/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include "util/mesa-sha1.h" #include "radv_private.h" #include "sid.h" #include "vk_format.h" #include "vk_util.h" static bool has_equal_immutable_samplers(const VkSampler *samplers, uint32_t count) { if (!samplers) return false; for(uint32_t i = 1; i < count; ++i) { if (memcmp(radv_sampler_from_handle(samplers[0])->state, radv_sampler_from_handle(samplers[i])->state, 16)) { return false; } } return true; } static int binding_compare(const void* av, const void *bv) { const VkDescriptorSetLayoutBinding *a = (const VkDescriptorSetLayoutBinding*)av; const VkDescriptorSetLayoutBinding *b = (const VkDescriptorSetLayoutBinding*)bv; return (a->binding < b->binding) ? -1 : (a->binding > b->binding) ? 1 : 0; } static VkDescriptorSetLayoutBinding * create_sorted_bindings(const VkDescriptorSetLayoutBinding *bindings, unsigned count) { VkDescriptorSetLayoutBinding *sorted_bindings = malloc(MAX2(count * sizeof(VkDescriptorSetLayoutBinding), 1)); if (!sorted_bindings) return NULL; if (count) { memcpy(sorted_bindings, bindings, count * sizeof(VkDescriptorSetLayoutBinding)); qsort(sorted_bindings, count, sizeof(VkDescriptorSetLayoutBinding), binding_compare); } return sorted_bindings; } static bool radv_mutable_descriptor_type_size_alignment(const VkMutableDescriptorTypeListVALVE *list, uint64_t *out_size, uint64_t *out_align) { uint32_t max_size = 0; uint32_t max_align = 0; for (uint32_t i = 0; i < list->descriptorTypeCount; i++) { uint32_t size = 0; uint32_t align = 0; switch (list->pDescriptorTypes[i]) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: size = 16; align = 16; break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: size = 64; align = 32; break; default: return false; } max_size = MAX2(max_size, size); max_align = MAX2(max_align, align); } *out_size = max_size; *out_align = max_align; return true; } VkResult radv_CreateDescriptorSetLayout( VkDevice _device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorSetLayout* pSetLayout) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_descriptor_set_layout *set_layout; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO); const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags = vk_find_struct_const(pCreateInfo->pNext, DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO); const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info = vk_find_struct_const(pCreateInfo->pNext, MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE); uint32_t num_bindings = 0; uint32_t immutable_sampler_count = 0; uint32_t ycbcr_sampler_count = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { num_bindings = MAX2(num_bindings, pCreateInfo->pBindings[j].binding + 1); if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) && pCreateInfo->pBindings[j].pImmutableSamplers) { immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount; bool has_ycbcr_sampler = false; for (unsigned i = 0; i < pCreateInfo->pBindings[j].descriptorCount; ++i) { if (radv_sampler_from_handle(pCreateInfo->pBindings[j].pImmutableSamplers[i])->ycbcr_sampler) has_ycbcr_sampler = true; } if (has_ycbcr_sampler) ycbcr_sampler_count += pCreateInfo->pBindings[j].descriptorCount; } } uint32_t samplers_offset = offsetof(struct radv_descriptor_set_layout, binding[num_bindings]); size_t size = samplers_offset + immutable_sampler_count * 4 * sizeof(uint32_t); if (ycbcr_sampler_count > 0) { /* Store block of offsets first, followed by the conversion descriptors (padded to the struct alignment) */ size += num_bindings * sizeof(uint32_t); size = ALIGN(size, alignof(struct radv_sampler_ycbcr_conversion)); size += ycbcr_sampler_count * sizeof(struct radv_sampler_ycbcr_conversion); } set_layout = vk_zalloc2(&device->vk.alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set_layout) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &set_layout->base, VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT); set_layout->flags = pCreateInfo->flags; set_layout->layout_size = size; /* We just allocate all the samplers at the end of the struct */ uint32_t *samplers = (uint32_t*)&set_layout->binding[num_bindings]; struct radv_sampler_ycbcr_conversion *ycbcr_samplers = NULL; uint32_t *ycbcr_sampler_offsets = NULL; if (ycbcr_sampler_count > 0) { ycbcr_sampler_offsets = samplers + 4 * immutable_sampler_count; set_layout->ycbcr_sampler_offsets_offset = (char*)ycbcr_sampler_offsets - (char*)set_layout; uintptr_t first_ycbcr_sampler_offset = (uintptr_t)ycbcr_sampler_offsets + sizeof(uint32_t) * num_bindings; first_ycbcr_sampler_offset = ALIGN(first_ycbcr_sampler_offset, alignof(struct radv_sampler_ycbcr_conversion)); ycbcr_samplers = (struct radv_sampler_ycbcr_conversion *)first_ycbcr_sampler_offset; } else set_layout->ycbcr_sampler_offsets_offset = 0; VkDescriptorSetLayoutBinding *bindings = create_sorted_bindings(pCreateInfo->pBindings, pCreateInfo->bindingCount); if (!bindings) { vk_object_base_finish(&set_layout->base); vk_free2(&device->vk.alloc, pAllocator, set_layout); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } set_layout->binding_count = num_bindings; set_layout->shader_stages = 0; set_layout->dynamic_shader_stages = 0; set_layout->has_immutable_samplers = false; set_layout->size = 0; uint32_t buffer_count = 0; uint32_t dynamic_offset_count = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { const VkDescriptorSetLayoutBinding *binding = bindings + j; uint32_t b = binding->binding; uint32_t alignment = 0; unsigned binding_buffer_count = 0; uint32_t descriptor_count = binding->descriptorCount; bool has_ycbcr_sampler = false; /* main image + fmask */ uint32_t max_sampled_image_descriptors = 2; if (binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER && binding->pImmutableSamplers) { for (unsigned i = 0; i < binding->descriptorCount; ++i) { struct radv_sampler_ycbcr_conversion *conversion = radv_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler; if (conversion) { has_ycbcr_sampler = true; max_sampled_image_descriptors = MAX2(max_sampled_image_descriptors, vk_format_get_plane_count(conversion->format)); } } } switch (binding->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: assert(!(pCreateInfo->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); set_layout->binding[b].dynamic_offset_count = 1; set_layout->dynamic_shader_stages |= binding->stageFlags; set_layout->binding[b].size = 0; binding_buffer_count = 1; alignment = 1; break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: set_layout->binding[b].size = 16; binding_buffer_count = 1; alignment = 16; break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: /* main descriptor + fmask descriptor */ set_layout->binding[b].size = 64; binding_buffer_count = 1; alignment = 32; break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: /* main descriptor + fmask descriptor + sampler */ set_layout->binding[b].size = 96; binding_buffer_count = 1; alignment = 32; break; case VK_DESCRIPTOR_TYPE_SAMPLER: set_layout->binding[b].size = 16; alignment = 16; break; case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE: { uint64_t mutable_size = 0, mutable_align = 0; radv_mutable_descriptor_type_size_alignment(&mutable_info->pMutableDescriptorTypeLists[j], &mutable_size, &mutable_align); assert(mutable_size && mutable_align); set_layout->binding[b].size = mutable_size; alignment = mutable_align; break; } case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: alignment = 16; set_layout->binding[b].size = descriptor_count; descriptor_count = 1; break; default: break; } set_layout->size = align(set_layout->size, alignment); set_layout->binding[b].type = binding->descriptorType; set_layout->binding[b].array_size = descriptor_count; set_layout->binding[b].offset = set_layout->size; set_layout->binding[b].buffer_offset = buffer_count; set_layout->binding[b].dynamic_offset_offset = dynamic_offset_count; if (variable_flags && binding->binding < variable_flags->bindingCount && (variable_flags->pBindingFlags[binding->binding] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) { assert(!binding->pImmutableSamplers); /* Terribly ill defined how many samplers are valid */ assert(binding->binding == num_bindings - 1); set_layout->has_variable_descriptors = true; } if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) && binding->pImmutableSamplers) { set_layout->binding[b].immutable_samplers_offset = samplers_offset; set_layout->binding[b].immutable_samplers_equal = has_equal_immutable_samplers(binding->pImmutableSamplers, binding->descriptorCount); set_layout->has_immutable_samplers = true; for (uint32_t i = 0; i < binding->descriptorCount; i++) memcpy(samplers + 4 * i, &radv_sampler_from_handle(binding->pImmutableSamplers[i])->state, 16); /* Don't reserve space for the samplers if they're not accessed. */ if (set_layout->binding[b].immutable_samplers_equal) { if (binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER && max_sampled_image_descriptors <= 2) set_layout->binding[b].size -= 32; else if (binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) set_layout->binding[b].size -= 16; } samplers += 4 * binding->descriptorCount; samplers_offset += 4 * sizeof(uint32_t) * binding->descriptorCount; if (has_ycbcr_sampler) { ycbcr_sampler_offsets[b] = (const char*)ycbcr_samplers - (const char*)set_layout; for (uint32_t i = 0; i < binding->descriptorCount; i++) { if (radv_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler) ycbcr_samplers[i] = *radv_sampler_from_handle(binding->pImmutableSamplers[i])->ycbcr_sampler; else ycbcr_samplers[i].format = VK_FORMAT_UNDEFINED; } ycbcr_samplers += binding->descriptorCount; } } set_layout->size += descriptor_count * set_layout->binding[b].size; buffer_count += descriptor_count * binding_buffer_count; dynamic_offset_count += descriptor_count * set_layout->binding[b].dynamic_offset_count; set_layout->shader_stages |= binding->stageFlags; } free(bindings); set_layout->buffer_count = buffer_count; set_layout->dynamic_offset_count = dynamic_offset_count; *pSetLayout = radv_descriptor_set_layout_to_handle(set_layout); return VK_SUCCESS; } void radv_DestroyDescriptorSetLayout( VkDevice _device, VkDescriptorSetLayout _set_layout, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout, _set_layout); if (!set_layout) return; vk_object_base_finish(&set_layout->base); vk_free2(&device->vk.alloc, pAllocator, set_layout); } void radv_GetDescriptorSetLayoutSupport(VkDevice device, const VkDescriptorSetLayoutCreateInfo* pCreateInfo, VkDescriptorSetLayoutSupport* pSupport) { VkDescriptorSetLayoutBinding *bindings = create_sorted_bindings(pCreateInfo->pBindings, pCreateInfo->bindingCount); if (!bindings) { pSupport->supported = false; return; } const VkDescriptorSetLayoutBindingFlagsCreateInfo *variable_flags = vk_find_struct_const(pCreateInfo->pNext, DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO); VkDescriptorSetVariableDescriptorCountLayoutSupport *variable_count = vk_find_struct((void*)pCreateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT); const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info = vk_find_struct_const(pCreateInfo->pNext, MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE); if (variable_count) { variable_count->maxVariableDescriptorCount = 0; } bool supported = true; uint64_t size = 0; for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { const VkDescriptorSetLayoutBinding *binding = bindings + i; uint64_t descriptor_size = 0; uint64_t descriptor_alignment = 1; uint32_t descriptor_count = binding->descriptorCount; switch (binding->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: descriptor_size = 16; descriptor_alignment = 16; break; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: descriptor_size = 64; descriptor_alignment = 32; break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: if (!has_equal_immutable_samplers(binding->pImmutableSamplers, descriptor_count)) { descriptor_size = 64; } else { descriptor_size = 96; } descriptor_alignment = 32; break; case VK_DESCRIPTOR_TYPE_SAMPLER: if (!has_equal_immutable_samplers(binding->pImmutableSamplers, descriptor_count)) { descriptor_size = 16; descriptor_alignment = 16; } break; case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: descriptor_alignment = 16; descriptor_size = descriptor_count; descriptor_count = 1; break; case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE: if (!radv_mutable_descriptor_type_size_alignment(&mutable_info->pMutableDescriptorTypeLists[i], &descriptor_size, &descriptor_alignment)) { supported = false; } break; default: break; } if (size && !align_u64(size, descriptor_alignment)) { supported = false; } size = align_u64(size, descriptor_alignment); uint64_t max_count = INT32_MAX; if (binding->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) max_count = INT32_MAX - size; else if (descriptor_size) max_count = (INT32_MAX - size) / descriptor_size; if (max_count < descriptor_count) { supported = false; } if (variable_flags && binding->binding bindingCount && variable_count && (variable_flags->pBindingFlags[binding->binding] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) { variable_count->maxVariableDescriptorCount = MIN2(UINT32_MAX, max_count); } size += descriptor_count * descriptor_size; } free(bindings); pSupport->supported = supported; } /* * Pipeline layouts. These have nothing to do with the pipeline. They are * just multiple descriptor set layouts pasted together. */ VkResult radv_CreatePipelineLayout( VkDevice _device, const VkPipelineLayoutCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkPipelineLayout* pPipelineLayout) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_pipeline_layout *layout; struct mesa_sha1 ctx; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO); layout = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*layout), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (layout == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &layout->base, VK_OBJECT_TYPE_PIPELINE_LAYOUT); layout->num_sets = pCreateInfo->setLayoutCount; unsigned dynamic_offset_count = 0; uint16_t dynamic_shader_stages = 0; _mesa_sha1_init(&ctx); for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) { RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout, pCreateInfo->pSetLayouts[set]); layout->set[set].layout = set_layout; layout->set[set].dynamic_offset_start = dynamic_offset_count; layout->set[set].dynamic_offset_count = 0; layout->set[set].dynamic_offset_stages = 0; for (uint32_t b = 0; b < set_layout->binding_count; b++) { layout->set[set].dynamic_offset_count += set_layout->binding[b].array_size * set_layout->binding[b].dynamic_offset_count; layout->set[set].dynamic_offset_stages |= set_layout->dynamic_shader_stages; } dynamic_offset_count += layout->set[set].dynamic_offset_count; dynamic_shader_stages |= layout->set[set].dynamic_offset_stages; /* Hash the entire set layout except for the vk_object_base. The * rest of the set layout is carefully constructed to not have * pointers so a full hash instead of a per-field hash should be ok. */ _mesa_sha1_update(&ctx, (const char*)set_layout + sizeof(struct vk_object_base), set_layout->layout_size - sizeof(struct vk_object_base)); } layout->dynamic_offset_count = dynamic_offset_count; layout->dynamic_shader_stages = dynamic_shader_stages; layout->push_constant_size = 0; for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) { const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i; layout->push_constant_size = MAX2(layout->push_constant_size, range->offset + range->size); } layout->push_constant_size = align(layout->push_constant_size, 16); _mesa_sha1_update(&ctx, &layout->push_constant_size, sizeof(layout->push_constant_size)); _mesa_sha1_final(&ctx, layout->sha1); *pPipelineLayout = radv_pipeline_layout_to_handle(layout); return VK_SUCCESS; } void radv_DestroyPipelineLayout( VkDevice _device, VkPipelineLayout _pipelineLayout, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, _pipelineLayout); if (!pipeline_layout) return; vk_object_base_finish(&pipeline_layout->base); vk_free2(&device->vk.alloc, pAllocator, pipeline_layout); } static VkResult radv_descriptor_set_create(struct radv_device *device, struct radv_descriptor_pool *pool, const struct radv_descriptor_set_layout *layout, const uint32_t *variable_count, struct radv_descriptor_set **out_set) { struct radv_descriptor_set *set; uint32_t buffer_count = layout->buffer_count; if (variable_count) { unsigned stride = 1; if (layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_SAMPLER || layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) stride = 0; buffer_count = layout->binding[layout->binding_count - 1].buffer_offset + *variable_count * stride; } unsigned range_offset = sizeof(struct radv_descriptor_set_header) + sizeof(struct radeon_winsys_bo *) * buffer_count; unsigned mem_size = range_offset + sizeof(struct radv_descriptor_range) * layout->dynamic_offset_count; if (pool->host_memory_base) { if (pool->host_memory_end - pool->host_memory_ptr < mem_size) return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); set = (struct radv_descriptor_set*)pool->host_memory_ptr; pool->host_memory_ptr += mem_size; memset(set->descriptors, 0, sizeof(struct radeon_winsys_bo *) * buffer_count); } else { set = vk_alloc2(&device->vk.alloc, NULL, mem_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } memset(set, 0, mem_size); vk_object_base_init(&device->vk, &set->header.base, VK_OBJECT_TYPE_DESCRIPTOR_SET); if (layout->dynamic_offset_count) { set->header.dynamic_descriptors = (struct radv_descriptor_range*)((uint8_t*)set + range_offset); } set->header.layout = layout; set->header.buffer_count = buffer_count; uint32_t layout_size = layout->size; if (variable_count) { assert(layout->has_variable_descriptors); uint32_t stride = layout->binding[layout->binding_count - 1].size; if (layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) stride = 1; layout_size = layout->binding[layout->binding_count - 1].offset + *variable_count * stride; } layout_size = align_u32(layout_size, 32); if (layout_size) { set->header.size = layout_size; if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) { vk_free2(&device->vk.alloc, NULL, set); return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); } /* try to allocate linearly first, so that we don't spend * time looking for gaps if the app only allocates & * resets via the pool. */ if (pool->current_offset + layout_size <= pool->size) { set->header.bo = pool->bo; set->header.mapped_ptr = (uint32_t*)(pool->mapped_ptr + pool->current_offset); set->header.va = pool->bo ? (radv_buffer_get_va(set->header.bo) + pool->current_offset) : 0; if (!pool->host_memory_base) { pool->entries[pool->entry_count].offset = pool->current_offset; pool->entries[pool->entry_count].size = layout_size; pool->entries[pool->entry_count].set = set; pool->entry_count++; } pool->current_offset += layout_size; } else if (!pool->host_memory_base) { uint64_t offset = 0; int index; for (index = 0; index < pool->entry_count; ++index) { if (pool->entries[index].offset - offset >= layout_size) break; offset = pool->entries[index].offset + pool->entries[index].size; } if (pool->size - offset < layout_size) { vk_free2(&device->vk.alloc, NULL, set); return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); } set->header.bo = pool->bo; set->header.mapped_ptr = (uint32_t*)(pool->mapped_ptr + offset); set->header.va = pool->bo ? (radv_buffer_get_va(set->header.bo) + offset) : 0; memmove(&pool->entries[index + 1], &pool->entries[index], sizeof(pool->entries[0]) * (pool->entry_count - index)); pool->entries[index].offset = offset; pool->entries[index].size = layout_size; pool->entries[index].set = set; pool->entry_count++; } else return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); } if (layout->has_immutable_samplers) { for (unsigned i = 0; i < layout->binding_count; ++i) { if (!layout->binding[i].immutable_samplers_offset || layout->binding[i].immutable_samplers_equal) continue; unsigned offset = layout->binding[i].offset / 4; if (layout->binding[i].type == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) offset += radv_combined_image_descriptor_sampler_offset(layout->binding + i) / 4; const uint32_t *samplers = (const uint32_t*)((const char*)layout + layout->binding[i].immutable_samplers_offset); for (unsigned j = 0; j < layout->binding[i].array_size; ++j) { memcpy(set->header.mapped_ptr + offset, samplers + 4 * j, 16); offset += layout->binding[i].size / 4; } } } *out_set = set; return VK_SUCCESS; } static void radv_descriptor_set_destroy(struct radv_device *device, struct radv_descriptor_pool *pool, struct radv_descriptor_set *set, bool free_bo) { assert(!pool->host_memory_base); if (free_bo && set->header.size && !pool->host_memory_base) { uint32_t offset = (uint8_t*)set->header.mapped_ptr - pool->mapped_ptr; for (int i = 0; i < pool->entry_count; ++i) { if (pool->entries[i].offset == offset) { memmove(&pool->entries[i], &pool->entries[i+1], sizeof(pool->entries[i]) * (pool->entry_count - i - 1)); --pool->entry_count; break; } } } vk_object_base_finish(&set->header.base); vk_free2(&device->vk.alloc, NULL, set); } static void radv_destroy_descriptor_pool(struct radv_device *device, const VkAllocationCallbacks *pAllocator, struct radv_descriptor_pool *pool) { if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { radv_descriptor_set_destroy(device, pool, pool->entries[i].set, false); } } if (pool->bo) device->ws->buffer_destroy(device->ws, pool->bo); if (pool->host_bo) vk_free2(&device->vk.alloc, pAllocator, pool->host_bo); vk_object_base_finish(&pool->base); vk_free2(&device->vk.alloc, pAllocator, pool); } VkResult radv_CreateDescriptorPool( VkDevice _device, const VkDescriptorPoolCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkDescriptorPool* pDescriptorPool) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_descriptor_pool *pool; uint64_t size = sizeof(struct radv_descriptor_pool); uint64_t bo_size = 0, bo_count = 0, range_count = 0; const VkMutableDescriptorTypeCreateInfoVALVE *mutable_info = vk_find_struct_const(pCreateInfo->pNext, MUTABLE_DESCRIPTOR_TYPE_CREATE_INFO_VALVE); vk_foreach_struct(ext, pCreateInfo->pNext) { switch (ext->sType) { case VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_INLINE_UNIFORM_BLOCK_CREATE_INFO_EXT: { const struct VkDescriptorPoolInlineUniformBlockCreateInfoEXT *info = (const struct VkDescriptorPoolInlineUniformBlockCreateInfoEXT*)ext; /* the sizes are 4 aligned, and we need to align to at * most 32, which needs at most 28 bytes extra per * binding. */ bo_size += 28llu * info->maxInlineUniformBlockBindings; break; } default: break; } } for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) { if (pCreateInfo->pPoolSizes[i].type != VK_DESCRIPTOR_TYPE_SAMPLER) bo_count += pCreateInfo->pPoolSizes[i].descriptorCount; switch(pCreateInfo->pPoolSizes[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: range_count += pCreateInfo->pPoolSizes[i].descriptorCount; break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_SAMPLER: /* 32 as we may need to align for images */ bo_size += 32 * pCreateInfo->pPoolSizes[i].descriptorCount; break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: bo_size += 64 * pCreateInfo->pPoolSizes[i].descriptorCount; break; case VK_DESCRIPTOR_TYPE_MUTABLE_VALVE: /* Per spec, if a mutable descriptor type list is provided for the pool entry, we * allocate enough memory to hold any subset of that list. * If there is no mutable descriptor type list available, * we must allocate enough for any supported mutable descriptor type, i.e. 64 bytes. */ if (mutable_info && i < mutable_info->mutableDescriptorTypeListCount) { uint64_t mutable_size, mutable_alignment; if (radv_mutable_descriptor_type_size_alignment(&mutable_info->pMutableDescriptorTypeLists[i], &mutable_size, &mutable_alignment)) { bo_size += mutable_size * pCreateInfo->pPoolSizes[i].descriptorCount; } } else { bo_size += 64 * pCreateInfo->pPoolSizes[i].descriptorCount; } break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: bo_size += 96 * pCreateInfo->pPoolSizes[i].descriptorCount; break; case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: bo_size += pCreateInfo->pPoolSizes[i].descriptorCount; break; default: break; } } if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { uint64_t host_size = pCreateInfo->maxSets * sizeof(struct radv_descriptor_set); host_size += sizeof(struct radeon_winsys_bo*) * bo_count; host_size += sizeof(struct radv_descriptor_range) * range_count; size += host_size; } else { size += sizeof(struct radv_descriptor_pool_entry) * pCreateInfo->maxSets; } pool = vk_alloc2(&device->vk.alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!pool) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); memset(pool, 0, sizeof(*pool)); vk_object_base_init(&device->vk, &pool->base, VK_OBJECT_TYPE_DESCRIPTOR_POOL); if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { pool->host_memory_base = (uint8_t*)pool + sizeof(struct radv_descriptor_pool); pool->host_memory_ptr = pool->host_memory_base; pool->host_memory_end = (uint8_t*)pool + size; } if (bo_size) { if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_HOST_ONLY_BIT_VALVE)) { pool->bo = device->ws->buffer_create(device->ws, bo_size, 32, RADEON_DOMAIN_VRAM, RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY | RADEON_FLAG_32BIT, RADV_BO_PRIORITY_DESCRIPTOR); if (!pool->bo) { radv_destroy_descriptor_pool(device, pAllocator, pool); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } pool->mapped_ptr = (uint8_t*)device->ws->buffer_map(pool->bo); if (!pool->mapped_ptr) { radv_destroy_descriptor_pool(device, pAllocator, pool); return vk_error(device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY); } } else { pool->host_bo = vk_alloc2(&device->vk.alloc, pAllocator, bo_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!pool->host_bo) { radv_destroy_descriptor_pool(device, pAllocator, pool); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } pool->mapped_ptr = pool->host_bo; } } pool->size = bo_size; pool->max_entry_count = pCreateInfo->maxSets; *pDescriptorPool = radv_descriptor_pool_to_handle(pool); return VK_SUCCESS; } void radv_DestroyDescriptorPool( VkDevice _device, VkDescriptorPool _pool, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, _pool); if (!pool) return; radv_destroy_descriptor_pool(device, pAllocator, pool); } VkResult radv_ResetDescriptorPool( VkDevice _device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, descriptorPool); if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { radv_descriptor_set_destroy(device, pool, pool->entries[i].set, false); } pool->entry_count = 0; } pool->current_offset = 0; pool->host_memory_ptr = pool->host_memory_base; return VK_SUCCESS; } VkResult radv_AllocateDescriptorSets( VkDevice _device, const VkDescriptorSetAllocateInfo* pAllocateInfo, VkDescriptorSet* pDescriptorSets) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, pAllocateInfo->descriptorPool); VkResult result = VK_SUCCESS; uint32_t i; struct radv_descriptor_set *set = NULL; const VkDescriptorSetVariableDescriptorCountAllocateInfo *variable_counts = vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO); const uint32_t zero = 0; /* allocate a set of buffers for each shader to contain descriptors */ for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { RADV_FROM_HANDLE(radv_descriptor_set_layout, layout, pAllocateInfo->pSetLayouts[i]); const uint32_t *variable_count = NULL; if (variable_counts) { if (i < variable_counts->descriptorSetCount) variable_count = variable_counts->pDescriptorCounts + i; else variable_count = &zero; } assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); result = radv_descriptor_set_create(device, pool, layout, variable_count, &set); if (result != VK_SUCCESS) break; pDescriptorSets[i] = radv_descriptor_set_to_handle(set); } if (result != VK_SUCCESS) { radv_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool, i, pDescriptorSets); for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { pDescriptorSets[i] = VK_NULL_HANDLE; } } return result; } VkResult radv_FreeDescriptorSets( VkDevice _device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet* pDescriptorSets) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_pool, pool, descriptorPool); for (uint32_t i = 0; i < count; i++) { RADV_FROM_HANDLE(radv_descriptor_set, set, pDescriptorSets[i]); if (set && !pool->host_memory_base) radv_descriptor_set_destroy(device, pool, set, true); } return VK_SUCCESS; } static void write_texel_buffer_descriptor(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, unsigned *dst, struct radeon_winsys_bo **buffer_list, const VkBufferView _buffer_view) { RADV_FROM_HANDLE(radv_buffer_view, buffer_view, _buffer_view); if (!buffer_view) { memset(dst, 0, 4 * 4); if (!cmd_buffer) *buffer_list = NULL; return; } memcpy(dst, buffer_view->state, 4 * 4); if (cmd_buffer) radv_cs_add_buffer(device->ws, cmd_buffer->cs, buffer_view->bo); else *buffer_list = buffer_view->bo; } static void write_buffer_descriptor(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, unsigned *dst, struct radeon_winsys_bo **buffer_list, const VkDescriptorBufferInfo *buffer_info) { RADV_FROM_HANDLE(radv_buffer, buffer, buffer_info->buffer); if (!buffer) { memset(dst, 0, 4 * 4); if (!cmd_buffer) *buffer_list = NULL; return; } uint64_t va = radv_buffer_get_va(buffer->bo); uint32_t range = buffer_info->range; if (buffer_info->range == VK_WHOLE_SIZE) range = buffer->size - buffer_info->offset; /* robustBufferAccess is relaxed enough to allow this (in combination * with the alignment/size we return from vkGetBufferMemoryRequirements) * and this allows the shader compiler to create more efficient 8/16-bit * buffer accesses. */ range = align(range, 4); va += buffer_info->offset + buffer->offset; uint32_t rsrc_word3 = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) | S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W); if (device->physical_device->rad_info.chip_class >= GFX10) { rsrc_word3 |= S_008F0C_FORMAT(V_008F0C_IMG_FORMAT_32_FLOAT) | S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1); } else { rsrc_word3 |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) | S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32); } dst[0] = va; dst[1] = S_008F04_BASE_ADDRESS_HI(va >> 32); dst[2] = range; dst[3] = rsrc_word3; if (cmd_buffer) radv_cs_add_buffer(device->ws, cmd_buffer->cs, buffer->bo); else *buffer_list = buffer->bo; } static void write_block_descriptor(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, void *dst, const VkWriteDescriptorSet *writeset) { const VkWriteDescriptorSetInlineUniformBlockEXT *inline_ub = vk_find_struct_const(writeset->pNext, WRITE_DESCRIPTOR_SET_INLINE_UNIFORM_BLOCK_EXT); memcpy(dst, inline_ub->pData, inline_ub->dataSize); } static void write_dynamic_buffer_descriptor(struct radv_device *device, struct radv_descriptor_range *range, struct radeon_winsys_bo **buffer_list, const VkDescriptorBufferInfo *buffer_info) { RADV_FROM_HANDLE(radv_buffer, buffer, buffer_info->buffer); uint64_t va; unsigned size; if (!buffer) { range->va = 0; *buffer_list = NULL; return; } va = radv_buffer_get_va(buffer->bo); size = buffer_info->range; if (buffer_info->range == VK_WHOLE_SIZE) size = buffer->size - buffer_info->offset; /* robustBufferAccess is relaxed enough to allow this (in combination * with the alignment/size we return from vkGetBufferMemoryRequirements) * and this allows the shader compiler to create more efficient 8/16-bit * buffer accesses. */ size = align(size, 4); va += buffer_info->offset + buffer->offset; range->va = va; range->size = size; *buffer_list = buffer->bo; } static void write_image_descriptor(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, unsigned size, unsigned *dst, struct radeon_winsys_bo **buffer_list, VkDescriptorType descriptor_type, const VkDescriptorImageInfo *image_info) { RADV_FROM_HANDLE(radv_image_view, iview, image_info->imageView); union radv_descriptor *descriptor; if (!iview) { memset(dst, 0, size); if (!cmd_buffer) *buffer_list = NULL; return; } if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) { descriptor = &iview->storage_descriptor; } else { descriptor = &iview->descriptor; } memcpy(dst, descriptor, size); if (cmd_buffer) radv_cs_add_buffer(device->ws, cmd_buffer->cs, iview->bo); else *buffer_list = iview->bo; } static void write_combined_image_sampler_descriptor(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, unsigned sampler_offset, unsigned *dst, struct radeon_winsys_bo **buffer_list, VkDescriptorType descriptor_type, const VkDescriptorImageInfo *image_info, bool has_sampler) { RADV_FROM_HANDLE(radv_sampler, sampler, image_info->sampler); write_image_descriptor(device, cmd_buffer, sampler_offset, dst, buffer_list, descriptor_type, image_info); /* copy over sampler state */ if (has_sampler) { memcpy(dst + sampler_offset / sizeof(*dst), sampler->state, 16); } } static void write_sampler_descriptor(struct radv_device *device, unsigned *dst, const VkDescriptorImageInfo *image_info) { RADV_FROM_HANDLE(radv_sampler, sampler, image_info->sampler); memcpy(dst, sampler->state, 16); } void radv_update_descriptor_sets( struct radv_device* device, struct radv_cmd_buffer* cmd_buffer, VkDescriptorSet dstSetOverride, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pDescriptorCopies) { uint32_t i, j; for (i = 0; i < descriptorWriteCount; i++) { const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i]; RADV_FROM_HANDLE(radv_descriptor_set, set, dstSetOverride ? dstSetOverride : writeset->dstSet); const struct radv_descriptor_set_binding_layout *binding_layout = set->header.layout->binding + writeset->dstBinding; uint32_t *ptr = set->header.mapped_ptr; struct radeon_winsys_bo **buffer_list = set->descriptors; /* Immutable samplers are not copied into push descriptors when they are * allocated, so if we are writing push descriptors we have to copy the * immutable samplers into them now. */ const bool copy_immutable_samplers = cmd_buffer && binding_layout->immutable_samplers_offset && !binding_layout->immutable_samplers_equal; const uint32_t *samplers = radv_immutable_samplers(set->header.layout, binding_layout); ptr += binding_layout->offset / 4; if (writeset->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) { write_block_descriptor(device, cmd_buffer, (uint8_t*)ptr + writeset->dstArrayElement, writeset); continue; } ptr += binding_layout->size * writeset->dstArrayElement / 4; buffer_list += binding_layout->buffer_offset; buffer_list += writeset->dstArrayElement; for (j = 0; j < writeset->descriptorCount; ++j) { switch(writeset->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { unsigned idx = writeset->dstArrayElement + j; idx += binding_layout->dynamic_offset_offset; assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); write_dynamic_buffer_descriptor(device, set->header.dynamic_descriptors + idx, buffer_list, writeset->pBufferInfo + j); break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: write_buffer_descriptor(device, cmd_buffer, ptr, buffer_list, writeset->pBufferInfo + j); break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: write_texel_buffer_descriptor(device, cmd_buffer, ptr, buffer_list, writeset->pTexelBufferView[j]); break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: write_image_descriptor(device, cmd_buffer, 64, ptr, buffer_list, writeset->descriptorType, writeset->pImageInfo + j); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: { unsigned sampler_offset = radv_combined_image_descriptor_sampler_offset(binding_layout); write_combined_image_sampler_descriptor(device, cmd_buffer, sampler_offset, ptr, buffer_list, writeset->descriptorType, writeset->pImageInfo + j, !binding_layout->immutable_samplers_offset); if (copy_immutable_samplers) { const unsigned idx = writeset->dstArrayElement + j; memcpy((char*)ptr + sampler_offset, samplers + 4 * idx, 16); } break; } case VK_DESCRIPTOR_TYPE_SAMPLER: if (!binding_layout->immutable_samplers_offset) { write_sampler_descriptor(device, ptr, writeset->pImageInfo + j); } else if (copy_immutable_samplers) { unsigned idx = writeset->dstArrayElement + j; memcpy(ptr, samplers + 4 * idx, 16); } break; default: break; } ptr += binding_layout->size / 4; ++buffer_list; } } for (i = 0; i < descriptorCopyCount; i++) { const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i]; RADV_FROM_HANDLE(radv_descriptor_set, src_set, copyset->srcSet); RADV_FROM_HANDLE(radv_descriptor_set, dst_set, copyset->dstSet); const struct radv_descriptor_set_binding_layout *src_binding_layout = src_set->header.layout->binding + copyset->srcBinding; const struct radv_descriptor_set_binding_layout *dst_binding_layout = dst_set->header.layout->binding + copyset->dstBinding; uint32_t *src_ptr = src_set->header.mapped_ptr; uint32_t *dst_ptr = dst_set->header.mapped_ptr; struct radeon_winsys_bo **src_buffer_list = src_set->descriptors; struct radeon_winsys_bo **dst_buffer_list = dst_set->descriptors; src_ptr += src_binding_layout->offset / 4; dst_ptr += dst_binding_layout->offset / 4; if (src_binding_layout->type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) { src_ptr += copyset->srcArrayElement / 4; dst_ptr += copyset->dstArrayElement / 4; memcpy(dst_ptr, src_ptr, copyset->descriptorCount); continue; } src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4; dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4; src_buffer_list += src_binding_layout->buffer_offset; src_buffer_list += copyset->srcArrayElement; dst_buffer_list += dst_binding_layout->buffer_offset; dst_buffer_list += copyset->dstArrayElement; /* In case of copies between mutable descriptor types * and non-mutable descriptor types. */ size_t copy_size = MIN2(src_binding_layout->size, dst_binding_layout->size); for (j = 0; j < copyset->descriptorCount; ++j) { switch (src_binding_layout->type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { unsigned src_idx = copyset->srcArrayElement + j; unsigned dst_idx = copyset->dstArrayElement + j; struct radv_descriptor_range *src_range, *dst_range; src_idx += src_binding_layout->dynamic_offset_offset; dst_idx += dst_binding_layout->dynamic_offset_offset; src_range = src_set->header.dynamic_descriptors + src_idx; dst_range = dst_set->header.dynamic_descriptors + dst_idx; *dst_range = *src_range; break; } default: memcpy(dst_ptr, src_ptr, copy_size); } src_ptr += src_binding_layout->size / 4; dst_ptr += dst_binding_layout->size / 4; if (src_binding_layout->type != VK_DESCRIPTOR_TYPE_SAMPLER) { /* Sampler descriptors don't have a buffer list. */ dst_buffer_list[j] = src_buffer_list[j]; } } } } void radv_UpdateDescriptorSets( VkDevice _device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet* pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet* pDescriptorCopies) { RADV_FROM_HANDLE(radv_device, device, _device); radv_update_descriptor_sets(device, NULL, VK_NULL_HANDLE, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies); } VkResult radv_CreateDescriptorUpdateTemplate(VkDevice _device, const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_set_layout, set_layout, pCreateInfo->descriptorSetLayout); const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount; const size_t size = sizeof(struct radv_descriptor_update_template) + sizeof(struct radv_descriptor_update_template_entry) * entry_count; struct radv_descriptor_update_template *templ; uint32_t i; templ = vk_alloc2(&device->vk.alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!templ) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &templ->base, VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE); templ->entry_count = entry_count; if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR) { RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->pipelineLayout); /* descriptorSetLayout should be ignored for push descriptors * and instead it refers to pipelineLayout and set. */ assert(pCreateInfo->set < MAX_SETS); set_layout = pipeline_layout->set[pCreateInfo->set].layout; templ->bind_point = pCreateInfo->pipelineBindPoint; } for (i = 0; i < entry_count; i++) { const VkDescriptorUpdateTemplateEntry *entry = &pCreateInfo->pDescriptorUpdateEntries[i]; const struct radv_descriptor_set_binding_layout *binding_layout = set_layout->binding + entry->dstBinding; const uint32_t buffer_offset = binding_layout->buffer_offset + entry->dstArrayElement; const uint32_t *immutable_samplers = NULL; uint32_t dst_offset; uint32_t dst_stride; /* dst_offset is an offset into dynamic_descriptors when the descriptor is dynamic, and an offset into mapped_ptr otherwise */ switch (entry->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: assert(pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET); dst_offset = binding_layout->dynamic_offset_offset + entry->dstArrayElement; dst_stride = 0; /* Not used */ break; default: switch (entry->descriptorType) { case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: case VK_DESCRIPTOR_TYPE_SAMPLER: /* Immutable samplers are copied into push descriptors when they are pushed */ if (pCreateInfo->templateType == VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_PUSH_DESCRIPTORS_KHR && binding_layout->immutable_samplers_offset && !binding_layout->immutable_samplers_equal) { immutable_samplers = radv_immutable_samplers(set_layout, binding_layout) + entry->dstArrayElement * 4; } break; default: break; } dst_offset = binding_layout->offset / 4; if (entry->descriptorType == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) dst_offset += entry->dstArrayElement / 4; else dst_offset += binding_layout->size * entry->dstArrayElement / 4; dst_stride = binding_layout->size / 4; break; } templ->entry[i] = (struct radv_descriptor_update_template_entry) { .descriptor_type = entry->descriptorType, .descriptor_count = entry->descriptorCount, .src_offset = entry->offset, .src_stride = entry->stride, .dst_offset = dst_offset, .dst_stride = dst_stride, .buffer_offset = buffer_offset, .has_sampler = !binding_layout->immutable_samplers_offset, .sampler_offset = radv_combined_image_descriptor_sampler_offset(binding_layout), .immutable_samplers = immutable_samplers }; } *pDescriptorUpdateTemplate = radv_descriptor_update_template_to_handle(templ); return VK_SUCCESS; } void radv_DestroyDescriptorUpdateTemplate(VkDevice _device, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_update_template, templ, descriptorUpdateTemplate); if (!templ) return; vk_object_base_finish(&templ->base); vk_free2(&device->vk.alloc, pAllocator, templ); } void radv_update_descriptor_set_with_template(struct radv_device *device, struct radv_cmd_buffer *cmd_buffer, struct radv_descriptor_set *set, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { RADV_FROM_HANDLE(radv_descriptor_update_template, templ, descriptorUpdateTemplate); uint32_t i; for (i = 0; i < templ->entry_count; ++i) { struct radeon_winsys_bo **buffer_list = set->descriptors + templ->entry[i].buffer_offset; uint32_t *pDst = set->header.mapped_ptr + templ->entry[i].dst_offset; const uint8_t *pSrc = ((const uint8_t *) pData) + templ->entry[i].src_offset; uint32_t j; if (templ->entry[i].descriptor_type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) { memcpy((uint8_t*)pDst, pSrc, templ->entry[i].descriptor_count); continue; } for (j = 0; j < templ->entry[i].descriptor_count; ++j) { switch (templ->entry[i].descriptor_type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { const unsigned idx = templ->entry[i].dst_offset + j; assert(!(set->header.layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); write_dynamic_buffer_descriptor(device, set->header.dynamic_descriptors + idx, buffer_list, (struct VkDescriptorBufferInfo *) pSrc); break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: write_buffer_descriptor(device, cmd_buffer, pDst, buffer_list, (struct VkDescriptorBufferInfo *) pSrc); break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: write_texel_buffer_descriptor(device, cmd_buffer, pDst, buffer_list, *(VkBufferView *) pSrc); break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: write_image_descriptor(device, cmd_buffer, 64, pDst, buffer_list, templ->entry[i].descriptor_type, (struct VkDescriptorImageInfo *) pSrc); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: write_combined_image_sampler_descriptor(device, cmd_buffer, templ->entry[i].sampler_offset, pDst, buffer_list, templ->entry[i].descriptor_type, (struct VkDescriptorImageInfo *) pSrc, templ->entry[i].has_sampler); if (templ->entry[i].immutable_samplers) { memcpy((char*)pDst + templ->entry[i].sampler_offset, templ->entry[i].immutable_samplers + 4 * j, 16); } break; case VK_DESCRIPTOR_TYPE_SAMPLER: if (templ->entry[i].has_sampler) write_sampler_descriptor(device, pDst, (struct VkDescriptorImageInfo *) pSrc); else if (templ->entry[i].immutable_samplers) memcpy(pDst, templ->entry[i].immutable_samplers + 4 * j, 16); break; default: break; } pSrc += templ->entry[i].src_stride; pDst += templ->entry[i].dst_stride; ++buffer_list; } } } void radv_UpdateDescriptorSetWithTemplate(VkDevice _device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_descriptor_set, set, descriptorSet); radv_update_descriptor_set_with_template(device, NULL, set, descriptorUpdateTemplate, pData); } VkResult radv_CreateSamplerYcbcrConversion(VkDevice _device, const VkSamplerYcbcrConversionCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator, VkSamplerYcbcrConversion* pYcbcrConversion) { RADV_FROM_HANDLE(radv_device, device, _device); struct radv_sampler_ycbcr_conversion *conversion = NULL; conversion = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*conversion), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (conversion == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); vk_object_base_init(&device->vk, &conversion->base, VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION); conversion->format = pCreateInfo->format; conversion->ycbcr_model = pCreateInfo->ycbcrModel; conversion->ycbcr_range = pCreateInfo->ycbcrRange; conversion->components = pCreateInfo->components; conversion->chroma_offsets[0] = pCreateInfo->xChromaOffset; conversion->chroma_offsets[1] = pCreateInfo->yChromaOffset; conversion->chroma_filter = pCreateInfo->chromaFilter; *pYcbcrConversion = radv_sampler_ycbcr_conversion_to_handle(conversion); return VK_SUCCESS; } void radv_DestroySamplerYcbcrConversion(VkDevice _device, VkSamplerYcbcrConversion ycbcrConversion, const VkAllocationCallbacks* pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_sampler_ycbcr_conversion, ycbcr_conversion, ycbcrConversion); if (!ycbcr_conversion) return; vk_object_base_finish(&ycbcr_conversion->base); vk_free2(&device->vk.alloc, pAllocator, ycbcr_conversion); }