/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "vk_format.h" #include "nir/nir_builder.h" #include "sid.h" /* emit 0, 0, 0, 1 */ static nir_shader * build_nir_fs(void) { const struct glsl_type *vec4 = glsl_vec4_type(); nir_variable *f_color; /* vec4, fragment output color */ nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_FRAGMENT, NULL, "meta_resolve_fs"); f_color = nir_variable_create(b.shader, nir_var_shader_out, vec4, "f_color"); f_color->data.location = FRAG_RESULT_DATA0; nir_store_var(&b, f_color, nir_imm_vec4(&b, 0.0, 0.0, 0.0, 1.0), 0xf); return b.shader; } static VkResult create_pass(struct radv_device *device, VkFormat vk_format, VkRenderPass *pass) { VkResult result; VkDevice device_h = radv_device_to_handle(device); const VkAllocationCallbacks *alloc = &device->meta_state.alloc; VkAttachmentDescription attachments[2]; int i; for (i = 0; i < 2; i++) { attachments[i].format = vk_format; attachments[i].samples = 1; attachments[i].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachments[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE; } attachments[0].initialLayout = VK_IMAGE_LAYOUT_GENERAL; attachments[0].finalLayout = VK_IMAGE_LAYOUT_GENERAL; attachments[1].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[1].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; result = radv_CreateRenderPass(device_h, &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 2, .pAttachments = attachments, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 2, .pColorAttachments = (VkAttachmentReference[]) { { .attachment = 0, .layout = VK_IMAGE_LAYOUT_GENERAL, }, { .attachment = 1, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }, }, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = VK_ATTACHMENT_UNUSED, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 2, .pDependencies = (VkSubpassDependency[]) { { .srcSubpass = VK_SUBPASS_EXTERNAL, .dstSubpass = 0, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0 }, { .srcSubpass = 0, .dstSubpass = VK_SUBPASS_EXTERNAL, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0 } }, }, alloc, pass); return result; } static VkResult create_pipeline(struct radv_device *device, VkShaderModule vs_module_h, VkPipeline *pipeline, VkRenderPass pass) { VkResult result; VkDevice device_h = radv_device_to_handle(device); struct radv_shader_module fs_module = { .nir = build_nir_fs(), }; if (!fs_module.nir) { /* XXX: Need more accurate error */ result = VK_ERROR_OUT_OF_HOST_MEMORY; goto cleanup; } VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pSetLayouts = NULL, .pushConstantRangeCount = 0, .pPushConstantRanges = NULL, }; if (!device->meta_state.resolve.p_layout) { result = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, &device->meta_state.resolve.p_layout); if (result != VK_SUCCESS) goto cleanup; } result = radv_graphics_pipeline_create(device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &(VkGraphicsPipelineCreateInfo) { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = (VkPipelineShaderStageCreateInfo[]) { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vs_module_h, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs_module), .pName = "main", }, }, .pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClampEnable = false, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = 1, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 2, .pAttachments = (VkPipelineColorBlendAttachmentState []) { { .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, }, { .colorWriteMask = 0, } }, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 2, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }, }, .layout = device->meta_state.resolve.p_layout, .renderPass = pass, .subpass = 0, }, &(struct radv_graphics_pipeline_create_info) { .use_rectlist = true, .custom_blend_mode = V_028808_CB_RESOLVE, }, &device->meta_state.alloc, pipeline); if (result != VK_SUCCESS) goto cleanup; goto cleanup; cleanup: ralloc_free(fs_module.nir); return result; } void radv_device_finish_meta_resolve_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t j = 0; j < NUM_META_FS_KEYS; j++) { radv_DestroyRenderPass(radv_device_to_handle(device), state->resolve.pass[j], &state->alloc); radv_DestroyPipeline(radv_device_to_handle(device), state->resolve.pipeline[j], &state->alloc); } radv_DestroyPipelineLayout(radv_device_to_handle(device), state->resolve.p_layout, &state->alloc); } VkResult radv_device_init_meta_resolve_state(struct radv_device *device, bool on_demand) { if (on_demand) return VK_SUCCESS; VkResult res = VK_SUCCESS; struct radv_meta_state *state = &device->meta_state; struct radv_shader_module vs_module = { .nir = radv_meta_build_nir_vs_generate_vertices() }; if (!vs_module.nir) { /* XXX: Need more accurate error */ res = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } for (uint32_t i = 0; i < NUM_META_FS_KEYS; ++i) { VkFormat format = radv_fs_key_format_exemplars[i]; unsigned fs_key = radv_format_meta_fs_key(device, format); res = create_pass(device, format, &state->resolve.pass[fs_key]); if (res != VK_SUCCESS) goto fail; VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module); res = create_pipeline(device, vs_module_h, &state->resolve.pipeline[fs_key], state->resolve.pass[fs_key]); if (res != VK_SUCCESS) goto fail; } goto cleanup; fail: radv_device_finish_meta_resolve_state(device); cleanup: ralloc_free(vs_module.nir); return res; } static void emit_resolve(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *src_image, const struct radv_image *dst_image, VkFormat vk_format, const VkOffset2D *dest_offset, const VkExtent2D *resolve_extent) { struct radv_device *device = cmd_buffer->device; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); unsigned fs_key = radv_format_meta_fs_key(device, vk_format); cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, src_image) | radv_dst_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT, src_image) | radv_dst_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, dst_image); radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, device->meta_state.resolve.pipeline[fs_key]); radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkViewport) { .x = dest_offset->x, .y = dest_offset->y, .width = resolve_extent->width, .height = resolve_extent->height, .minDepth = 0.0f, .maxDepth = 1.0f }); radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &(VkRect2D) { .offset = *dest_offset, .extent = *resolve_extent, }); radv_CmdDraw(cmd_buffer_h, 3, 1, 0, 0); cmd_buffer->state.flush_bits |= radv_src_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, dst_image); } enum radv_resolve_method { RESOLVE_HW, RESOLVE_COMPUTE, RESOLVE_FRAGMENT, }; static bool image_hw_resolve_compat(const struct radv_device *device, struct radv_image *src_image, struct radv_image *dst_image) { if (device->physical_device->rad_info.chip_class >= GFX9) { return dst_image->planes[0].surface.u.gfx9.surf.swizzle_mode == src_image->planes[0].surface.u.gfx9.surf.swizzle_mode; } else { return dst_image->planes[0].surface.micro_tile_mode == src_image->planes[0].surface.micro_tile_mode; } } static void radv_pick_resolve_method_images(struct radv_device *device, struct radv_image *src_image, VkFormat src_format, struct radv_image *dest_image, VkImageLayout dest_image_layout, bool dest_render_loop, struct radv_cmd_buffer *cmd_buffer, enum radv_resolve_method *method) { uint32_t queue_mask = radv_image_queue_family_mask(dest_image, cmd_buffer->queue_family_index, cmd_buffer->queue_family_index); if (vk_format_is_color(src_format)) { /* Using the fragment resolve path is currently a hint to * avoid decompressing DCC for partial resolves and * re-initialize it after resolving using compute. * TODO: Add support for layered and int to the fragment path. */ if (radv_layout_dcc_compressed(device, dest_image, dest_image_layout, dest_render_loop, queue_mask)) { *method = RESOLVE_FRAGMENT; } else if (!image_hw_resolve_compat(device, src_image, dest_image)) { /* The micro tile mode only needs to match for the HW * resolve path which is the default path for non-DCC * resolves. */ *method = RESOLVE_COMPUTE; } if (src_format == VK_FORMAT_R16G16_UNORM || src_format == VK_FORMAT_R16G16_SNORM) *method = RESOLVE_COMPUTE; else if (vk_format_is_int(src_format)) *method = RESOLVE_COMPUTE; else if (src_image->info.array_size > 1 || dest_image->info.array_size > 1) *method = RESOLVE_COMPUTE; } else { if (src_image->info.array_size > 1 || dest_image->info.array_size > 1) *method = RESOLVE_COMPUTE; else *method = RESOLVE_FRAGMENT; } } static VkResult build_resolve_pipeline(struct radv_device *device, unsigned fs_key) { VkResult result = VK_SUCCESS; if (device->meta_state.resolve.pipeline[fs_key]) return result; mtx_lock(&device->meta_state.mtx); if (device->meta_state.resolve.pipeline[fs_key]) { mtx_unlock(&device->meta_state.mtx); return result; } struct radv_shader_module vs_module = { .nir = radv_meta_build_nir_vs_generate_vertices() }; result = create_pass(device, radv_fs_key_format_exemplars[fs_key], &device->meta_state.resolve.pass[fs_key]); if (result != VK_SUCCESS) goto fail; VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module); result = create_pipeline(device, vs_module_h, &device->meta_state.resolve.pipeline[fs_key], device->meta_state.resolve.pass[fs_key]); fail: ralloc_free(vs_module.nir); mtx_unlock(&device->meta_state.mtx); return result; } static void radv_meta_resolve_hardware_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkImageLayout src_image_layout, struct radv_image *dst_image, VkImageLayout dst_image_layout, const VkImageResolve2KHR *region) { struct radv_device *device = cmd_buffer->device; struct radv_meta_saved_state saved_state; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE); assert(src_image->info.samples > 1); if (src_image->info.samples <= 1) { /* this causes GPU hangs if we get past here */ fprintf(stderr, "radv: Illegal resolve operation (src not multisampled), will hang GPU."); return; } assert(dst_image->info.samples == 1); if (src_image->info.array_size > 1) radv_finishme("vkCmdResolveImage: multisample array images"); unsigned fs_key = radv_format_meta_fs_key(device, dst_image->vk_format); /* From the Vulkan 1.0 spec: * * - The aspectMask member of srcSubresource and dstSubresource must * only contain VK_IMAGE_ASPECT_COLOR_BIT * * - The layerCount member of srcSubresource and dstSubresource must * match */ assert(region->srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT); assert(region->srcSubresource.layerCount == region->dstSubresource.layerCount); const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); const uint32_t dst_base_layer = radv_meta_get_iview_layer(dst_image, ®ion->dstSubresource, ®ion->dstOffset); /** * From Vulkan 1.0.6 spec: 18.6 Resolving Multisample Images * * extent is the size in texels of the source image to resolve in width, * height and depth. 1D images use only x and width. 2D images use x, y, * width and height. 3D images use x, y, z, width, height and depth. * * srcOffset and dstOffset select the initial x, y, and z offsets in * texels of the sub-regions of the source and destination image data. * extent is the size in texels of the source image to resolve in width, * height and depth. 1D images use only x and width. 2D images use x, y, * width and height. 3D images use x, y, z, width, height and depth. */ const struct VkExtent3D extent = radv_sanitize_image_extent(src_image->type, region->extent); const struct VkOffset3D dstOffset = radv_sanitize_image_offset(dst_image->type, region->dstOffset); if (radv_dcc_enabled(dst_image, region->dstSubresource.mipLevel)) { VkImageSubresourceRange range = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dst_base_layer, .layerCount = region->dstSubresource.layerCount, }; radv_initialize_dcc(cmd_buffer, dst_image, &range, 0xffffffff); } for (uint32_t layer = 0; layer < region->srcSubresource.layerCount; ++layer) { VkResult ret = build_resolve_pipeline(device, fs_key); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; break; } struct radv_image_view src_iview; radv_image_view_init(&src_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(src_image), .viewType = radv_meta_get_view_type(src_image), .format = src_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = src_base_layer + layer, .layerCount = 1, }, }, NULL); struct radv_image_view dst_iview; radv_image_view_init(&dst_iview, cmd_buffer->device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(dst_image), .viewType = radv_meta_get_view_type(dst_image), .format = dst_image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = region->dstSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = dst_base_layer + layer, .layerCount = 1, }, }, NULL); VkFramebuffer fb_h; radv_CreateFramebuffer(radv_device_to_handle(device), &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 2, .pAttachments = (VkImageView[]) { radv_image_view_to_handle(&src_iview), radv_image_view_to_handle(&dst_iview), }, .width = radv_minify(dst_image->info.width, region->dstSubresource.mipLevel), .height = radv_minify(dst_image->info.height, region->dstSubresource.mipLevel), .layers = 1 }, &cmd_buffer->pool->alloc, &fb_h); radv_cmd_buffer_begin_render_pass(cmd_buffer, &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = device->meta_state.resolve.pass[fs_key], .framebuffer = fb_h, .renderArea = { .offset = { dstOffset.x, dstOffset.y, }, .extent = { extent.width, extent.height, } }, .clearValueCount = 0, .pClearValues = NULL, }, NULL); radv_cmd_buffer_set_subpass(cmd_buffer, &cmd_buffer->state.pass->subpasses[0]); emit_resolve(cmd_buffer, src_image, dst_image, dst_iview.vk_format, &(VkOffset2D) { .x = dstOffset.x, .y = dstOffset.y, }, &(VkExtent2D) { .width = extent.width, .height = extent.height, }); radv_cmd_buffer_end_render_pass(cmd_buffer); radv_DestroyFramebuffer(radv_device_to_handle(device), fb_h, &cmd_buffer->pool->alloc); } radv_meta_restore(&saved_state, cmd_buffer); } static void resolve_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkImageLayout src_image_layout, struct radv_image *dst_image, VkImageLayout dst_image_layout, const VkImageResolve2KHR *region, enum radv_resolve_method resolve_method) { switch (resolve_method) { case RESOLVE_HW: radv_meta_resolve_hardware_image(cmd_buffer, src_image, src_image_layout, dst_image, dst_image_layout, region); break; case RESOLVE_FRAGMENT: radv_meta_resolve_fragment_image(cmd_buffer, src_image, src_image_layout, dst_image, dst_image_layout, region); break; case RESOLVE_COMPUTE: radv_meta_resolve_compute_image(cmd_buffer, src_image, src_image->vk_format, src_image_layout, dst_image, dst_image->vk_format, dst_image_layout, region); break; default: assert(!"Invalid resolve method selected"); } } void radv_CmdResolveImage( VkCommandBuffer cmd_buffer_h, VkImage src_image_h, VkImageLayout src_image_layout, VkImage dest_image_h, VkImageLayout dest_image_layout, uint32_t region_count, const VkImageResolve* regions) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, cmd_buffer_h); RADV_FROM_HANDLE(radv_image, src_image, src_image_h); RADV_FROM_HANDLE(radv_image, dest_image, dest_image_h); enum radv_resolve_method resolve_method = RESOLVE_HW; /* we can use the hw resolve only for single full resolves */ if (region_count == 1) { if (regions[0].srcOffset.x || regions[0].srcOffset.y || regions[0].srcOffset.z) resolve_method = RESOLVE_COMPUTE; if (regions[0].dstOffset.x || regions[0].dstOffset.y || regions[0].dstOffset.z) resolve_method = RESOLVE_COMPUTE; if (regions[0].extent.width != src_image->info.width || regions[0].extent.height != src_image->info.height || regions[0].extent.depth != src_image->info.depth) resolve_method = RESOLVE_COMPUTE; } else resolve_method = RESOLVE_COMPUTE; radv_pick_resolve_method_images(cmd_buffer->device, src_image, src_image->vk_format, dest_image, dest_image_layout, false, cmd_buffer, &resolve_method); for (uint32_t r = 0; r < region_count; r++) { VkImageResolve2KHR region = { .sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2_KHR, .srcSubresource = regions[r].srcSubresource, .srcOffset = regions[r].srcOffset, .dstSubresource = regions[r].dstSubresource, .dstOffset = regions[r].dstOffset, .extent = regions[r].extent, }; resolve_image(cmd_buffer, src_image, src_image_layout, dest_image, dest_image_layout, ®ion, resolve_method); } } void radv_CmdResolveImage2KHR( VkCommandBuffer commandBuffer, const VkResolveImageInfo2KHR* pResolveImageInfo) { RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer); RADV_FROM_HANDLE(radv_image, src_image, pResolveImageInfo->srcImage); RADV_FROM_HANDLE(radv_image, dst_image, pResolveImageInfo->dstImage); VkImageLayout src_image_layout = pResolveImageInfo->srcImageLayout; VkImageLayout dst_image_layout = pResolveImageInfo->dstImageLayout; enum radv_resolve_method resolve_method = RESOLVE_HW; /* we can use the hw resolve only for single full resolves */ if (pResolveImageInfo->regionCount == 1) { if (pResolveImageInfo->pRegions[0].srcOffset.x || pResolveImageInfo->pRegions[0].srcOffset.y || pResolveImageInfo->pRegions[0].srcOffset.z) resolve_method = RESOLVE_COMPUTE; if (pResolveImageInfo->pRegions[0].dstOffset.x || pResolveImageInfo->pRegions[0].dstOffset.y || pResolveImageInfo->pRegions[0].dstOffset.z) resolve_method = RESOLVE_COMPUTE; if (pResolveImageInfo->pRegions[0].extent.width != src_image->info.width || pResolveImageInfo->pRegions[0].extent.height != src_image->info.height || pResolveImageInfo->pRegions[0].extent.depth != src_image->info.depth) resolve_method = RESOLVE_COMPUTE; } else resolve_method = RESOLVE_COMPUTE; radv_pick_resolve_method_images(cmd_buffer->device, src_image, src_image->vk_format, dst_image, dst_image_layout, false, cmd_buffer, &resolve_method); for (uint32_t r = 0; r < pResolveImageInfo->regionCount; r++) { resolve_image(cmd_buffer, src_image, src_image_layout, dst_image, dst_image_layout, &pResolveImageInfo->pRegions[r], resolve_method); } } static void radv_cmd_buffer_resolve_subpass_hw(struct radv_cmd_buffer *cmd_buffer) { struct radv_framebuffer *fb = cmd_buffer->state.framebuffer; const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_meta_saved_state saved_state; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE); for (uint32_t i = 0; i < subpass->color_count; ++i) { struct radv_subpass_attachment src_att = subpass->color_attachments[i]; struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i]; if (dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_image *src_img = src_iview->image; struct radv_image_view *dest_iview = cmd_buffer->state.attachments[dest_att.attachment].iview; struct radv_image *dst_img = dest_iview->image; if (radv_dcc_enabled(dst_img, dest_iview->base_mip)) { VkImageSubresourceRange range = { .aspectMask = dest_iview->aspect_mask, .baseMipLevel = dest_iview->base_mip, .levelCount = dest_iview->level_count, .baseArrayLayer = dest_iview->base_layer, .layerCount = dest_iview->layer_count, }; radv_initialize_dcc(cmd_buffer, dst_img, &range, 0xffffffff); cmd_buffer->state.attachments[dest_att.attachment].current_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } struct radv_subpass resolve_subpass = { .color_count = 2, .color_attachments = (struct radv_subpass_attachment[]) { src_att, dest_att }, .depth_stencil_attachment = NULL, }; radv_cmd_buffer_set_subpass(cmd_buffer, &resolve_subpass); VkResult ret = build_resolve_pipeline(cmd_buffer->device, radv_format_meta_fs_key(cmd_buffer->device, dest_iview->vk_format)); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; continue; } emit_resolve(cmd_buffer, src_img, dst_img, dest_iview->vk_format, &(VkOffset2D) { 0, 0 }, &(VkExtent2D) { fb->width, fb->height }); } radv_cmd_buffer_set_subpass(cmd_buffer, subpass); radv_meta_restore(&saved_state, cmd_buffer); } /** * Emit any needed resolves for the current subpass. */ void radv_cmd_buffer_resolve_subpass(struct radv_cmd_buffer *cmd_buffer) { const struct radv_subpass *subpass = cmd_buffer->state.subpass; enum radv_resolve_method resolve_method = RESOLVE_HW; if (!subpass->has_color_resolve && !subpass->ds_resolve_attachment) return; radv_describe_begin_render_pass_resolve(cmd_buffer); if (subpass->ds_resolve_attachment) { struct radv_subpass_attachment src_att = *subpass->depth_stencil_attachment; struct radv_subpass_attachment dst_att = *subpass->ds_resolve_attachment; struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_image_view *dst_iview = cmd_buffer->state.attachments[dst_att.attachment].iview; /* Make sure to not clear the depth/stencil attachment after resolves. */ cmd_buffer->state.attachments[dst_att.attachment].pending_clear_aspects = 0; radv_pick_resolve_method_images(cmd_buffer->device, src_iview->image, src_iview->vk_format, dst_iview->image, dst_att.layout, dst_att.in_render_loop, cmd_buffer, &resolve_method); if ((src_iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) && subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) { if (resolve_method == RESOLVE_FRAGMENT) { radv_depth_stencil_resolve_subpass_fs(cmd_buffer, VK_IMAGE_ASPECT_DEPTH_BIT, subpass->depth_resolve_mode); } else { assert(resolve_method == RESOLVE_COMPUTE); radv_depth_stencil_resolve_subpass_cs(cmd_buffer, VK_IMAGE_ASPECT_DEPTH_BIT, subpass->depth_resolve_mode); } } if ((src_iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) && subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) { if (resolve_method == RESOLVE_FRAGMENT) { radv_depth_stencil_resolve_subpass_fs(cmd_buffer, VK_IMAGE_ASPECT_STENCIL_BIT, subpass->stencil_resolve_mode); } else { assert(resolve_method == RESOLVE_COMPUTE); radv_depth_stencil_resolve_subpass_cs(cmd_buffer, VK_IMAGE_ASPECT_STENCIL_BIT, subpass->stencil_resolve_mode); } } /* From the Vulkan spec 1.2.165: * * "VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT specifies * write access to a color, resolve, or depth/stencil * resolve attachment during a render pass or via * certain subpass load and store operations." * * Yes, it's counterintuitive but it makes sense because ds * resolve operations happen late at the end of the subpass. * * That said, RADV is wrong because it executes the subpass * end barrier *before* any subpass resolves instead of after. * * TODO: Fix this properly by executing subpass end barriers * after subpass resolves. */ cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB; if (radv_image_has_htile(dst_iview->image)) cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_FLUSH_AND_INV_DB_META; } if (subpass->has_color_resolve) { for (uint32_t i = 0; i < subpass->color_count; ++i) { struct radv_subpass_attachment src_att = subpass->color_attachments[i]; struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i]; if (dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; /* Make sure to not clear color attachments after resolves. */ cmd_buffer->state.attachments[dest_att.attachment].pending_clear_aspects = 0; struct radv_image *dst_img = cmd_buffer->state.attachments[dest_att.attachment].iview->image; struct radv_image_view *src_iview= cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_image *src_img = src_iview->image; radv_pick_resolve_method_images(cmd_buffer->device, src_img, src_iview->vk_format, dst_img, dest_att.layout, dest_att.in_render_loop, cmd_buffer, &resolve_method); if (resolve_method == RESOLVE_FRAGMENT) { break; } } switch (resolve_method) { case RESOLVE_HW: radv_cmd_buffer_resolve_subpass_hw(cmd_buffer); break; case RESOLVE_COMPUTE: radv_cmd_buffer_resolve_subpass_cs(cmd_buffer); break; case RESOLVE_FRAGMENT: radv_cmd_buffer_resolve_subpass_fs(cmd_buffer); break; default: unreachable("Invalid resolve method"); } } radv_describe_end_render_pass_resolve(cmd_buffer); } /** * Decompress CMask/FMask before resolving a multisampled source image inside a * subpass. */ void radv_decompress_resolve_subpass_src(struct radv_cmd_buffer *cmd_buffer) { const struct radv_subpass *subpass = cmd_buffer->state.subpass; struct radv_framebuffer *fb = cmd_buffer->state.framebuffer; uint32_t layer_count = fb->layers; if (subpass->view_mask) layer_count = util_last_bit(subpass->view_mask); for (uint32_t i = 0; i < subpass->color_count; ++i) { struct radv_subpass_attachment src_att = subpass->color_attachments[i]; struct radv_subpass_attachment dest_att = subpass->resolve_attachments[i]; if (dest_att.attachment == VK_ATTACHMENT_UNUSED) continue; struct radv_image_view *src_iview = cmd_buffer->state.attachments[src_att.attachment].iview; struct radv_image *src_image = src_iview->image; VkImageResolve2KHR region = {0}; region.sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2_KHR; region.srcSubresource.aspectMask = src_iview->aspect_mask; region.srcSubresource.mipLevel = 0; region.srcSubresource.baseArrayLayer = src_iview->base_layer; region.srcSubresource.layerCount = layer_count; radv_decompress_resolve_src(cmd_buffer, src_image, src_att.layout, ®ion); } if (subpass->ds_resolve_attachment) { struct radv_subpass_attachment src_att = *subpass->depth_stencil_attachment; struct radv_image_view *src_iview = fb->attachments[src_att.attachment]; struct radv_image *src_image = src_iview->image; VkImageResolve2KHR region = {0}; region.sType = VK_STRUCTURE_TYPE_IMAGE_RESOLVE_2_KHR; region.srcSubresource.aspectMask = src_iview->aspect_mask; region.srcSubresource.mipLevel = 0; region.srcSubresource.baseArrayLayer = src_iview->base_layer; region.srcSubresource.layerCount = layer_count; radv_decompress_resolve_src(cmd_buffer, src_image, src_att.layout, ®ion); } } static struct radv_sample_locations_state * radv_get_resolve_sample_locations(struct radv_cmd_buffer *cmd_buffer) { struct radv_cmd_state *state = &cmd_buffer->state; uint32_t subpass_id = radv_get_subpass_id(cmd_buffer); for (uint32_t i = 0; i < state->num_subpass_sample_locs; i++) { if (state->subpass_sample_locs[i].subpass_idx == subpass_id) return &state->subpass_sample_locs[i].sample_location; } return NULL; } /** * Decompress CMask/FMask before resolving a multisampled source image. */ void radv_decompress_resolve_src(struct radv_cmd_buffer *cmd_buffer, struct radv_image *src_image, VkImageLayout src_image_layout, const VkImageResolve2KHR *region) { const uint32_t src_base_layer = radv_meta_get_iview_layer(src_image, ®ion->srcSubresource, ®ion->srcOffset); VkImageMemoryBarrier barrier = {0}; barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; barrier.oldLayout = src_image_layout; barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; barrier.image = radv_image_to_handle(src_image); barrier.subresourceRange = (VkImageSubresourceRange) { .aspectMask = region->srcSubresource.aspectMask, .baseMipLevel = region->srcSubresource.mipLevel, .levelCount = 1, .baseArrayLayer = src_base_layer, .layerCount = region->srcSubresource.layerCount, }; if (src_image->flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT) { /* If the depth/stencil image uses different sample * locations, we need them during HTILE decompressions. */ struct radv_sample_locations_state *sample_locs = radv_get_resolve_sample_locations(cmd_buffer); barrier.pNext = &(VkSampleLocationsInfoEXT) { .sType = VK_STRUCTURE_TYPE_SAMPLE_LOCATIONS_INFO_EXT, .sampleLocationsPerPixel = sample_locs->per_pixel, .sampleLocationGridSize = sample_locs->grid_size, .sampleLocationsCount = sample_locs->count, .pSampleLocations = sample_locs->locations, }; } radv_CmdPipelineBarrier(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, false, 0, NULL, 0, NULL, 1, &barrier); }