/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "radv_meta.h" #include "radv_private.h" #include "sid.h" enum radv_depth_op { DEPTH_DECOMPRESS, DEPTH_RESUMMARIZE, }; enum radv_depth_decompress { DECOMPRESS_DEPTH_STENCIL, DECOMPRESS_DEPTH, DECOMPRESS_STENCIL, }; static VkResult create_pass(struct radv_device *device, uint32_t samples, VkRenderPass *pass) { VkResult result; VkDevice device_h = radv_device_to_handle(device); const VkAllocationCallbacks *alloc = &device->meta_state.alloc; VkAttachmentDescription attachment; attachment.flags = 0; attachment.format = VK_FORMAT_D32_SFLOAT_S8_UINT; attachment.samples = samples; attachment.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE; attachment.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; result = radv_CreateRenderPass(device_h, &(VkRenderPassCreateInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &attachment, .subpassCount = 1, .pSubpasses = &(VkSubpassDescription) { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .inputAttachmentCount = 0, .colorAttachmentCount = 0, .pColorAttachments = NULL, .pResolveAttachments = NULL, .pDepthStencilAttachment = &(VkAttachmentReference) { .attachment = 0, .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }, .dependencyCount = 2, .pDependencies = (VkSubpassDependency[]) { { .srcSubpass = VK_SUBPASS_EXTERNAL, .dstSubpass = 0, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0 }, { .srcSubpass = 0, .dstSubpass = VK_SUBPASS_EXTERNAL, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = 0, .dstAccessMask = 0, .dependencyFlags = 0 } }, }, alloc, pass); return result; } static VkResult create_pipeline_layout(struct radv_device *device, VkPipelineLayout *layout) { VkPipelineLayoutCreateInfo pl_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 0, .pSetLayouts = NULL, .pushConstantRangeCount = 0, .pPushConstantRanges = NULL, }; return radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_create_info, &device->meta_state.alloc, layout); } static VkResult create_pipeline(struct radv_device *device, VkShaderModule vs_module_h, uint32_t samples, VkRenderPass pass, VkPipelineLayout layout, enum radv_depth_op op, enum radv_depth_decompress decompress, VkPipeline *pipeline) { VkResult result; VkDevice device_h = radv_device_to_handle(device); struct radv_shader_module vs_module = {0}; mtx_lock(&device->meta_state.mtx); if (*pipeline) { mtx_unlock(&device->meta_state.mtx); return VK_SUCCESS; } if (!vs_module_h) { vs_module.nir = radv_meta_build_nir_vs_generate_vertices(); vs_module_h = radv_shader_module_to_handle(&vs_module); } struct radv_shader_module fs_module = { .nir = radv_meta_build_nir_fs_noop(), }; if (!fs_module.nir) { /* XXX: Need more accurate error */ result = VK_ERROR_OUT_OF_HOST_MEMORY; goto cleanup; } const VkPipelineSampleLocationsStateCreateInfoEXT sample_locs_create_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT, .sampleLocationsEnable = false, }; const VkGraphicsPipelineCreateInfo pipeline_create_info = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .stageCount = 2, .pStages = (VkPipelineShaderStageCreateInfo[]) { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = vs_module_h, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = radv_shader_module_to_handle(&fs_module), .pName = "main", }, }, .pVertexInputState = &(VkPipelineVertexInputStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, .vertexBindingDescriptionCount = 0, .vertexAttributeDescriptionCount = 0, }, .pInputAssemblyState = &(VkPipelineInputAssemblyStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .primitiveRestartEnable = false, }, .pViewportState = &(VkPipelineViewportStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }, .pRasterizationState = &(VkPipelineRasterizationStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .depthClampEnable = false, .rasterizerDiscardEnable = false, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, }, .pMultisampleState = &(VkPipelineMultisampleStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .pNext = &sample_locs_create_info, .rasterizationSamples = samples, .sampleShadingEnable = false, .pSampleMask = NULL, .alphaToCoverageEnable = false, .alphaToOneEnable = false, }, .pColorBlendState = &(VkPipelineColorBlendStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .logicOpEnable = false, .attachmentCount = 0, .pAttachments = NULL, }, .pDepthStencilState = &(VkPipelineDepthStencilStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO, .depthTestEnable = false, .depthWriteEnable = false, .depthBoundsTestEnable = false, .stencilTestEnable = false, }, .pDynamicState = &(VkPipelineDynamicStateCreateInfo) { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .dynamicStateCount = 3, .pDynamicStates = (VkDynamicState[]) { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT, }, }, .layout = layout, .renderPass = pass, .subpass = 0, }; struct radv_graphics_pipeline_create_info extra = { .use_rectlist = true, .db_flush_depth_inplace = decompress == DECOMPRESS_DEPTH_STENCIL || decompress == DECOMPRESS_DEPTH, .db_flush_stencil_inplace = decompress == DECOMPRESS_DEPTH_STENCIL || decompress == DECOMPRESS_STENCIL, .db_resummarize = op == DEPTH_RESUMMARIZE, }; result = radv_graphics_pipeline_create(device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache), &pipeline_create_info, &extra, &device->meta_state.alloc, pipeline); cleanup: ralloc_free(fs_module.nir); if (vs_module.nir) ralloc_free(vs_module.nir); mtx_unlock(&device->meta_state.mtx); return result; } void radv_device_finish_meta_depth_decomp_state(struct radv_device *device) { struct radv_meta_state *state = &device->meta_state; for (uint32_t i = 0; i < ARRAY_SIZE(state->depth_decomp); ++i) { radv_DestroyRenderPass(radv_device_to_handle(device), state->depth_decomp[i].pass, &state->alloc); radv_DestroyPipelineLayout(radv_device_to_handle(device), state->depth_decomp[i].p_layout, &state->alloc); for (uint32_t j = 0; j < NUM_DEPTH_DECOMPRESS_PIPELINES; j++) { radv_DestroyPipeline(radv_device_to_handle(device), state->depth_decomp[i].decompress_pipeline[j], &state->alloc); } radv_DestroyPipeline(radv_device_to_handle(device), state->depth_decomp[i].resummarize_pipeline, &state->alloc); } } VkResult radv_device_init_meta_depth_decomp_state(struct radv_device *device, bool on_demand) { struct radv_meta_state *state = &device->meta_state; VkResult res = VK_SUCCESS; struct radv_shader_module vs_module = { .nir = radv_meta_build_nir_vs_generate_vertices() }; if (!vs_module.nir) { /* XXX: Need more accurate error */ res = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail; } VkShaderModule vs_module_h = radv_shader_module_to_handle(&vs_module); for (uint32_t i = 0; i < ARRAY_SIZE(state->depth_decomp); ++i) { uint32_t samples = 1 << i; res = create_pass(device, samples, &state->depth_decomp[i].pass); if (res != VK_SUCCESS) goto fail; res = create_pipeline_layout(device, &state->depth_decomp[i].p_layout); if (res != VK_SUCCESS) goto fail; if (on_demand) continue; for (uint32_t j = 0; j < NUM_DEPTH_DECOMPRESS_PIPELINES; j++) { res = create_pipeline(device, vs_module_h, samples, state->depth_decomp[i].pass, state->depth_decomp[i].p_layout, DEPTH_DECOMPRESS, j, &state->depth_decomp[i].decompress_pipeline[j]); if (res != VK_SUCCESS) goto fail; } res = create_pipeline(device, vs_module_h, samples, state->depth_decomp[i].pass, state->depth_decomp[i].p_layout, DEPTH_RESUMMARIZE, 0, /* unused */ &state->depth_decomp[i].resummarize_pipeline); if (res != VK_SUCCESS) goto fail; } goto cleanup; fail: radv_device_finish_meta_depth_decomp_state(device); cleanup: ralloc_free(vs_module.nir); return res; } static VkPipeline * radv_get_depth_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, enum radv_depth_op op) { struct radv_meta_state *state = &cmd_buffer->device->meta_state; uint32_t samples = image->info.samples; uint32_t samples_log2 = ffs(samples) - 1; enum radv_depth_decompress decompress; VkPipeline *pipeline; if (subresourceRange->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) { decompress = DECOMPRESS_DEPTH; } else if (subresourceRange->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) { decompress = DECOMPRESS_STENCIL; } else { decompress = DECOMPRESS_DEPTH_STENCIL; } if (!state->depth_decomp[samples_log2].decompress_pipeline[decompress]) { VkResult ret; for (uint32_t i = 0; i < NUM_DEPTH_DECOMPRESS_PIPELINES; i++) { ret = create_pipeline(cmd_buffer->device, VK_NULL_HANDLE, samples, state->depth_decomp[samples_log2].pass, state->depth_decomp[samples_log2].p_layout, DEPTH_DECOMPRESS, i, &state->depth_decomp[samples_log2].decompress_pipeline[i]); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return NULL; } } ret = create_pipeline(cmd_buffer->device, VK_NULL_HANDLE, samples, state->depth_decomp[samples_log2].pass, state->depth_decomp[samples_log2].p_layout, DEPTH_RESUMMARIZE, 0, /* unused */ &state->depth_decomp[samples_log2].resummarize_pipeline); if (ret != VK_SUCCESS) { cmd_buffer->record_result = ret; return NULL; } } switch (op) { case DEPTH_DECOMPRESS: pipeline = &state->depth_decomp[samples_log2].decompress_pipeline[decompress]; break; case DEPTH_RESUMMARIZE: pipeline = &state->depth_decomp[samples_log2].resummarize_pipeline; break; default: unreachable("unknown operation"); } return pipeline; } static void radv_process_depth_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *range, int level, int layer) { struct radv_device *device = cmd_buffer->device; struct radv_meta_state *state = &device->meta_state; uint32_t samples_log2 = ffs(image->info.samples) - 1; struct radv_image_view iview; uint32_t width, height; width = radv_minify(image->info.width, range->baseMipLevel + level); height = radv_minify(image->info.height, range->baseMipLevel + level); radv_image_view_init(&iview, device, &(VkImageViewCreateInfo) { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = radv_image_to_handle(image), .viewType = radv_meta_get_view_type(image), .format = image->vk_format, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, .baseMipLevel = range->baseMipLevel + level, .levelCount = 1, .baseArrayLayer = range->baseArrayLayer + layer, .layerCount = 1, }, }, NULL); VkFramebuffer fb_h; radv_CreateFramebuffer(radv_device_to_handle(device), &(VkFramebufferCreateInfo) { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1, .pAttachments = (VkImageView[]) { radv_image_view_to_handle(&iview) }, .width = width, .height = height, .layers = 1 }, &cmd_buffer->pool->alloc, &fb_h); radv_CmdBeginRenderPass(radv_cmd_buffer_to_handle(cmd_buffer), &(VkRenderPassBeginInfo) { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderPass = state->depth_decomp[samples_log2].pass, .framebuffer = fb_h, .renderArea = { .offset = { 0, 0, }, .extent = { width, height, } }, .clearValueCount = 0, .pClearValues = NULL, }, VK_SUBPASS_CONTENTS_INLINE); radv_CmdDraw(radv_cmd_buffer_to_handle(cmd_buffer), 3, 1, 0, 0); radv_CmdEndRenderPass(radv_cmd_buffer_to_handle(cmd_buffer)); radv_DestroyFramebuffer(radv_device_to_handle(device), fb_h, &cmd_buffer->pool->alloc); } static void radv_process_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, struct radv_sample_locations_state *sample_locs, enum radv_depth_op op) { struct radv_meta_saved_state saved_state; VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer); VkPipeline *pipeline; if (!radv_image_has_htile(image)) return; radv_meta_save(&saved_state, cmd_buffer, RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_SAMPLE_LOCATIONS | RADV_META_SAVE_PASS); pipeline = radv_get_depth_pipeline(cmd_buffer, image, subresourceRange, op); radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline); if (sample_locs) { assert(image->flags & VK_IMAGE_CREATE_SAMPLE_LOCATIONS_COMPATIBLE_DEPTH_BIT_EXT); /* Set the sample locations specified during explicit or * automatic layout transitions, otherwise the depth decompress * pass uses the default HW locations. */ radv_CmdSetSampleLocationsEXT(cmd_buffer_h, &(VkSampleLocationsInfoEXT) { .sampleLocationsPerPixel = sample_locs->per_pixel, .sampleLocationGridSize = sample_locs->grid_size, .sampleLocationsCount = sample_locs->count, .pSampleLocations = sample_locs->locations, }); } for (uint32_t l = 0; l < radv_get_levelCount(image, subresourceRange); ++l) { uint32_t width = radv_minify(image->info.width, subresourceRange->baseMipLevel + l); uint32_t height = radv_minify(image->info.height, subresourceRange->baseMipLevel + l); radv_CmdSetViewport(cmd_buffer_h, 0, 1, &(VkViewport) { .x = 0, .y = 0, .width = width, .height = height, .minDepth = 0.0f, .maxDepth = 1.0f }); radv_CmdSetScissor(cmd_buffer_h, 0, 1, &(VkRect2D) { .offset = { 0, 0 }, .extent = { width, height }, }); for (uint32_t s = 0; s < radv_get_layerCount(image, subresourceRange); s++) { radv_process_depth_image_layer(cmd_buffer, image, subresourceRange, l, s); } } radv_meta_restore(&saved_state, cmd_buffer); } void radv_decompress_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, struct radv_sample_locations_state *sample_locs) { assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL); radv_process_depth_image_inplace(cmd_buffer, image, subresourceRange, sample_locs, DEPTH_DECOMPRESS); } void radv_resummarize_depth_image_inplace(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, const VkImageSubresourceRange *subresourceRange, struct radv_sample_locations_state *sample_locs) { assert(cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL); radv_process_depth_image_inplace(cmd_buffer, image, subresourceRange, sample_locs, DEPTH_RESUMMARIZE); }