/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir_builder.h" #include "util/format_rgb9e5.h" static inline nir_ssa_def * nir_shift(nir_builder *b, nir_ssa_def *value, int left_shift) { if (left_shift > 0) return nir_ishl(b, value, nir_imm_int(b, left_shift)); else if (left_shift < 0) return nir_ushr(b, value, nir_imm_int(b, -left_shift)); else return value; } static inline nir_ssa_def * nir_mask_shift(struct nir_builder *b, nir_ssa_def *src, uint32_t mask, int left_shift) { return nir_shift(b, nir_iand(b, src, nir_imm_int(b, mask)), left_shift); } static inline nir_ssa_def * nir_mask_shift_or(struct nir_builder *b, nir_ssa_def *dst, nir_ssa_def *src, uint32_t src_mask, int src_left_shift) { return nir_ior(b, nir_mask_shift(b, src, src_mask, src_left_shift), dst); } static inline nir_ssa_def * nir_format_mask_uvec(nir_builder *b, nir_ssa_def *src, const unsigned *bits) { nir_const_value mask[NIR_MAX_VEC_COMPONENTS]; memset(mask, 0, sizeof(mask)); for (unsigned i = 0; i < src->num_components; i++) { assert(bits[i] < 32); mask[i].u32 = (1u << bits[i]) - 1; } return nir_iand(b, src, nir_build_imm(b, src->num_components, 32, mask)); } static inline nir_ssa_def * nir_format_sign_extend_ivec(nir_builder *b, nir_ssa_def *src, const unsigned *bits) { assert(src->num_components <= 4); nir_ssa_def *comps[4]; for (unsigned i = 0; i < src->num_components; i++) { nir_ssa_def *shift = nir_imm_int(b, src->bit_size - bits[i]); comps[i] = nir_ishr(b, nir_ishl(b, nir_channel(b, src, i), shift), shift); } return nir_vec(b, comps, src->num_components); } static inline nir_ssa_def * nir_format_unpack_int(nir_builder *b, nir_ssa_def *packed, const unsigned *bits, unsigned num_components, bool sign_extend) { assert(num_components >= 1 && num_components <= 4); const unsigned bit_size = packed->bit_size; nir_ssa_def *comps[4]; if (bits[0] >= bit_size) { assert(bits[0] == bit_size); assert(num_components == 1); return packed; } unsigned next_chan = 0; unsigned offset = 0; for (unsigned i = 0; i < num_components; i++) { assert(bits[i] < bit_size); assert(offset + bits[i] <= bit_size); nir_ssa_def *chan = nir_channel(b, packed, next_chan); nir_ssa_def *lshift = nir_imm_int(b, bit_size - (offset + bits[i])); nir_ssa_def *rshift = nir_imm_int(b, bit_size - bits[i]); if (sign_extend) comps[i] = nir_ishr(b, nir_ishl(b, chan, lshift), rshift); else comps[i] = nir_ushr(b, nir_ishl(b, chan, lshift), rshift); offset += bits[i]; if (offset >= bit_size) { next_chan++; offset -= bit_size; } } return nir_vec(b, comps, num_components); } static inline nir_ssa_def * nir_format_unpack_uint(nir_builder *b, nir_ssa_def *packed, const unsigned *bits, unsigned num_components) { return nir_format_unpack_int(b, packed, bits, num_components, false); } static inline nir_ssa_def * nir_format_unpack_sint(nir_builder *b, nir_ssa_def *packed, const unsigned *bits, unsigned num_components) { return nir_format_unpack_int(b, packed, bits, num_components, true); } static inline nir_ssa_def * nir_format_pack_uint_unmasked(nir_builder *b, nir_ssa_def *color, const unsigned *bits, unsigned num_components) { assert(num_components >= 1 && num_components <= 4); nir_ssa_def *packed = nir_imm_int(b, 0); unsigned offset = 0; for (unsigned i = 0; i < num_components; i++) { packed = nir_ior(b, packed, nir_shift(b, nir_channel(b, color, i), offset)); offset += bits[i]; } assert(offset <= packed->bit_size); return packed; } static inline nir_ssa_def * nir_format_pack_uint(nir_builder *b, nir_ssa_def *color, const unsigned *bits, unsigned num_components) { return nir_format_pack_uint_unmasked(b, nir_format_mask_uvec(b, color, bits), bits, num_components); } static inline nir_ssa_def * nir_format_bitcast_uvec_unmasked(nir_builder *b, nir_ssa_def *src, unsigned src_bits, unsigned dst_bits) { assert(src->bit_size >= src_bits && src->bit_size >= dst_bits); assert(src_bits == 8 || src_bits == 16 || src_bits == 32); assert(dst_bits == 8 || dst_bits == 16 || dst_bits == 32); if (src_bits == dst_bits) return src; const unsigned dst_components = DIV_ROUND_UP(src->num_components * src_bits, dst_bits); assert(dst_components <= 4); nir_ssa_def *dst_chan[4] = {0}; if (dst_bits > src_bits) { unsigned shift = 0; unsigned dst_idx = 0; for (unsigned i = 0; i < src->num_components; i++) { nir_ssa_def *shifted = nir_ishl(b, nir_channel(b, src, i), nir_imm_int(b, shift)); if (shift == 0) { dst_chan[dst_idx] = shifted; } else { dst_chan[dst_idx] = nir_ior(b, dst_chan[dst_idx], shifted); } shift += src_bits; if (shift >= dst_bits) { dst_idx++; shift = 0; } } } else { nir_ssa_def *mask = nir_imm_int(b, ~0u >> (32 - dst_bits)); unsigned src_idx = 0; unsigned shift = 0; for (unsigned i = 0; i < dst_components; i++) { dst_chan[i] = nir_iand(b, nir_ushr(b, nir_channel(b, src, src_idx), nir_imm_int(b, shift)), mask); shift += dst_bits; if (shift >= src_bits) { src_idx++; shift = 0; } } } return nir_vec(b, dst_chan, dst_components); } static inline nir_ssa_def * _nir_format_norm_factor(nir_builder *b, const unsigned *bits, unsigned num_components, bool is_signed) { nir_const_value factor[NIR_MAX_VEC_COMPONENTS]; memset(factor, 0, sizeof(factor)); for (unsigned i = 0; i < num_components; i++) { assert(bits[i] <= 32); factor[i].f32 = (1ull << (bits[i] - is_signed)) - 1; } return nir_build_imm(b, num_components, 32, factor); } static inline nir_ssa_def * nir_format_unorm_to_float(nir_builder *b, nir_ssa_def *u, const unsigned *bits) { nir_ssa_def *factor = _nir_format_norm_factor(b, bits, u->num_components, false); return nir_fdiv(b, nir_u2f32(b, u), factor); } static inline nir_ssa_def * nir_format_snorm_to_float(nir_builder *b, nir_ssa_def *s, const unsigned *bits) { nir_ssa_def *factor = _nir_format_norm_factor(b, bits, s->num_components, true); return nir_fmax(b, nir_fdiv(b, nir_i2f32(b, s), factor), nir_imm_float(b, -1.0f)); } static inline nir_ssa_def * nir_format_float_to_unorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits) { nir_ssa_def *factor = _nir_format_norm_factor(b, bits, f->num_components, false); /* Clamp to the range [0, 1] */ f = nir_fsat(b, f); return nir_f2u32(b, nir_fround_even(b, nir_fmul(b, f, factor))); } static inline nir_ssa_def * nir_format_float_to_snorm(nir_builder *b, nir_ssa_def *f, const unsigned *bits) { nir_ssa_def *factor = _nir_format_norm_factor(b, bits, f->num_components, true); /* Clamp to the range [-1, 1] */ f = nir_fmin(b, nir_fmax(b, f, nir_imm_float(b, -1)), nir_imm_float(b, 1)); return nir_f2i32(b, nir_fround_even(b, nir_fmul(b, f, factor))); } /* Converts a vector of floats to a vector of half-floats packed in the low 16 * bits. */ static inline nir_ssa_def * nir_format_float_to_half(nir_builder *b, nir_ssa_def *f) { nir_ssa_def *zero = nir_imm_float(b, 0); nir_ssa_def *f16comps[4]; for (unsigned i = 0; i < f->num_components; i++) f16comps[i] = nir_pack_half_2x16_split(b, nir_channel(b, f, i), zero); return nir_vec(b, f16comps, f->num_components); } static inline nir_ssa_def * nir_format_linear_to_srgb(nir_builder *b, nir_ssa_def *c) { nir_ssa_def *linear = nir_fmul(b, c, nir_imm_float(b, 12.92f)); nir_ssa_def *curved = nir_fsub(b, nir_fmul(b, nir_imm_float(b, 1.055f), nir_fpow(b, c, nir_imm_float(b, 1.0 / 2.4))), nir_imm_float(b, 0.055f)); return nir_fsat(b, nir_bcsel(b, nir_flt(b, c, nir_imm_float(b, 0.0031308f)), linear, curved)); } static inline nir_ssa_def * nir_format_srgb_to_linear(nir_builder *b, nir_ssa_def *c) { nir_ssa_def *linear = nir_fdiv(b, c, nir_imm_float(b, 12.92f)); nir_ssa_def *curved = nir_fpow(b, nir_fdiv(b, nir_fadd(b, c, nir_imm_float(b, 0.055f)), nir_imm_float(b, 1.055f)), nir_imm_float(b, 2.4f)); return nir_fsat(b, nir_bcsel(b, nir_fge(b, nir_imm_float(b, 0.04045f), c), linear, curved)); } /* Clamps a vector of uints so they don't extend beyond the given number of * bits per channel. */ static inline nir_ssa_def * nir_format_clamp_uint(nir_builder *b, nir_ssa_def *f, const unsigned *bits) { if (bits[0] == 32) return f; nir_const_value max[NIR_MAX_VEC_COMPONENTS]; memset(max, 0, sizeof(max)); for (unsigned i = 0; i < f->num_components; i++) { assert(bits[i] < 32); max[i].u32 = (1 << bits[i]) - 1; } return nir_umin(b, f, nir_build_imm(b, f->num_components, 32, max)); } /* Clamps a vector of sints so they don't extend beyond the given number of * bits per channel. */ static inline nir_ssa_def * nir_format_clamp_sint(nir_builder *b, nir_ssa_def *f, const unsigned *bits) { if (bits[0] == 32) return f; nir_const_value min[NIR_MAX_VEC_COMPONENTS], max[NIR_MAX_VEC_COMPONENTS]; memset(min, 0, sizeof(min)); memset(max, 0, sizeof(max)); for (unsigned i = 0; i < f->num_components; i++) { assert(bits[i] < 32); max[i].i32 = (1 << (bits[i] - 1)) - 1; min[i].i32 = -(1 << (bits[i] - 1)); } f = nir_imin(b, f, nir_build_imm(b, f->num_components, 32, max)); f = nir_imax(b, f, nir_build_imm(b, f->num_components, 32, min)); return f; } static inline nir_ssa_def * nir_format_unpack_11f11f10f(nir_builder *b, nir_ssa_def *packed) { nir_ssa_def *chans[3]; chans[0] = nir_mask_shift(b, packed, 0x000007ff, 4); chans[1] = nir_mask_shift(b, packed, 0x003ff800, -7); chans[2] = nir_mask_shift(b, packed, 0xffc00000, -17); for (unsigned i = 0; i < 3; i++) chans[i] = nir_unpack_half_2x16_split_x(b, chans[i]); return nir_vec(b, chans, 3); } static inline nir_ssa_def * nir_format_pack_11f11f10f(nir_builder *b, nir_ssa_def *color) { /* 10 and 11-bit floats are unsigned. Clamp to non-negative */ nir_ssa_def *clamped = nir_fmax(b, color, nir_imm_float(b, 0)); nir_ssa_def *undef = nir_ssa_undef(b, 1, color->bit_size); nir_ssa_def *p1 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 0), nir_channel(b, clamped, 1)); nir_ssa_def *p2 = nir_pack_half_2x16_split(b, nir_channel(b, clamped, 2), undef); /* A 10 or 11-bit float has the same exponent as a 16-bit float but with * fewer mantissa bits and no sign bit. All we have to do is throw away * the sign bit and the bottom mantissa bits and shift it into place. */ nir_ssa_def *packed = nir_imm_int(b, 0); packed = nir_mask_shift_or(b, packed, p1, 0x00007ff0, -4); packed = nir_mask_shift_or(b, packed, p1, 0x7ff00000, -9); packed = nir_mask_shift_or(b, packed, p2, 0x00007fe0, 17); return packed; } static inline nir_ssa_def * nir_format_pack_r9g9b9e5(nir_builder *b, nir_ssa_def *color) { /* See also float3_to_rgb9e5 */ /* First, we need to clamp it to range. */ nir_ssa_def *clamped = nir_fmin(b, color, nir_imm_float(b, MAX_RGB9E5)); /* Get rid of negatives and NaN */ clamped = nir_bcsel(b, nir_ult(b, nir_imm_int(b, 0x7f800000), color), nir_imm_float(b, 0), clamped); /* maxrgb.u = MAX3(rc.u, gc.u, bc.u); */ nir_ssa_def *maxu = nir_umax(b, nir_channel(b, clamped, 0), nir_umax(b, nir_channel(b, clamped, 1), nir_channel(b, clamped, 2))); /* maxrgb.u += maxrgb.u & (1 << (23-9)); */ maxu = nir_iadd(b, maxu, nir_iand(b, maxu, nir_imm_int(b, 1 << 14))); /* exp_shared = MAX2((maxrgb.u >> 23), -RGB9E5_EXP_BIAS - 1 + 127) + * 1 + RGB9E5_EXP_BIAS - 127; */ nir_ssa_def *exp_shared = nir_iadd(b, nir_umax(b, nir_ushr(b, maxu, nir_imm_int(b, 23)), nir_imm_int(b, -RGB9E5_EXP_BIAS - 1 + 127)), nir_imm_int(b, 1 + RGB9E5_EXP_BIAS - 127)); /* revdenom_biasedexp = 127 - (exp_shared - RGB9E5_EXP_BIAS - * RGB9E5_MANTISSA_BITS) + 1; */ nir_ssa_def *revdenom_biasedexp = nir_isub(b, nir_imm_int(b, 127 + RGB9E5_EXP_BIAS + RGB9E5_MANTISSA_BITS + 1), exp_shared); /* revdenom.u = revdenom_biasedexp << 23; */ nir_ssa_def *revdenom = nir_ishl(b, revdenom_biasedexp, nir_imm_int(b, 23)); /* rm = (int) (rc.f * revdenom.f); * gm = (int) (gc.f * revdenom.f); * bm = (int) (bc.f * revdenom.f); */ nir_ssa_def *mantissa = nir_f2i32(b, nir_fmul(b, clamped, revdenom)); /* rm = (rm & 1) + (rm >> 1); * gm = (gm & 1) + (gm >> 1); * bm = (bm & 1) + (bm >> 1); */ mantissa = nir_iadd(b, nir_iand(b, mantissa, nir_imm_int(b, 1)), nir_ushr(b, mantissa, nir_imm_int(b, 1))); nir_ssa_def *packed = nir_channel(b, mantissa, 0); packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 1), ~0, 9); packed = nir_mask_shift_or(b, packed, nir_channel(b, mantissa, 2), ~0, 18); packed = nir_mask_shift_or(b, packed, exp_shared, ~0, 27); return packed; }