays[mesaAttr]->StrideB * (max_index + 1); } else { bytes = arrays[mesaAttr]->Size * _mesa_sizeof_type(arrays[mesaAttr]->Type); } vbuffer[attr].buffer = pipe_user_buffer_create(pipe->screen, (void *) arrays[mesaAttr]->Ptr, bytes); } else { /* no array, use ctx->Current.Attrib[] value */ bytes = sizeof(ctx->Current.Attrib[0]); vbuffer[attr].buffer = pipe_user_buffer_create(pipe->screen, (void *) ctx->Current.Attrib[mesaAttr], bytes); stride = 0; } vbuffer[attr].buffer_offset = 0; velements[attr].src_offset = 0; } assert(velements[attr].src_offset <= 2048); /* 11-bit field */ /* common-case setup */ vbuffer[attr].stride = stride; /* in bytes */ vbuffer[attr].max_index = max_index; velements[attr].vertex_buffer_index = attr; velements[attr].nr_components = arrays[mesaAttr]->Size; velements[attr].src_format = st_pipe_vertex_format(arrays[mesaAttr]->Type, arrays[mesaAttr]->Size, arrays[mesaAttr]->Format, arrays[mesaAttr]->Normalized); assert(velements[attr].src_format); } } /** * Prior to drawing, check that any uniforms referenced by the * current shader have been set. If a uniform has not been set, * issue a warning. */ static void check_uniforms(GLcontext *ctx) { const struct gl_shader_program *shProg = ctx->Shader.CurrentProgram; if (shProg && shProg->LinkStatus) { GLuint i; for (i = 0; i < shProg->Uniforms->NumUniforms; i++) { const struct gl_uniform *u = &shProg->Uniforms->Uniforms[i]; if (!u->Initialized) { _mesa_warning(ctx, "Using shader with uninitialized uniform: %s", u->Name); } } } } static unsigned translate_prim( GLcontext *ctx, unsigned prim ) { /* Avoid quadstrips if it's easy to do so: */ if (prim == GL_QUAD_STRIP && ctx->Light.ShadeModel != GL_FLAT && ctx->Polygon.FrontMode == GL_FILL && ctx->Polygon.BackMode == GL_FILL) prim = GL_TRIANGLE_STRIP; return prim; } /** * This function gets plugged into the VBO module and is called when * we have something to render. * Basically, translate the information into the format expected by gallium. */ void st_draw_vbo(GLcontext *ctx, const struct gl_client_array **arrays, const struct _mesa_prim *prims, GLuint nr_prims, const struct _mesa_index_buffer *ib, GLboolean index_bounds_valid, GLuint min_index, GLuint max_index) { struct pipe_context *pipe = ctx->st->pipe; const struct st_vertex_program *vp; const struct pipe_shader_state *vs; struct pipe_vertex_buffer vbuffer[PIPE_MAX_SHADER_INPUTS]; GLuint attr; struct pipe_vertex_element velements[PIPE_MAX_ATTRIBS]; unsigned num_vbuffers, num_velements; GLboolean userSpace = GL_FALSE; /* Gallium probably doesn't want this in some cases. */ if (!index_bounds_valid) if (!vbo_all_varyings_in_vbos(arrays)) vbo_get_minmax_index(ctx, prims, ib, &min_index, &max_index); /* sanity check for pointer arithmetic below */ assert(sizeof(arrays[0]->Ptr[0]) == 1); st_validate_state(ctx->st); /* must get these after state validation! */ vp = ctx->st->vp; vs = &ctx->st->vp_varient->state; #if 0 if (MESA_VERBOSE & VERBOSE_GLSL) { check_uniforms(ctx); } #else (void) check_uniforms; #endif /* * Setup the vbuffer[] and velements[] arrays. */ if (is_interleaved_arrays(vp, arrays, &userSpace)) { /*printf("Draw interleaved\n");*/ setup_interleaved_attribs(ctx, vp, arrays, max_index, userSpace, vbuffer, velements); num_vbuffers = 1; num_velements = vp->num_inputs; if (num_velements == 0) num_vbuffers = 0; } else { /*printf("Draw non-interleaved\n");*/ setup_non_interleaved_attribs(ctx, vp, arrays, max_index, &userSpace, vbuffer, velements); num_vbuffers = vp->num_inputs; num_velements = vp->num_inputs; } #if 0 { GLuint i; for (i = 0; i < num_vbuffers; i++) { printf("buffers[%d].stride = %u\n", i, vbuffer[i].stride); printf("buffers[%d].max_index = %u\n", i, vbuffer[i].max_index); printf("buffers[%d].buffer_offset = %u\n", i, vbuffer[i].buffer_offset); printf("buffers[%d].buffer = %p\n", i, (void*) vbuffer[i].buffer); } for (i = 0; i < num_velements; i++) { printf("vlements[%d].vbuffer_index = %u\n", i, velements[i].vertex_buffer_index); printf("vlements[%d].src_offset = %u\n", i, velements[i].src_offset); printf("vlements[%d].nr_comps = %u\n", i, velements[i].nr_components); printf("vlements[%d].format = %s\n", i, pf_name(velements[i].src_format)); } } #endif pipe->set_vertex_buffers(pipe, num_vbuffers, vbuffer); pipe->set_vertex_elements(pipe, num_velements, velements); if (num_vbuffers == 0 || num_velements == 0) return; /* do actual drawing */ if (ib) { /* indexed primitive */ struct gl_buffer_object *bufobj = ib->obj; struct pipe_buffer *indexBuf = NULL; unsigned indexSize, indexOffset, i; unsigned prim; switch (ib->type) { case GL_UNSIGNED_INT: indexSize = 4; break; case GL_UNSIGNED_SHORT: indexSize = 2; break; case GL_UNSIGNED_BYTE: indexSize = 1; break; default: assert(0); return; } /* get/create the index buffer object */ if (bufobj && bufobj->Name) { /* elements/indexes are in a real VBO */ struct st_buffer_object *stobj = st_buffer_object(bufobj); pipe_buffer_reference(&indexBuf, stobj->buffer); indexOffset = pointer_to_offset(ib->ptr) / indexSize; } else { /* element/indicies are in user space memory */ indexBuf = pipe_user_buffer_create(pipe->screen, (void *) ib->ptr, ib->count * indexSize); indexOffset = 0; } /* draw */ if (nr_prims == 1 && pipe->draw_range_elements != NULL) { i = 0; /* XXX: exercise temporary path to pass min/max directly * through to driver & draw module. These interfaces still * need a bit of work... */ setup_edgeflags(ctx, prims[i].mode, prims[i].start + indexOffset, prims[i].count, arrays[VERT_ATTRIB_EDGEFLAG]); prim = translate_prim( ctx, prims[i].mode ); pipe->draw_range_elements(pipe, indexBuf, indexSize, min_index, max_index, prim, prims[i].start + indexOffset, prims[i].count); } else { for (i = 0; i < nr_prims; i++) { setup_edgeflags(ctx, prims[i].mode, prims[i].start + indexOffset, prims[i].count, arrays[VERT_ATTRIB_EDGEFLAG]); prim = translate_prim( ctx, prims[i].mode ); pipe->draw_elements(pipe, indexBuf, indexSize, prim, prims[i].start + indexOffset, prims[i].count); } } pipe_buffer_reference(&indexBuf, NULL); } else { /* non-indexed */ GLuint i; GLuint prim; for (i = 0; i < nr_prims; i++) { setup_edgeflags(ctx, prims[i].mode, prims[i].start, prims[i].count, arrays[VERT_ATTRIB_EDGEFLAG]); prim = translate_prim( ctx, prims[i].mode ); pipe->draw_arrays(pipe, prim, prims[i].start, prims[i].count); } } /* unreference buffers (frees wrapped user-space buffer objects) */ for (attr = 0; attr < num_vbuffers; attr++) { pipe_buffer_reference(&vbuffer[attr].buffer, NULL); assert(!vbuffer[attr].buffer); } if (userSpace) { pipe->set_vertex_buffers(pipe, 0, NULL); } } void st_init_draw( struct st_context *st ) { GLcontext *ctx = st->ctx; vbo_set_draw_func(ctx, st_draw_vbo); } void st_destroy_draw( struct st_context *st ) { }