/* ** Nofrendo (c) 1998-2000 Matthew Conte (matt@conte.com) ** ** ** This program is free software; you can redistribute it and/or ** modify it under the terms of version 2 of the GNU Library General ** Public License as published by the Free Software Foundation. ** ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ** Library General Public License for more details. To obtain a ** copy of the GNU Library General Public License, write to the Free ** Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** ** Any permitted reproduction of these routines, in whole or in part, ** must bear this legend. ** ** ** nes6502.c ** ** NES custom 6502 (2A03) CPU implementation ** $Id$ */ #include "types.h" #include "nes6502.h" #include "dis6502.h" #include #define ADD_CYCLES(x) instruction_cycles += (x) #define INC_CYCLES() instruction_cycles++ /* #define ADD_CYCLES(x) remaining_cycles -= (x) */ /* #define INC_CYCLES() remaining_cycles-- */ /* ** Check to see if an index reg addition overflowed to next page */ #define CHECK_INDEX_OVERFLOW(addr, reg) \ { \ if ((uint8) (addr) < (reg)) \ INC_CYCLES(); \ } /* ** Addressing mode macros */ #define NO_READ(value) /* empty */ #define IMMEDIATE_BYTE(value) \ { \ value = bank_readbyte(PC++); \ } #define ABSOLUTE_ADDR(address) \ { \ address = bank_readaddress(PC); \ PC += 2; \ } #define ABSOLUTE(address, value) \ { \ ABSOLUTE_ADDR(address); \ value = mem_read(address); \ } #define ABSOLUTE_BYTE(value) \ { \ ABSOLUTE(temp, value); \ } #define ABS_IND_X_ADDR(address) \ { \ address = (bank_readaddress(PC) + X) & 0xFFFF; \ PC += 2; \ CHECK_INDEX_OVERFLOW(address, X); \ } #define ABS_IND_X(address, value) \ { \ ABS_IND_X_ADDR(address); \ value = mem_read(address); \ } #define ABS_IND_X_BYTE(value) \ { \ ABS_IND_X(temp, value); \ } #define ABS_IND_Y_ADDR(address) \ { \ address = (bank_readaddress(PC) + Y) & 0xFFFF; \ PC += 2; \ CHECK_INDEX_OVERFLOW(address, Y); \ } #define ABS_IND_Y(address, value) \ { \ ABS_IND_Y_ADDR(address); \ value = mem_read(address); \ } #define ABS_IND_Y_BYTE(value) \ { \ ABS_IND_Y(temp, value); \ } #define ZERO_PAGE_ADDR(address) \ { \ IMMEDIATE_BYTE(address); \ } #define ZERO_PAGE(address, value) \ { \ ZERO_PAGE_ADDR(address); \ value = ZP_READ(address); \ } #define ZERO_PAGE_BYTE(value) \ { \ ZERO_PAGE(btemp, value); \ } /* Zero-page indexed Y doesn't really exist, just for LDX / STX */ #define ZP_IND_X_ADDR(address) \ { \ address = bank_readbyte(PC++) + X; \ } #define ZP_IND_X(bAddr, value) \ { \ ZP_IND_X_ADDR(bAddr); \ value = ZP_READ(bAddr); \ } #define ZP_IND_X_BYTE(value) \ { \ ZP_IND_X(btemp, value); \ } #define ZP_IND_Y_ADDR(address) \ { \ address = bank_readbyte(PC++) + Y; \ } #define ZP_IND_Y(address, value) \ { \ ZP_IND_Y_ADDR(address); \ value = ZP_READ(address); \ } #define ZP_IND_Y_BYTE(value) \ { \ ZP_IND_Y(btemp, value); \ } /* ** For conditional jump relative instructions ** (BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS) */ #define RELATIVE_JUMP(cond) \ { \ if (cond) \ { \ IMMEDIATE_BYTE(btemp); \ if (((int8) btemp + (uint8) PC) & 0xFF00) \ ADD_CYCLES(4); \ else \ ADD_CYCLES(3); \ PC += ((int8) btemp); \ } \ else \ { \ PC++; \ ADD_CYCLES(2); \ } \ } /* ** This is actually indexed indirect, but I call it ** indirect X to avoid confusion */ #define INDIR_X_ADDR(address) \ { \ btemp = bank_readbyte(PC++) + X; \ address = zp_address(btemp); \ } #define INDIR_X(address, value) \ { \ INDIR_X_ADDR(address); \ value = mem_read(address); \ } #define INDIR_X_BYTE(value) \ { \ INDIR_X(temp, value); \ } /* ** This is actually indirect indexed, but I call it ** indirect y to avoid confusion */ #define INDIR_Y_ADDR(address) \ { \ IMMEDIATE_BYTE(btemp); \ address = (zp_address(btemp) + Y) & 0xFFFF; \ /* ???? */ \ CHECK_INDEX_OVERFLOW(address, Y); \ } #define INDIR_Y(address, value) \ { \ INDIR_Y_ADDR(address); \ value = mem_read(address); \ } #define INDIR_Y_BYTE(value) \ { \ /*IMMEDIATE_BYTE(btemp); \ temp = zp_address(btemp) + Y; \ CHECK_INDEX_OVERFLOW(temp, Y); \ value = mem_read(temp);*/ \ INDIR_Y(temp, value); \ } #define JUMP(address) PC = bank_readaddress((address)) /* ** Interrupt macros */ #define NMI() \ { \ PUSH(PC >> 8); \ PUSH(PC & 0xFF); \ CLEAR_FLAG(B_FLAG); \ PUSH(P); \ SET_FLAG(I_FLAG); \ JUMP(NMI_VECTOR); \ int_pending &= ~NMI_MASK; \ ADD_CYCLES(INT_CYCLES); \ } #define IRQ() \ { \ PUSH(PC >> 8); \ PUSH(PC & 0xFF); \ CLEAR_FLAG(B_FLAG); \ PUSH(P); \ SET_FLAG(I_FLAG); \ JUMP(IRQ_VECTOR); \ int_pending &= ~IRQ_MASK; \ ADD_CYCLES(INT_CYCLES); \ } /* ** Instruction macros */ /* Warning! NES CPU has no decimal mode, so by default this does no BCD! */ #ifdef NES6502_DECIMAL #define ADC(cycles, read_func) \ { \ read_func(data); \ if (P & D_FLAG) \ { \ temp = (A & 0x0F) + (data & 0x0F) + (P & C_FLAG); \ if (temp >= 10) \ temp = (temp - 10) | 0x10; \ temp += (A & 0xF0) + (data & 0xF0); \ TEST_AND_FLAG(0 == ((A + data + (P & C_FLAG)) & 0xFF), Z_FLAG); \ TEST_AND_FLAG(temp & 0x80, N_FLAG); \ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \ if (temp > 0x9F) \ temp += 0x60; \ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \ A = (uint8) temp; \ } \ else \ { \ temp = A + data + (P & C_FLAG); \ /* Set C on carry */ \ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \ /* Set V on overflow */ \ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \ A = (uint8) temp; \ SET_NZ_FLAGS(A); \ }\ ADD_CYCLES(cycles); \ } #else #define ADC(cycles, read_func) \ { \ read_func(data); \ temp = A + data + (P & C_FLAG); \ /* Set C on carry */ \ TEST_AND_FLAG(temp > 0xFF, C_FLAG); \ /* Set V on overflow */ \ TEST_AND_FLAG(((~(A ^ data)) & (A ^ temp) & 0x80), V_FLAG); \ A = (uint8) temp; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #endif /* NES6502_DECIMAL */ /* undocumented */ #define ANC(cycles, read_func) \ { \ read_func(data); \ A &= data; \ SET_NZ_FLAGS(A); \ TEST_AND_FLAG(P & N_FLAG, C_FLAG); \ ADD_CYCLES(cycles); \ } #define AND(cycles, read_func) \ { \ read_func(data); \ A &= data; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } /* undocumented */ #define ANE(cycles, read_func) \ { \ read_func(data); \ A = (A | 0xEE) & X & data; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } /* undocumented */ #ifdef NES6502_DECIMAL #define ARR(cycles, read_func) \ { \ read_func(data); \ data &= A; \ if (P & D_FLAG) \ { \ temp = (data >> 1) | ((P & C_FLAG) << 7); \ SET_NZ_FLAGS(temp); \ TEST_AND_FLAG((temp ^ data) & 0x40, V_FLAG); \ if (((data & 0x0F) + (data & 0x01)) > 5) \ temp = (temp & 0xF0) | ((temp + 0x6) & 0x0F); \ if (((data & 0xF0) + (data & 0x10)) > 0x50) \ { \ temp = (temp & 0x0F) | ((temp + 0x60) & 0xF0); \ SET_FLAG(C_FLAG); \ } \ else \ CLEAR_FLAG(C_FLAG); \ A = (uint8) temp; \ } \ else \ { \ A = (data >> 1) | ((P & C_FLAG) << 7); \ SET_NZ_FLAGS(A); \ TEST_AND_FLAG(A & 0x40, C_FLAG); \ TEST_AND_FLAG(((A >> 6) ^ (A >> 5)) & 1, V_FLAG); \ }\ ADD_CYCLES(cycles); \ } #else #define ARR(cycles, read_func) \ { \ read_func(data); \ data &= A; \ A = (data >> 1) | ((P & C_FLAG) << 7); \ SET_NZ_FLAGS(A); \ TEST_AND_FLAG(A & 0x40, C_FLAG); \ TEST_AND_FLAG((A >> 6) ^ (A >> 5), V_FLAG); \ ADD_CYCLES(cycles); \ } #endif /* NES6502_DECIMAL */ #define ASL(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ TEST_AND_FLAG(data & 0x80, C_FLAG); \ data <<= 1; \ write_func(addr, data); \ SET_NZ_FLAGS(data); \ ADD_CYCLES(cycles); \ } #define ASL_A() \ { \ TEST_AND_FLAG(A & 0x80, C_FLAG); \ A <<= 1; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(2); \ } /* undocumented */ #define ASR(cycles, read_func) \ { \ read_func(data); \ data &= A; \ TEST_AND_FLAG(data & 0x01, C_FLAG); \ A = data >> 1; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #define BCC() \ { \ RELATIVE_JUMP((IS_FLAG_CLEAR(C_FLAG))); \ } #define BCS() \ { \ RELATIVE_JUMP((IS_FLAG_SET(C_FLAG))); \ } #define BEQ() \ { \ RELATIVE_JUMP((IS_FLAG_SET(Z_FLAG))); \ } #define BIT(cycles, read_func) \ { \ read_func(data); \ TEST_AND_FLAG(0 == (data & A), Z_FLAG);\ CLEAR_FLAG(N_FLAG | V_FLAG); \ /* move bit 7/6 of data into N/V flags */ \ SET_FLAG(data & (N_FLAG | V_FLAG)); \ ADD_CYCLES(cycles); \ } #define BMI() \ { \ RELATIVE_JUMP((IS_FLAG_SET(N_FLAG))); \ } #define BNE() \ { \ RELATIVE_JUMP((IS_FLAG_CLEAR(Z_FLAG))); \ } #define BPL() \ { \ RELATIVE_JUMP((IS_FLAG_CLEAR(N_FLAG))); \ } /* Software interrupt type thang */ #define BRK() \ { \ PC++; \ PUSH(PC >> 8); \ PUSH(PC & 0xFF); \ SET_FLAG(B_FLAG); \ PUSH(P); \ SET_FLAG(I_FLAG); \ JUMP(IRQ_VECTOR); \ ADD_CYCLES(7); \ } #define BVC() \ { \ RELATIVE_JUMP((IS_FLAG_CLEAR(V_FLAG))); \ } #define BVS() \ { \ RELATIVE_JUMP((IS_FLAG_SET(V_FLAG))); \ } #define CLC() \ { \ CLEAR_FLAG(C_FLAG); \ ADD_CYCLES(2); \ } #define CLD() \ { \ CLEAR_FLAG(D_FLAG); \ ADD_CYCLES(2); \ } #define CLI() \ { \ CLEAR_FLAG(I_FLAG); \ ADD_CYCLES(2); \ } #define CLV() \ { \ CLEAR_FLAG(V_FLAG); \ ADD_CYCLES(2); \ } /* TODO: ick! */ #define _COMPARE(reg, value) \ { \ temp = (reg) - (value); \ /* C is clear when data > A */ \ TEST_AND_FLAG(0 == (temp & 0x8000), C_FLAG); \ SET_NZ_FLAGS((uint8) temp); /* handles Z flag */ \ } #define CMP(cycles, read_func) \ { \ read_func(data); \ _COMPARE(A, data); \ ADD_CYCLES(cycles); \ } #define CPX(cycles, read_func) \ { \ read_func(data); \ _COMPARE(X, data); \ ADD_CYCLES(cycles); \ } #define CPY(cycles, read_func) \ { \ read_func(data); \ _COMPARE(Y, data); \ ADD_CYCLES(cycles); \ } /* undocumented */ #define DCP(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ data--; \ write_func(addr, data); \ CMP(cycles, NO_READ); \ } #define DEC(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ data--; \ write_func(addr, data); \ SET_NZ_FLAGS(data); \ ADD_CYCLES(cycles); \ } #define DEX() \ { \ X--; \ SET_NZ_FLAGS(X); \ ADD_CYCLES(2); \ } #define DEY() \ { \ Y--; \ SET_NZ_FLAGS(Y); \ ADD_CYCLES(2); \ } /* undocumented (double-NOP) */ #define DOP(cycles) \ { \ PC++; \ ADD_CYCLES(cycles); \ } #define EOR(cycles, read_func) \ { \ read_func(data); \ A ^= data; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #define INC(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ data++; \ write_func(addr, data); \ SET_NZ_FLAGS(data); \ ADD_CYCLES(cycles); \ } #define INX() \ { \ X++; \ SET_NZ_FLAGS(X); \ ADD_CYCLES(2); \ } #define INY() \ { \ Y++; \ SET_NZ_FLAGS(Y); \ ADD_CYCLES(2); \ } /* undocumented */ #define ISB(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ data++; \ write_func(addr, data); \ SBC(cycles, NO_READ); \ } #ifdef NES6502_TESTOPS #define JAM() \ { \ cpu_Jam(); \ } #elif defined(NSF_PLAYER) #define JAM() \ { \ } #else #define JAM() \ { \ char jambuf[20]; \ sprintf(jambuf, "JAM: PC=$%04X", PC); \ ASSERT_MSG(jambuf); \ ADD_CYCLES(2); \ } #endif /* NES6502_TESTOPS */ #define JMP_INDIRECT() \ { \ temp = bank_readaddress(PC); \ /* bug in crossing page boundaries */ \ if (0xFF == (uint8) temp) \ PC = (bank_readbyte(temp & ~0xFF) << 8) | bank_readbyte(temp); \ else \ JUMP(temp); \ ADD_CYCLES(5); \ } #define JMP_ABSOLUTE() \ { \ JUMP(PC); \ ADD_CYCLES(3); \ } #define JSR() \ { \ PC++; \ PUSH(PC >> 8); \ PUSH(PC & 0xFF); \ JUMP(PC - 1); \ ADD_CYCLES(6); \ } /* undocumented */ #define LAS(cycles, read_func) \ { \ read_func(data); \ A = X = S = (S & data); \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } /* undocumented */ #define LAX(cycles, read_func) \ { \ read_func(A); \ X = A; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #define LDA(cycles, read_func) \ { \ read_func(A); \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #define LDX(cycles, read_func) \ { \ read_func(X); \ SET_NZ_FLAGS(X);\ ADD_CYCLES(cycles); \ } #define LDY(cycles, read_func) \ { \ read_func(Y); \ SET_NZ_FLAGS(Y);\ ADD_CYCLES(cycles); \ } #define LSR(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ TEST_AND_FLAG(data & 0x01, C_FLAG); \ data >>= 1; \ write_func(addr, data); \ SET_NZ_FLAGS(data); \ ADD_CYCLES(cycles); \ } #define LSR_A() \ { \ TEST_AND_FLAG(A & 0x01, C_FLAG); \ A >>= 1; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(2); \ } /* undocumented */ #define LXA(cycles, read_func) \ { \ read_func(data); \ A = X = ((A | 0xEE) & data); \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #define NOP() \ { \ ADD_CYCLES(2); \ } #define ORA(cycles, read_func) \ { \ read_func(data); \ A |= data; \ SET_NZ_FLAGS(A);\ ADD_CYCLES(cycles); \ } #define PHA() \ { \ PUSH(A); \ ADD_CYCLES(3); \ } #define PHP() \ { \ /* B flag is pushed on stack as well */ \ PUSH((P | B_FLAG)); \ ADD_CYCLES(3); \ } #define PLA() \ { \ A = PULL(); \ SET_NZ_FLAGS(A); \ ADD_CYCLES(4); \ } #define PLP() \ { \ P = PULL(); \ SET_FLAG(R_FLAG); /* ensure reserved flag is set */ \ ADD_CYCLES(4); \ } /* undocumented */ #define RLA(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ if (P & C_FLAG) \ { \ TEST_AND_FLAG(data & 0x80, C_FLAG); \ data = (data << 1) | 1; \ } \ else \ { \ TEST_AND_FLAG(data & 0x80, C_FLAG); \ data <<= 1; \ } \ write_func(addr, data); \ A &= data; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } /* 9-bit rotation (carry flag used for rollover) */ #define ROL(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ if (P & C_FLAG) \ { \ TEST_AND_FLAG(data & 0x80, C_FLAG); \ data = (data << 1) | 1; \ } \ else \ { \ TEST_AND_FLAG(data & 0x80, C_FLAG); \ data <<= 1; \ } \ write_func(addr, data); \ SET_NZ_FLAGS(data); \ ADD_CYCLES(cycles); \ } #define ROL_A() \ { \ if (P & C_FLAG) \ { \ TEST_AND_FLAG(A & 0x80, C_FLAG); \ A = (A << 1) | 1; \ } \ else \ { \ TEST_AND_FLAG(A & 0x80, C_FLAG); \ A <<= 1; \ } \ SET_NZ_FLAGS(A); \ ADD_CYCLES(2); \ } #define ROR(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ if (P & C_FLAG) \ { \ TEST_AND_FLAG(data & 1, C_FLAG); \ data = (data >> 1) | 0x80; \ } \ else \ { \ TEST_AND_FLAG(data & 1, C_FLAG); \ data >>= 1; \ } \ write_func(addr, data); \ SET_NZ_FLAGS(data); \ ADD_CYCLES(cycles); \ } #define ROR_A() \ { \ if (P & C_FLAG) \ { \ TEST_AND_FLAG(A & 1, C_FLAG); \ A = (A >> 1) | 0x80; \ } \ else \ { \ TEST_AND_FLAG(A & 1, C_FLAG); \ A >>= 1; \ } \ SET_NZ_FLAGS(A); \ ADD_CYCLES(2); \ } /* undocumented */ #define RRA(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ if (P & C_FLAG) \ { \ TEST_AND_FLAG(data & 1, C_FLAG); \ data = (data >> 1) | 0x80; \ } \ else \ { \ TEST_AND_FLAG(data & 1, C_FLAG); \ data >>= 1; \ } \ write_func(addr, data); \ ADC(cycles, NO_READ); \ } #define RTI() \ { \ P = PULL(); \ SET_FLAG(R_FLAG); /* ensure reserved flag is set */ \ PC = PULL(); \ PC |= PULL() << 8; \ ADD_CYCLES(6); \ } #define RTS() \ { \ PC = PULL(); \ PC = (PC | (PULL() << 8)) + 1; \ ADD_CYCLES(6); \ } /* undocumented */ #define SAX(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ data = A & X; \ write_func(addr, data); \ ADD_CYCLES(cycles); \ } /* Warning! NES CPU has no decimal mode, so by default this does no BCD! */ #ifdef NES6502_DECIMAL #define SBC(cycles, read_func) \ { \ read_func(data); \ /* NOT(C) is considered borrow */ \ temp = A - data - ((P & C_FLAG) ^ C_FLAG); \ if (P & D_FLAG) \ { \ uint8 al, ah; \ al = (A & 0x0F) - (data & 0x0F) - ((P & C_FLAG) ^ C_FLAG); \ ah = (A >> 4) - (data >> 4); \ if (al & 0x10) \ { \ al -= 6; \ ah--; \ } \ if (ah & 0x10) \ ah -= 6; \ TEST_AND_FLAG(temp < 0x100, C_FLAG); \ TEST_AND_FLAG(((A ^ temp) & 0x80) && ((A ^ data) & 0x80), V_FLAG); \ SET_NZ_FLAGS(temp & 0xFF); \ A = (ah << 4) | (al & 0x0F); \ } \ else \ { \ TEST_AND_FLAG(((A ^ temp) & 0x80) && ((A ^ data) & 0x80), V_FLAG); \ TEST_AND_FLAG(temp < 0x100, C_FLAG); \ A = (uint8) temp; \ SET_NZ_FLAGS(A & 0xFF); \ } \ ADD_CYCLES(cycles); \ } #else #define SBC(cycles, read_func) \ { \ read_func(data); \ temp = A - data - ((P & C_FLAG) ^ C_FLAG); \ TEST_AND_FLAG(((A ^ data) & (A ^ temp) & 0x80), V_FLAG); \ TEST_AND_FLAG(temp < 0x100, C_FLAG); \ A = (uint8) temp; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #endif /* NES6502_DECIMAL */ /* undocumented */ #define SBX(cycles, read_func) \ { \ read_func(data); \ temp = (A & X) - data; \ TEST_AND_FLAG(temp < 0x100, C_FLAG); \ X = temp & 0xFF; \ SET_NZ_FLAGS(X); \ ADD_CYCLES(cycles); \ } #define SEC_6502() \ { \ SET_FLAG(C_FLAG); \ ADD_CYCLES(2); \ } #define SED() \ { \ SET_FLAG(D_FLAG); \ ADD_CYCLES(2); \ } #define SEI() \ { \ SET_FLAG(I_FLAG); \ ADD_CYCLES(2); \ } /* undocumented */ #define SHA(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ data = A & X & ((uint8) ((addr >> 8) + 1)); \ write_func(addr, data); \ ADD_CYCLES(cycles); \ } /* undocumented */ #define SHS(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ S = A & X; \ data = S & ((uint8) ((addr >> 8) + 1)); \ write_func(addr, data); \ ADD_CYCLES(cycles); \ } /* undocumented */ #define SHX(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ data = X & ((uint8) ((addr >> 8) + 1)); \ write_func(addr, data); \ ADD_CYCLES(cycles); \ } /* undocumented */ #define SHY(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ data = Y & ((uint8) ((addr >> 8 ) + 1)); \ write_func(addr, data); \ ADD_CYCLES(cycles); \ } /* undocumented */ #define SLO(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ TEST_AND_FLAG(data & 0x80, C_FLAG); \ data <<= 1; \ write_func(addr, data); \ A |= data; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } /* unoffical */ #define SRE(cycles, read_func, write_func, addr) \ { \ read_func(addr, data); \ TEST_AND_FLAG(data & 1, C_FLAG); \ data >>= 1; \ write_func(addr, data); \ A ^= data; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(cycles); \ } #define STA(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ write_func(addr, A); \ ADD_CYCLES(cycles); \ } #define STX(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ write_func(addr, X); \ ADD_CYCLES(cycles); \ } #define STY(cycles, read_func, write_func, addr) \ { \ read_func(addr); \ write_func(addr, Y); \ ADD_CYCLES(cycles); \ } #define TAX() \ { \ X = A; \ SET_NZ_FLAGS(X);\ ADD_CYCLES(2); \ } #define TAY() \ { \ Y = A; \ SET_NZ_FLAGS(Y);\ ADD_CYCLES(2); \ } /* undocumented (triple-NOP) */ #define TOP() \ { \ PC += 2; \ ADD_CYCLES(4); \ } #define TSX() \ { \ X = S; \ SET_NZ_FLAGS(X);\ ADD_CYCLES(2); \ } #define TXA() \ { \ A = X; \ SET_NZ_FLAGS(A);\ ADD_CYCLES(2); \ } #define TXS() \ { \ S = X; \ ADD_CYCLES(2); \ } #define TYA() \ { \ A = Y; \ SET_NZ_FLAGS(A); \ ADD_CYCLES(2); \ } /* ** Stack and data fetching macros */ /* Set/clear/test bits in the flags register */ #define SET_FLAG(mask) P |= (mask) #define CLEAR_FLAG(mask) P &= ~(mask) #define IS_FLAG_SET(mask) (P & (mask)) #define IS_FLAG_CLEAR(mask) (0 == IS_FLAG_SET((mask))) #define TEST_AND_FLAG(test, mask) \ { \ if ((test)) \ SET_FLAG((mask)); \ else \ CLEAR_FLAG((mask)); \ } /* ** flag register helper macros */ /* register push/pull */ #ifdef NES6502_MEM_ACCESS_CTRL # define PUSH(value) stack_push((S--),(value)) # define PULL() stack_pull((++S)) #else # define PUSH(value) stack_page[S--] = (uint8) (value) # define PULL() stack_page[++S] #endif /* #ifdef NES6502_MEM_ACCESS_CTRL */ /* Sets the Z and N flags based on given data, taken from precomputed table */ #define SET_NZ_FLAGS(value) P &= ~(N_FLAG | Z_FLAG); \ P |= flag_table[(value)] #define GET_GLOBAL_REGS() \ { \ PC = reg_PC; \ A = reg_A; \ X = reg_X; \ Y = reg_Y; \ P = reg_P; \ S = reg_S; \ } #define SET_LOCAL_REGS() \ { \ reg_PC = PC; \ reg_A = A; \ reg_X = X; \ reg_Y = Y; \ reg_P = P; \ reg_S = S; \ } /* static data */ static nes6502_memread *pmem_read, *pmr; static nes6502_memwrite *pmem_write, *pmw; /* lookup table for N/Z flags */ static uint8 flag_table[256]; /* internal critical CPU vars */ static uint32 reg_PC; static uint8 reg_A, reg_P, reg_X, reg_Y, reg_S; static uint8 int_pending; static int dma_cycles; /* execution cycle count (can be reset by user) */ static uint32 total_cycles = 0; /* memory region pointers */ static uint8 *nes6502_banks[NES6502_NUMBANKS]; static uint8 *ram = NULL; static uint8 *stack_page = NULL; /* access flag for memory * $$$ ben : I add this for the playing time calculation. * Only if compiled with NES6502_MEM_ACCESS. */ #ifdef NES6502_MEM_ACCESS_CTRL uint8 *acc_nes6502_banks[NES6502_NUMBANKS]; static uint8 *acc_ram = NULL; static uint8 *acc_stack_page = NULL; uint8 nes6502_mem_access = 0; /* $$$ ben : * Set memory access check flags, and store ORed frame global check * for music time calculation. */ static void chk_mem_access (uint8 * access, int flags) { uint8 oldchk = *access; if ((oldchk & flags) != flags) { nes6502_mem_access |= flags; *access = oldchk | flags; } } INLINE void stack_push (uint8 s, uint8 v) { chk_mem_access (acc_stack_page + s, NES6502_WRITE_ACCESS); stack_page[s] = v; } INLINE uint8 stack_pull (uint8 s) { chk_mem_access (acc_stack_page + s, NES6502_READ_ACCESS); return stack_page[s]; } INLINE uint8 zp_read (register uint32 addr) { chk_mem_access (acc_ram + addr, NES6502_READ_ACCESS); return ram[addr]; } INLINE void zp_write (register uint32 addr, uint8 v) { chk_mem_access (acc_ram + addr, NES6502_WRITE_ACCESS); ram[addr] = v; } #define ZP_READ(addr) zp_read((addr)) #define ZP_WRITE(addr, value) zp_write((addr),(value)) #define bank_readbyte(address) _bank_readbyte((address), NES6502_READ_ACCESS) #define bank_readbyte_pc(address) _bank_readbyte((address), NES6502_EXE_ACCESS) #else # define chk_mem_access(access, flags) /* ** Zero-page helper macros */ #define ZP_READ(addr) ram[(addr)] #define ZP_WRITE(addr, value) ram[(addr)] = (uint8) (value) #define bank_readbyte(address) _bank_readbyte((address)) #define bank_readbyte_pc(address) _bank_readbyte((address)) #endif /* #ifdef NES6502_MEM_ACCESS_CTRL */ #ifdef NES6502_MEM_ACCESS_CTRL int max_access[NES6502_NUMBANKS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; INLINE uint8 _bank_readbyte (register uint32 address, const uint8 flags) #else INLINE uint8 _bank_readbyte (register uint32 address) #endif { ASSERT (nes6502_banks[address >> NES6502_BANKSHIFT]); #ifdef NES6502_MEM_ACCESS_CTRL /* printf("chk_mem_access(acc_nes6502_banks[%d] + %d, %d)\n", address>>NES6502_BANKSHIFT, address & NES6502_BANKMASK, flags); */ if ((address & NES6502_BANKMASK) > max_access[address >> NES6502_BANKSHIFT]) { max_access[address >> NES6502_BANKSHIFT] = address & NES6502_BANKMASK; /* printf("max_access[%d] increased to %d\n", address>>NES6502_BANKSHIFT, max_access[address>>NES6502_BANKSHIFT]); */ } #endif chk_mem_access (acc_nes6502_banks[address >> NES6502_BANKSHIFT] + (address & NES6502_BANKMASK), flags); return nes6502_banks[address >> NES6502_BANKSHIFT][address & NES6502_BANKMASK]; } INLINE void bank_writebyte (register uint32 address, register uint8 value) { ASSERT (nes6502_banks[address >> NES6502_BANKSHIFT]); #ifdef NES6502_MEM_ACCESS_CTRL /* printf("chk_mem_access(acc_nes6502_banks[%d] + %d, %d)\n", address>>NES6502_BANKSHIFT, address & NES6502_BANKMASK, NES6502_WRITE_ACCESS); */ if ((address & NES6502_BANKMASK) > max_access[address >> NES6502_BANKSHIFT]) { max_access[address >> NES6502_BANKSHIFT] = address & NES6502_BANKMASK; /* printf("max_access[%d] increased to %d\n", address>>NES6502_BANKSHIFT, max_access[address>>NES6502_BANKSHIFT]); */ } #endif chk_mem_access (acc_nes6502_banks[address >> NES6502_BANKSHIFT] + (address & NES6502_BANKMASK), NES6502_WRITE_ACCESS); nes6502_banks[address >> NES6502_BANKSHIFT][address & NES6502_BANKMASK] = value; } /* Read a 16bit word */ #define READ_SNES_16(bank,offset) \ (\ (offset) [ (uint8 *) (bank) ] |\ ((unsigned int)( ((offset)+1) [ (uint8 *) (bank) ] ) << 8)\ ) INLINE uint32 zp_address (register uint8 address) { chk_mem_access (acc_ram + address, NES6502_READ_ACCESS); chk_mem_access (acc_ram + address + 1, NES6502_READ_ACCESS); #if defined (HOST_LITTLE_ENDIAN) && defined(HOST_UNALIGN_WORD) /* TODO: this fails if src address is $xFFF */ /* TODO: this fails if host architecture doesn't support byte alignment */ /* $$$ ben : DONE */ return (uint32) (*(uint16 *) (ram + address)); #elif defined(TARGET_CPU_PPC) return __lhbrx (ram, address); #else return READ_SNES_16 (ram, address); /* uint32 x = (uint32) *(uint16 *)(ram + address); */ /* return (x << 8) | (x >> 8); */ /* #endif *//* TARGET_CPU_PPC */ #endif /* HOST_LITTLE_ENDIAN */ } INLINE uint32 bank_readaddress (register uint32 address) { #ifdef NES6502_MEM_ACCESS_CTRL { const unsigned int offset = address & NES6502_BANKMASK; uint8 *addr = acc_nes6502_banks[address >> NES6502_BANKSHIFT]; chk_mem_access (addr + offset + 0, NES6502_READ_ACCESS); chk_mem_access (addr + offset + 1, NES6502_READ_ACCESS); } #endif #if defined (HOST_LITTLE_ENDIAN) && defined(HOST_UNALIGN_WORD) /* TODO: this fails if src address is $xFFF */ /* TODO: this fails if host architecture doesn't support byte alignment */ /* $$$ ben : DONE */ return (uint32) (*(uint16 *) (nes6502_banks[address >> NES6502_BANKSHIFT] + (address & NES6502_BANKMASK))); #elif defined(TARGET_CPU_PPC) return __lhbrx (nes6502_banks[address >> NES6502_BANKSHIFT], address & NES6502_BANKMASK); #else { const unsigned int offset = address & NES6502_BANKMASK; return READ_SNES_16 (nes6502_banks[address >> NES6502_BANKSHIFT], offset); } /* uint32 x = (uint32) *(uint16 *)(nes6502_banks[address >> NES6502_BANKSHIFT] + (address & NES6502_BANKMASK)); */ /* return (x << 8) | (x >> 8); */ /* #endif *//* TARGET_CPU_PPC */ #endif /* HOST_LITTLE_ENDIAN */ } /* read a byte of 6502 memory */ static uint8 mem_read (uint32 address) { /* TODO: following cases are N2A03-specific */ /* RAM */ if (address < 0x800) { chk_mem_access (acc_ram + address, NES6502_READ_ACCESS); return ram[address]; } /* always paged memory */ /* else if (address >= 0x6000) */ else if (address >= 0x8000) { return bank_readbyte (address); } /* check memory range handlers */ else { for (pmr = pmem_read; pmr->min_range != 0xFFFFFFFF; pmr++) { if ((address >= pmr->min_range) && (address <= pmr->max_range)) return pmr->read_func (address); } } /* return paged memory */ return bank_readbyte (address); } /* write a byte of data to 6502 memory */ static void mem_write (uint32 address, uint8 value) { /* RAM */ if (address < 0x800) { chk_mem_access (acc_ram + address, NES6502_WRITE_ACCESS); ram[address] = value; return; } /* check memory range handlers */ else { for (pmw = pmem_write; pmw->min_range != 0xFFFFFFFF; pmw++) { if ((address >= pmw->min_range) && (address <= pmw->max_range)) { pmw->write_func (address, value); return; } } } /* write to paged memory */ bank_writebyte (address, value); } /* set the current context */ void nes6502_setcontext (nes6502_context * cpu) { int loop; ASSERT (cpu); /* Set the page pointers */ for (loop = 0; loop < NES6502_NUMBANKS; loop++) { nes6502_banks[loop] = cpu->mem_page[loop]; #ifdef NES6502_MEM_ACCESS_CTRL acc_nes6502_banks[loop] = cpu->acc_mem_page[loop]; #endif } ram = nes6502_banks[0]; /* quicker zero-page/RAM references */ stack_page = ram + STACK_OFFSET; #ifdef NES6502_MEM_ACCESS_CTRL acc_ram = acc_nes6502_banks[0]; /* quicker zero-page/RAM references */ acc_stack_page = acc_ram + STACK_OFFSET; #endif pmem_read = cpu->read_handler; pmem_write = cpu->write_handler; reg_PC = cpu->pc_reg; reg_A = cpu->a_reg; reg_P = cpu->p_reg; reg_X = cpu->x_reg; reg_Y = cpu->y_reg; reg_S = cpu->s_reg; int_pending = cpu->int_pending; dma_cycles = cpu->dma_cycles; } /* get the current context */ void nes6502_getcontext (nes6502_context * cpu) { int loop; /* Set the page pointers */ for (loop = 0; loop < NES6502_NUMBANKS; loop++) { cpu->mem_page[loop] = nes6502_banks[loop]; #ifdef NES6502_MEM_ACCESS_CTRL cpu->acc_mem_page[loop] = acc_nes6502_banks[loop]; #endif } cpu->read_handler = pmem_read; cpu->write_handler = pmem_write; cpu->pc_reg = reg_PC; cpu->a_reg = reg_A; cpu->p_reg = reg_P; cpu->x_reg = reg_X; cpu->y_reg = reg_Y; cpu->s_reg = reg_S; cpu->int_pending = int_pending; cpu->dma_cycles = dma_cycles; } /* DMA a byte of data from ROM */ uint8 nes6502_getbyte (uint32 address) { return bank_readbyte (address); } /* get number of elapsed cycles */ uint32 nes6502_getcycles (boolean reset_flag) { uint32 cycles = total_cycles; if (reset_flag) total_cycles = 0; return cycles; } /* Execute instructions until count expires ** ** Returns the number of cycles *actually* executed ** (note that this can be from 0-6 cycles more than you wanted) */ int nes6502_execute (int remaining_cycles) { int instruction_cycles, old_cycles = total_cycles; uint32 temp, addr; /* for macros */ uint32 PC; uint8 A, X, Y, P, S; uint8 opcode, data; uint8 btemp, baddr; /* for macros */ GET_GLOBAL_REGS (); #ifdef NES6502_MEM_ACCESS_CTRL /* reset global memory access for this execute loop. */ nes6502_mem_access = 0; #endif /* Continue until we run out of cycles */ while (remaining_cycles > 0) { instruction_cycles = 0; /* check for DMA cycle burning */ if (dma_cycles) { if (remaining_cycles <= dma_cycles) { dma_cycles -= remaining_cycles; total_cycles += remaining_cycles; goto _execute_done; } else { remaining_cycles -= dma_cycles; total_cycles += dma_cycles; dma_cycles = 0; } } if (int_pending) { /* NMI has highest priority */ if (int_pending & NMI_MASK) { NMI (); } /* IRQ has lowest priority */ else { /* if (int_pending & IRQ_MASK) */ if (IS_FLAG_CLEAR (I_FLAG)) IRQ (); } } /* Fetch instruction */ /* nes6502_disasm(PC, P, A, X, Y, S); */ opcode = bank_readbyte_pc (PC++); /* Execute instruction */ switch (opcode) { case 0x00: /* BRK */ BRK (); break; case 0x01: /* ORA ($nn,X) */ ORA (6, INDIR_X_BYTE); break; /* JAM */ case 0x02: /* JAM */ case 0x12: /* JAM */ case 0x22: /* JAM */ case 0x32: /* JAM */ case 0x42: /* JAM */ case 0x52: /* JAM */ case 0x62: /* JAM */ case 0x72: /* JAM */ case 0x92: /* JAM */ case 0xB2: /* JAM */ case 0xD2: /* JAM */ case 0xF2: /* JAM */ JAM (); /* kill switch for CPU emulation */ goto _execute_done; case 0x03: /* SLO ($nn,X) */ SLO (8, INDIR_X, mem_write, addr); break; case 0x04: /* NOP $nn */ case 0x44: /* NOP $nn */ case 0x64: /* NOP $nn */ DOP (3); break; case 0x05: /* ORA $nn */ ORA (3, ZERO_PAGE_BYTE); break; case 0x06: /* ASL $nn */ ASL (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x07: /* SLO $nn */ SLO (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x08: /* PHP */ PHP (); break; case 0x09: /* ORA #$nn */ ORA (2, IMMEDIATE_BYTE); break; case 0x0A: /* ASL A */ ASL_A (); break; case 0x0B: /* ANC #$nn */ ANC (2, IMMEDIATE_BYTE); break; case 0x0C: /* NOP $nnnn */ TOP (); break; case 0x0D: /* ORA $nnnn */ ORA (4, ABSOLUTE_BYTE); break; case 0x0E: /* ASL $nnnn */ ASL (6, ABSOLUTE, mem_write, addr); break; case 0x0F: /* SLO $nnnn */ SLO (6, ABSOLUTE, mem_write, addr); break; case 0x10: /* BPL $nnnn */ BPL (); break; case 0x11: /* ORA ($nn),Y */ ORA (5, INDIR_Y_BYTE); break; case 0x13: /* SLO ($nn),Y */ SLO (8, INDIR_Y, mem_write, addr); break; case 0x14: /* NOP $nn,X */ case 0x34: /* NOP */ case 0x54: /* NOP $nn,X */ case 0x74: /* NOP $nn,X */ case 0xD4: /* NOP $nn,X */ case 0xF4: /* NOP ($nn,X) */ DOP (4); break; case 0x15: /* ORA $nn,X */ ORA (4, ZP_IND_X_BYTE); break; case 0x16: /* ASL $nn,X */ ASL (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x17: /* SLO $nn,X */ SLO (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x18: /* CLC */ CLC (); break; case 0x19: /* ORA $nnnn,Y */ ORA (4, ABS_IND_Y_BYTE); break; case 0x1A: /* NOP */ case 0x3A: /* NOP */ case 0x5A: /* NOP */ case 0x7A: /* NOP */ case 0xDA: /* NOP */ case 0xFA: /* NOP */ NOP (); break; case 0x1B: /* SLO $nnnn,Y */ SLO (7, ABS_IND_Y, mem_write, addr); break; case 0x1C: /* NOP $nnnn,X */ case 0x3C: /* NOP $nnnn,X */ case 0x5C: /* NOP $nnnn,X */ case 0x7C: /* NOP $nnnn,X */ case 0xDC: /* NOP $nnnn,X */ case 0xFC: /* NOP $nnnn,X */ TOP (); break; case 0x1D: /* ORA $nnnn,X */ ORA (4, ABS_IND_X_BYTE); break; case 0x1E: /* ASL $nnnn,X */ ASL (7, ABS_IND_X, mem_write, addr); break; case 0x1F: /* SLO $nnnn,X */ SLO (7, ABS_IND_X, mem_write, addr); break; case 0x20: /* JSR $nnnn */ JSR (); break; case 0x21: /* AND ($nn,X) */ AND (6, INDIR_X_BYTE); break; case 0x23: /* RLA ($nn,X) */ RLA (8, INDIR_X, mem_write, addr); break; case 0x24: /* BIT $nn */ BIT (3, ZERO_PAGE_BYTE); break; case 0x25: /* AND $nn */ AND (3, ZERO_PAGE_BYTE); break; case 0x26: /* ROL $nn */ ROL (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x27: /* RLA $nn */ RLA (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x28: /* PLP */ PLP (); break; case 0x29: /* AND #$nn */ AND (2, IMMEDIATE_BYTE); break; case 0x2A: /* ROL A */ ROL_A (); break; case 0x2B: /* ANC #$nn */ ANC (2, IMMEDIATE_BYTE); break; case 0x2C: /* BIT $nnnn */ BIT (4, ABSOLUTE_BYTE); break; case 0x2D: /* AND $nnnn */ AND (4, ABSOLUTE_BYTE); break; case 0x2E: /* ROL $nnnn */ ROL (6, ABSOLUTE, mem_write, addr); break; case 0x2F: /* RLA $nnnn */ RLA (6, ABSOLUTE, mem_write, addr); break; case 0x30: /* BMI $nnnn */ BMI (); break; case 0x31: /* AND ($nn),Y */ AND (5, INDIR_Y_BYTE); break; case 0x33: /* RLA ($nn),Y */ RLA (8, INDIR_Y, mem_write, addr); break; case 0x35: /* AND $nn,X */ AND (4, ZP_IND_X_BYTE); break; case 0x36: /* ROL $nn,X */ ROL (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x37: /* RLA $nn,X */ RLA (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x38: /* SEC */ SEC_6502 (); break; case 0x39: /* AND $nnnn,Y */ AND (4, ABS_IND_Y_BYTE); break; case 0x3B: /* RLA $nnnn,Y */ RLA (7, ABS_IND_Y, mem_write, addr); break; case 0x3D: /* AND $nnnn,X */ AND (4, ABS_IND_X_BYTE); break; case 0x3E: /* ROL $nnnn,X */ ROL (7, ABS_IND_X, mem_write, addr); break; case 0x3F: /* RLA $nnnn,X */ RLA (7, ABS_IND_X, mem_write, addr); break; case 0x40: /* RTI */ RTI (); break; case 0x41: /* EOR ($nn,X) */ EOR (6, INDIR_X_BYTE); break; case 0x43: /* SRE ($nn,X) */ SRE (8, INDIR_X, mem_write, addr); break; case 0x45: /* EOR $nn */ EOR (3, ZERO_PAGE_BYTE); break; case 0x46: /* LSR $nn */ LSR (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x47: /* SRE $nn */ SRE (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x48: /* PHA */ PHA (); break; case 0x49: /* EOR #$nn */ EOR (2, IMMEDIATE_BYTE); break; case 0x4A: /* LSR A */ LSR_A (); break; case 0x4B: /* ASR #$nn */ ASR (2, IMMEDIATE_BYTE); break; case 0x4C: /* JMP $nnnn */ JMP_ABSOLUTE (); break; case 0x4D: /* EOR $nnnn */ EOR (4, ABSOLUTE_BYTE); break; case 0x4E: /* LSR $nnnn */ LSR (6, ABSOLUTE, mem_write, addr); break; case 0x4F: /* SRE $nnnn */ SRE (6, ABSOLUTE, mem_write, addr); break; case 0x50: /* BVC $nnnn */ BVC (); break; case 0x51: /* EOR ($nn),Y */ EOR (5, INDIR_Y_BYTE); break; case 0x53: /* SRE ($nn),Y */ SRE (8, INDIR_Y, mem_write, addr); break; case 0x55: /* EOR $nn,X */ EOR (4, ZP_IND_X_BYTE); break; case 0x56: /* LSR $nn,X */ LSR (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x57: /* SRE $nn,X */ SRE (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x58: /* CLI */ CLI (); break; case 0x59: /* EOR $nnnn,Y */ EOR (4, ABS_IND_Y_BYTE); break; case 0x5B: /* SRE $nnnn,Y */ SRE (7, ABS_IND_Y, mem_write, addr); break; case 0x5D: /* EOR $nnnn,X */ EOR (4, ABS_IND_X_BYTE); break; case 0x5E: /* LSR $nnnn,X */ LSR (7, ABS_IND_X, mem_write, addr); break; case 0x5F: /* SRE $nnnn,X */ SRE (7, ABS_IND_X, mem_write, addr); break; case 0x60: /* RTS */ RTS (); break; case 0x61: /* ADC ($nn,X) */ ADC (6, INDIR_X_BYTE); break; case 0x63: /* RRA ($nn,X) */ RRA (8, INDIR_X, mem_write, addr); break; case 0x65: /* ADC $nn */ ADC (3, ZERO_PAGE_BYTE); break; case 0x66: /* ROR $nn */ ROR (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x67: /* RRA $nn */ RRA (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0x68: /* PLA */ PLA (); break; case 0x69: /* ADC #$nn */ ADC (2, IMMEDIATE_BYTE); break; case 0x6A: /* ROR A */ ROR_A (); break; case 0x6B: /* ARR #$nn */ ARR (2, IMMEDIATE_BYTE); break; case 0x6C: /* JMP ($nnnn) */ JMP_INDIRECT (); break; case 0x6D: /* ADC $nnnn */ ADC (4, ABSOLUTE_BYTE); break; case 0x6E: /* ROR $nnnn */ ROR (6, ABSOLUTE, mem_write, addr); break; case 0x6F: /* RRA $nnnn */ RRA (6, ABSOLUTE, mem_write, addr); break; case 0x70: /* BVS $nnnn */ BVS (); break; case 0x71: /* ADC ($nn),Y */ ADC (5, INDIR_Y_BYTE); break; case 0x73: /* RRA ($nn),Y */ RRA (8, INDIR_Y, mem_write, addr); break; case 0x75: /* ADC $nn,X */ ADC (4, ZP_IND_X_BYTE); break; case 0x76: /* ROR $nn,X */ ROR (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x77: /* RRA $nn,X */ RRA (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0x78: /* SEI */ SEI (); break; case 0x79: /* ADC $nnnn,Y */ ADC (4, ABS_IND_Y_BYTE); break; case 0x7B: /* RRA $nnnn,Y */ RRA (7, ABS_IND_Y, mem_write, addr); break; case 0x7D: /* ADC $nnnn,X */ ADC (4, ABS_IND_X_BYTE); break; case 0x7E: /* ROR $nnnn,X */ ROR (7, ABS_IND_X, mem_write, addr); break; case 0x7F: /* RRA $nnnn,X */ RRA (7, ABS_IND_X, mem_write, addr); break; case 0x80: /* NOP #$nn */ case 0x82: /* NOP #$nn */ case 0x89: /* NOP #$nn */ case 0xC2: /* NOP #$nn */ case 0xE2: /* NOP #$nn */ DOP (2); break; case 0x81: /* STA ($nn,X) */ STA (6, INDIR_X_ADDR, mem_write, addr); break; case 0x83: /* SAX ($nn,X) */ SAX (6, INDIR_X_ADDR, mem_write, addr); break; case 0x84: /* STY $nn */ STY (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr); break; case 0x85: /* STA $nn */ STA (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr); break; case 0x86: /* STX $nn */ STX (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr); break; case 0x87: /* SAX $nn */ SAX (3, ZERO_PAGE_ADDR, ZP_WRITE, baddr); break; case 0x88: /* DEY */ DEY (); break; case 0x8A: /* TXA */ TXA (); break; case 0x8B: /* ANE #$nn */ ANE (2, IMMEDIATE_BYTE); break; case 0x8C: /* STY $nnnn */ STY (4, ABSOLUTE_ADDR, mem_write, addr); break; case 0x8D: /* STA $nnnn */ STA (4, ABSOLUTE_ADDR, mem_write, addr); break; case 0x8E: /* STX $nnnn */ STX (4, ABSOLUTE_ADDR, mem_write, addr); break; case 0x8F: /* SAX $nnnn */ SAX (4, ABSOLUTE_ADDR, mem_write, addr); break; case 0x90: /* BCC $nnnn */ BCC (); break; case 0x91: /* STA ($nn),Y */ STA (6, INDIR_Y_ADDR, mem_write, addr); break; case 0x93: /* SHA ($nn),Y */ SHA (6, INDIR_Y_ADDR, mem_write, addr); break; case 0x94: /* STY $nn,X */ STY (4, ZP_IND_X_ADDR, ZP_WRITE, baddr); break; case 0x95: /* STA $nn,X */ STA (4, ZP_IND_X_ADDR, ZP_WRITE, baddr); break; case 0x96: /* STX $nn,Y */ STX (4, ZP_IND_Y_ADDR, ZP_WRITE, baddr); break; case 0x97: /* SAX $nn,Y */ SAX (4, ZP_IND_Y_ADDR, ZP_WRITE, baddr); break; case 0x98: /* TYA */ TYA (); break; case 0x99: /* STA $nnnn,Y */ STA (5, ABS_IND_Y_ADDR, mem_write, addr); break; case 0x9A: /* TXS */ TXS (); break; case 0x9B: /* SHS $nnnn,Y */ SHS (5, ABS_IND_Y_ADDR, mem_write, addr); break; case 0x9C: /* SHY $nnnn,X */ SHY (5, ABS_IND_X_ADDR, mem_write, addr); break; case 0x9D: /* STA $nnnn,X */ STA (5, ABS_IND_X_ADDR, mem_write, addr); break; case 0x9E: /* SHX $nnnn,Y */ SHX (5, ABS_IND_Y_ADDR, mem_write, addr); break; case 0x9F: /* SHA $nnnn,Y */ SHA (5, ABS_IND_Y_ADDR, mem_write, addr); break; case 0xA0: /* LDY #$nn */ LDY (2, IMMEDIATE_BYTE); break; case 0xA1: /* LDA ($nn,X) */ LDA (6, INDIR_X_BYTE); break; case 0xA2: /* LDX #$nn */ LDX (2, IMMEDIATE_BYTE); break; case 0xA3: /* LAX ($nn,X) */ LAX (6, INDIR_X_BYTE); break; case 0xA4: /* LDY $nn */ LDY (3, ZERO_PAGE_BYTE); break; case 0xA5: /* LDA $nn */ LDA (3, ZERO_PAGE_BYTE); break; case 0xA6: /* LDX $nn */ LDX (3, ZERO_PAGE_BYTE); break; case 0xA7: /* LAX $nn */ LAX (3, ZERO_PAGE_BYTE); break; case 0xA8: /* TAY */ TAY (); break; case 0xA9: /* LDA #$nn */ LDA (2, IMMEDIATE_BYTE); break; case 0xAA: /* TAX */ TAX (); break; case 0xAB: /* LXA #$nn */ LXA (2, IMMEDIATE_BYTE); break; case 0xAC: /* LDY $nnnn */ LDY (4, ABSOLUTE_BYTE); break; case 0xAD: /* LDA $nnnn */ LDA (4, ABSOLUTE_BYTE); break; case 0xAE: /* LDX $nnnn */ LDX (4, ABSOLUTE_BYTE); break; case 0xAF: /* LAX $nnnn */ LAX (4, ABSOLUTE_BYTE); break; case 0xB0: /* BCS $nnnn */ BCS (); break; case 0xB1: /* LDA ($nn),Y */ LDA (5, INDIR_Y_BYTE); break; case 0xB3: /* LAX ($nn),Y */ LAX (5, INDIR_Y_BYTE); break; case 0xB4: /* LDY $nn,X */ LDY (4, ZP_IND_X_BYTE); break; case 0xB5: /* LDA $nn,X */ LDA (4, ZP_IND_X_BYTE); break; case 0xB6: /* LDX $nn,Y */ LDX (4, ZP_IND_Y_BYTE); break; case 0xB7: /* LAX $nn,Y */ LAX (4, ZP_IND_Y_BYTE); break; case 0xB8: /* CLV */ CLV (); break; case 0xB9: /* LDA $nnnn,Y */ LDA (4, ABS_IND_Y_BYTE); break; case 0xBA: /* TSX */ TSX (); break; case 0xBB: /* LAS $nnnn,Y */ LAS (4, ABS_IND_Y_BYTE); break; case 0xBC: /* LDY $nnnn,X */ LDY (4, ABS_IND_X_BYTE); break; case 0xBD: /* LDA $nnnn,X */ LDA (4, ABS_IND_X_BYTE); break; case 0xBE: /* LDX $nnnn,Y */ LDX (4, ABS_IND_Y_BYTE); break; case 0xBF: /* LAX $nnnn,Y */ LAX (4, ABS_IND_Y_BYTE); break; case 0xC0: /* CPY #$nn */ CPY (2, IMMEDIATE_BYTE); break; case 0xC1: /* CMP ($nn,X) */ CMP (6, INDIR_X_BYTE); break; case 0xC3: /* DCP ($nn,X) */ DCP (8, INDIR_X, mem_write, addr); break; case 0xC4: /* CPY $nn */ CPY (3, ZERO_PAGE_BYTE); break; case 0xC5: /* CMP $nn */ CMP (3, ZERO_PAGE_BYTE); break; case 0xC6: /* DEC $nn */ DEC (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0xC7: /* DCP $nn */ DCP (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0xC8: /* INY */ INY (); break; case 0xC9: /* CMP #$nn */ CMP (2, IMMEDIATE_BYTE); break; case 0xCA: /* DEX */ DEX (); break; case 0xCB: /* SBX #$nn */ SBX (2, IMMEDIATE_BYTE); break; case 0xCC: /* CPY $nnnn */ CPY (4, ABSOLUTE_BYTE); break; case 0xCD: /* CMP $nnnn */ CMP (4, ABSOLUTE_BYTE); break; case 0xCE: /* DEC $nnnn */ DEC (6, ABSOLUTE, mem_write, addr); break; case 0xCF: /* DCP $nnnn */ DCP (6, ABSOLUTE, mem_write, addr); break; case 0xD0: /* BNE $nnnn */ BNE (); break; case 0xD1: /* CMP ($nn),Y */ CMP (5, INDIR_Y_BYTE); break; case 0xD3: /* DCP ($nn),Y */ DCP (8, INDIR_Y, mem_write, addr); break; case 0xD5: /* CMP $nn,X */ CMP (4, ZP_IND_X_BYTE); break; case 0xD6: /* DEC $nn,X */ DEC (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0xD7: /* DCP $nn,X */ DCP (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0xD8: /* CLD */ CLD (); break; case 0xD9: /* CMP $nnnn,Y */ CMP (4, ABS_IND_Y_BYTE); break; case 0xDB: /* DCP $nnnn,Y */ DCP (7, ABS_IND_Y, mem_write, addr); break; case 0xDD: /* CMP $nnnn,X */ CMP (4, ABS_IND_X_BYTE); break; case 0xDE: /* DEC $nnnn,X */ DEC (7, ABS_IND_X, mem_write, addr); break; case 0xDF: /* DCP $nnnn,X */ DCP (7, ABS_IND_X, mem_write, addr); break; case 0xE0: /* CPX #$nn */ CPX (2, IMMEDIATE_BYTE); break; case 0xE1: /* SBC ($nn,X) */ SBC (6, INDIR_X_BYTE); break; case 0xE3: /* ISB ($nn,X) */ ISB (8, INDIR_X, mem_write, addr); break; case 0xE4: /* CPX $nn */ CPX (3, ZERO_PAGE_BYTE); break; case 0xE5: /* SBC $nn */ SBC (3, ZERO_PAGE_BYTE); break; case 0xE6: /* INC $nn */ INC (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0xE7: /* ISB $nn */ ISB (5, ZERO_PAGE, ZP_WRITE, baddr); break; case 0xE8: /* INX */ INX (); break; case 0xE9: /* SBC #$nn */ case 0xEB: /* USBC #$nn */ SBC (2, IMMEDIATE_BYTE); break; case 0xEA: /* NOP */ NOP (); break; case 0xEC: /* CPX $nnnn */ CPX (4, ABSOLUTE_BYTE); break; case 0xED: /* SBC $nnnn */ SBC (4, ABSOLUTE_BYTE); break; case 0xEE: /* INC $nnnn */ INC (6, ABSOLUTE, mem_write, addr); break; case 0xEF: /* ISB $nnnn */ ISB (6, ABSOLUTE, mem_write, addr); break; case 0xF0: /* BEQ $nnnn */ BEQ (); break; case 0xF1: /* SBC ($nn),Y */ SBC (5, INDIR_Y_BYTE); break; case 0xF3: /* ISB ($nn),Y */ ISB (8, INDIR_Y, mem_write, addr); break; case 0xF5: /* SBC $nn,X */ SBC (4, ZP_IND_X_BYTE); break; case 0xF6: /* INC $nn,X */ INC (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0xF7: /* ISB $nn,X */ ISB (6, ZP_IND_X, ZP_WRITE, baddr); break; case 0xF8: /* SED */ SED (); break; case 0xF9: /* SBC $nnnn,Y */ SBC (4, ABS_IND_Y_BYTE); break; case 0xFB: /* ISB $nnnn,Y */ ISB (7, ABS_IND_Y, mem_write, addr); break; case 0xFD: /* SBC $nnnn,X */ SBC (4, ABS_IND_X_BYTE); break; case 0xFE: /* INC $nnnn,X */ INC (7, ABS_IND_X, mem_write, addr); break; case 0xFF: /* ISB $nnnn,X */ ISB (7, ABS_IND_X, mem_write, addr); break; } /* Calculate remaining/elapsed clock cycles */ remaining_cycles -= instruction_cycles; total_cycles += instruction_cycles; } _execute_done: /* restore local copy of regs */ SET_LOCAL_REGS (); /* Return our actual amount of executed cycles */ return (total_cycles - old_cycles); } /* Initialize tables, etc. */ void nes6502_init (void) { int index; /* Build the N / Z flag lookup table */ flag_table[0] = Z_FLAG; for (index = 1; index < 256; index++) flag_table[index] = (index & 0x80) ? N_FLAG : 0; reg_A = reg_X = reg_Y = 0; reg_S = 0xFF; /* Stack grows down */ } /* Issue a CPU Reset */ void nes6502_reset (void) { reg_P = Z_FLAG | R_FLAG | I_FLAG; /* Reserved bit always 1 */ int_pending = dma_cycles = 0; /* No pending interrupts */ reg_PC = bank_readaddress (RESET_VECTOR); /* Fetch reset vector */ /* TODO: 6 cycles for RESET? */ } /* Non-maskable interrupt */ void nes6502_nmi (void) { int_pending |= NMI_MASK; } /* Interrupt request */ void nes6502_irq (void) { int_pending |= IRQ_MASK; } /* Set dma period (in cycles) */ void nes6502_setdma (int cycles) { dma_cycles += cycles; } #ifdef NES6502_MEM_ACCESS_CTRL void nes6502_chk_mem_access (uint8 * access, int flags) { chk_mem_access (access, flags); } #endif /* ** $Log$ ** Revision 1.3 2008/03/25 15:56:11 slomo ** Patch by: Andreas Henriksson ** * gst/nsf/Makefile.am: ** * gst/nsf/dis6502.h: ** * gst/nsf/fds_snd.c: ** * gst/nsf/fds_snd.h: ** * gst/nsf/fmopl.c: ** * gst/nsf/fmopl.h: ** * gst/nsf/gstnsf.c: ** * gst/nsf/log.c: ** * gst/nsf/log.h: ** * gst/nsf/memguard.c: ** * gst/nsf/memguard.h: ** * gst/nsf/mmc5_snd.c: ** * gst/nsf/mmc5_snd.h: ** * gst/nsf/nes6502.c: ** * gst/nsf/nes6502.h: ** * gst/nsf/nes_apu.c: ** * gst/nsf/nes_apu.h: ** * gst/nsf/nsf.c: ** * gst/nsf/nsf.h: ** * gst/nsf/osd.h: ** * gst/nsf/types.h: ** * gst/nsf/vrc7_snd.c: ** * gst/nsf/vrc7_snd.h: ** * gst/nsf/vrcvisnd.c: ** * gst/nsf/vrcvisnd.h: ** Update our internal nosefart to nosefart-2.7-mls to fix segfaults ** on some files. Fixes bug #498237. ** Remove some // comments, fix some compiler warnings and use pow() ** instead of a slow, selfmade implementation. ** ** Revision 1.2 2003/05/01 22:34:19 benjihan ** New NSF plugin ** ** Revision 1.1 2003/04/08 20:53:00 ben ** Adding more files... ** ** Revision 1.6 2000/07/04 04:50:07 matt ** minor change to includes ** ** Revision 1.5 2000/07/03 02:18:16 matt ** added a few notes about potential failure cases ** ** Revision 1.4 2000/06/09 15:12:25 matt ** initial revision ** */