summaryrefslogtreecommitdiff
path: root/src/cairo-path-stroke.c
blob: c701f0c49567c2db6799b92645bd8bca7aa6bc83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2002 University of Southern California
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is University of Southern
 * California.
 *
 * Contributor(s):
 *	Carl D. Worth <cworth@cworth.org>
 */

#include "cairoint.h"

#include "cairo-gstate-private.h"

typedef struct cairo_stroker {
    cairo_gstate_t *gstate;
    cairo_traps_t *traps;

    int has_current_point;
    cairo_point_t current_point;
    cairo_point_t first_point;

    int has_current_face;
    cairo_stroke_face_t current_face;

    int has_first_face;
    cairo_stroke_face_t first_face;

    int dashed;
    int dash_index;
    int dash_on;
    double dash_remain;
} cairo_stroker_t;

/* private functions */
static void
_cairo_stroker_init (cairo_stroker_t *stroker, cairo_gstate_t *gstate, cairo_traps_t *traps);

static void
_cairo_stroker_fini (cairo_stroker_t *stroker);

static cairo_status_t
_cairo_stroker_move_to (void *closure, cairo_point_t *point);

static cairo_status_t
_cairo_stroker_line_to (void *closure, cairo_point_t *point);

static cairo_status_t
_cairo_stroker_line_to_dashed (void *closure, cairo_point_t *point);

static cairo_status_t
_cairo_stroker_curve_to (void *closure,
			 cairo_point_t *b,
			 cairo_point_t *c,
			 cairo_point_t *d);

static cairo_status_t
_cairo_stroker_curve_to_dashed (void *closure,
				cairo_point_t *b,
				cairo_point_t *c,
				cairo_point_t *d);

static cairo_status_t
_cairo_stroker_close_path (void *closure);

static void
_translate_point (cairo_point_t *point, cairo_point_t *offset);

static int
_cairo_stroker_face_clockwise (cairo_stroke_face_t *in, cairo_stroke_face_t *out);

static cairo_status_t
_cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out);

static void
_cairo_stroker_start_dash (cairo_stroker_t *stroker)
{
    cairo_gstate_t *gstate = stroker->gstate;
    double offset;
    int	on = 1;
    int	i = 0;

    offset = gstate->dash_offset;
    while (offset >= gstate->dash[i]) {
	offset -= gstate->dash[i];
	on = 1-on;
	if (++i == gstate->num_dashes)
	    i = 0;
    }
    stroker->dashed = 1;
    stroker->dash_index = i;
    stroker->dash_on = on;
    stroker->dash_remain = gstate->dash[i] - offset;
}

static void
_cairo_stroker_step_dash (cairo_stroker_t *stroker, double step)
{
    cairo_gstate_t *gstate = stroker->gstate;
    stroker->dash_remain -= step;
    if (stroker->dash_remain <= 0) {
	stroker->dash_index++;
	if (stroker->dash_index == gstate->num_dashes)
	    stroker->dash_index = 0;
	stroker->dash_on = 1-stroker->dash_on;
	stroker->dash_remain = gstate->dash[stroker->dash_index];
    }
}

static void
_cairo_stroker_init (cairo_stroker_t *stroker, cairo_gstate_t *gstate, cairo_traps_t *traps)
{
    stroker->gstate = gstate;
    stroker->traps = traps;

    stroker->has_current_point = 0;
    stroker->has_current_face = 0;
    stroker->has_first_face = 0;

    if (gstate->dash)
	_cairo_stroker_start_dash (stroker);
    else
	stroker->dashed = 0;
}

static void
_cairo_stroker_fini (cairo_stroker_t *stroker)
{
    /* nothing to do here */
}

static void
_translate_point (cairo_point_t *point, cairo_point_t *offset)
{
    point->x += offset->x;
    point->y += offset->y;
}

static int
_cairo_stroker_face_clockwise (cairo_stroke_face_t *in, cairo_stroke_face_t *out)
{
    cairo_slope_t in_slope, out_slope;

    _cairo_slope_init (&in_slope, &in->point, &in->cw);
    _cairo_slope_init (&out_slope, &out->point, &out->cw);

    return _cairo_slope_clockwise (&in_slope, &out_slope);
}

static cairo_status_t
_cairo_stroker_join (cairo_stroker_t *stroker, cairo_stroke_face_t *in, cairo_stroke_face_t *out)
{
    cairo_status_t	status;
    cairo_gstate_t	*gstate = stroker->gstate;
    int		clockwise = _cairo_stroker_face_clockwise (out, in);
    cairo_point_t	*inpt, *outpt;

    if (in->cw.x == out->cw.x
	&& in->cw.y == out->cw.y
	&& in->ccw.x == out->ccw.x
	&& in->ccw.y == out->ccw.y) {
	return CAIRO_STATUS_SUCCESS;
    }

    if (clockwise) {
    	inpt = &in->ccw;
    	outpt = &out->ccw;
    } else {
    	inpt = &in->cw;
    	outpt = &out->cw;
    }

    switch (gstate->line_join) {
    case CAIRO_LINE_JOIN_ROUND: {
	int i;
	int start, step, stop;
	cairo_point_t tri[3];
	cairo_pen_t *pen = &gstate->pen_regular;

	tri[0] = in->point;
	if (clockwise) {
	    _cairo_pen_find_active_ccw_vertex_index (pen, &in->dev_vector, &start);
	    step = -1;
	    _cairo_pen_find_active_ccw_vertex_index (pen, &out->dev_vector, &stop);
	} else {
	    _cairo_pen_find_active_cw_vertex_index (pen, &in->dev_vector, &start);
	    step = +1;
	    _cairo_pen_find_active_cw_vertex_index (pen, &out->dev_vector, &stop);
	}

	i = start;
	tri[1] = *inpt;
	while (i != stop) {
	    tri[2] = in->point;
	    _translate_point (&tri[2], &pen->vertices[i].point);
	    _cairo_traps_tessellate_triangle (stroker->traps, tri);
	    tri[1] = tri[2];
	    i += step;
	    if (i < 0)
		i = pen->num_vertices - 1;
	    if (i >= pen->num_vertices)
		i = 0;
	}

	tri[2] = *outpt;

	return _cairo_traps_tessellate_triangle (stroker->traps, tri);
    }
    case CAIRO_LINE_JOIN_MITER:
    default: {
	/* dot product of incoming slope vector with outgoing slope vector */
	double	in_dot_out = ((-in->usr_vector.x * out->usr_vector.x)+
			      (-in->usr_vector.y * out->usr_vector.y));
	double	ml = gstate->miter_limit;

	/*
	 * Check the miter limit -- lines meeting at an acute angle
	 * can generate long miters, the limit converts them to bevel
	 *
	 * We want to know when the miter is within the miter limit.
	 * That's straightforward to specify:
	 *
	 *	secant (psi / 2) <= ml
	 *
	 * where psi is the angle between in and out
	 *
	 *				secant(psi/2) = 1/sin(psi/2)
	 *	1/sin(psi/2) <= ml
	 *	1 <= ml sin(psi/2)
	 *	1 <= ml² sin²(psi/2)
	 *	2 <= ml² 2 sin²(psi/2)
	 *				2·sin²(psi/2) = 1-cos(psi)
	 *	2 <= ml² (1-cos(psi))
	 *
	 *				in · out = |in| |out| cos (psi)
	 *
	 * in and out are both unit vectors, so:
	 *
	 *				in · out = cos (psi)
	 *
	 *	2 <= ml² (1 - in · out)
	 * 	 
	 */
	if (2 <= ml * ml * (1 - in_dot_out)) {
	    double		x1, y1, x2, y2;
	    double		mx, my;
	    double		dx1, dx2, dy1, dy2;
	    cairo_polygon_t	polygon;
	    cairo_point_t	outer;

	    /* 
	     * we've got the points already transformed to device
	     * space, but need to do some computation with them and
	     * also need to transform the slope from user space to
	     * device space
	     */
	    /* outer point of incoming line face */
	    x1 = _cairo_fixed_to_double (inpt->x);
	    y1 = _cairo_fixed_to_double (inpt->y);
	    dx1 = in->usr_vector.x;
	    dy1 = in->usr_vector.y;
	    cairo_matrix_transform_distance (&gstate->ctm, &dx1, &dy1);
	    
	    /* outer point of outgoing line face */
	    x2 = _cairo_fixed_to_double (outpt->x);
	    y2 = _cairo_fixed_to_double (outpt->y);
	    dx2 = out->usr_vector.x;
	    dy2 = out->usr_vector.y;
	    cairo_matrix_transform_distance (&gstate->ctm, &dx2, &dy2);
	    
	    /*
	     * Compute the location of the outer corner of the miter.
	     * That's pretty easy -- just the intersection of the two
	     * outer edges.  We've got slopes and points on each
	     * of those edges.  Compute my directly, then compute
	     * mx by using the edge with the larger dy; that avoids
	     * dividing by values close to zero.
	     */
	    my = (((x2 - x1) * dy1 * dy2 - y2 * dx2 * dy1 + y1 * dx1 * dy2) /
		  (dx1 * dy2 - dx2 * dy1));
	    if (fabs (dy1) >= fabs (dy2))
		mx = (my - y1) * dx1 / dy1 + x1;
	    else
		mx = (my - y2) * dx2 / dy2 + x2;
	    
	    /*
	     * Draw the quadrilateral
	     */
	    outer.x = _cairo_fixed_from_double (mx);
	    outer.y = _cairo_fixed_from_double (my);
	    _cairo_polygon_init (&polygon);
	    _cairo_polygon_move_to (&polygon, &in->point);
	    _cairo_polygon_line_to (&polygon, inpt);
	    _cairo_polygon_line_to (&polygon, &outer);
	    _cairo_polygon_line_to (&polygon, outpt);
	    _cairo_polygon_close (&polygon);
	    status = _cairo_traps_tessellate_polygon (stroker->traps,
						      &polygon,
						      CAIRO_FILL_RULE_WINDING);
	    _cairo_polygon_fini (&polygon);

	    return status;
	}
	/* fall through ... */
    }
    case CAIRO_LINE_JOIN_BEVEL: {
	cairo_point_t tri[3];
	tri[0] = in->point;
	tri[1] = *inpt;
	tri[2] = *outpt;

	return _cairo_traps_tessellate_triangle (stroker->traps, tri);
    }
    }
}

static cairo_status_t
_cairo_stroker_add_cap (cairo_stroker_t *stroker, cairo_stroke_face_t *f)
{
    cairo_status_t	    status;
    cairo_gstate_t	    *gstate = stroker->gstate;

    if (gstate->line_cap == CAIRO_LINE_CAP_BUTT)
	return CAIRO_STATUS_SUCCESS;
    
    switch (gstate->line_cap) {
    case CAIRO_LINE_CAP_ROUND: {
	int i;
	int start, stop;
	cairo_slope_t slope;
	cairo_point_t tri[3];
	cairo_pen_t *pen = &gstate->pen_regular;

	slope = f->dev_vector;
	_cairo_pen_find_active_cw_vertex_index (pen, &slope, &start);
	slope.dx = -slope.dx;
	slope.dy = -slope.dy;
	_cairo_pen_find_active_cw_vertex_index (pen, &slope, &stop);

	tri[0] = f->point;
	tri[1] = f->cw;
	for (i=start; i != stop; i = (i+1) % pen->num_vertices) {
	    tri[2] = f->point;
	    _translate_point (&tri[2], &pen->vertices[i].point);
	    _cairo_traps_tessellate_triangle (stroker->traps, tri);
	    tri[1] = tri[2];
	}
	tri[2] = f->ccw;

	return _cairo_traps_tessellate_triangle (stroker->traps, tri);
    }
    case CAIRO_LINE_CAP_SQUARE: {
	double dx, dy;
	cairo_slope_t	fvector;
	cairo_point_t	occw, ocw;
	cairo_polygon_t	polygon;

	dx = f->usr_vector.x;
	dy = f->usr_vector.y;
	dx *= gstate->line_width / 2.0;
	dy *= gstate->line_width / 2.0;
	cairo_matrix_transform_distance (&gstate->ctm, &dx, &dy);
	fvector.dx = _cairo_fixed_from_double (dx);
	fvector.dy = _cairo_fixed_from_double (dy);
	occw.x = f->ccw.x + fvector.dx;
	occw.y = f->ccw.y + fvector.dy;
	ocw.x = f->cw.x + fvector.dx;
	ocw.y = f->cw.y + fvector.dy;

	_cairo_polygon_init (&polygon);
	_cairo_polygon_move_to (&polygon, &f->cw);
	_cairo_polygon_line_to (&polygon, &ocw);
	_cairo_polygon_line_to (&polygon, &occw);
	_cairo_polygon_line_to (&polygon, &f->ccw);
	_cairo_polygon_close (&polygon);

	status = _cairo_traps_tessellate_polygon (stroker->traps, &polygon, CAIRO_FILL_RULE_WINDING);
	_cairo_polygon_fini (&polygon);

	return status;
    }
    case CAIRO_LINE_CAP_BUTT:
    default:
	return CAIRO_STATUS_SUCCESS;
    }
}

static cairo_status_t
_cairo_stroker_add_leading_cap (cairo_stroker_t     *stroker,
				cairo_stroke_face_t *face)
{
    cairo_stroke_face_t reversed;
    cairo_point_t t;

    reversed = *face;

    /* The initial cap needs an outward facing vector. Reverse everything */
    reversed.usr_vector.x = -reversed.usr_vector.x;
    reversed.usr_vector.y = -reversed.usr_vector.y;
    reversed.dev_vector.dx = -reversed.dev_vector.dx;
    reversed.dev_vector.dy = -reversed.dev_vector.dy;
    t = reversed.cw;
    reversed.cw = reversed.ccw;
    reversed.ccw = t;

    return _cairo_stroker_add_cap (stroker, &reversed);
}

static cairo_status_t
_cairo_stroker_add_trailing_cap (cairo_stroker_t     *stroker,
				 cairo_stroke_face_t *face)
{
    return _cairo_stroker_add_cap (stroker, face);
}

static cairo_status_t
_cairo_stroker_add_caps (cairo_stroker_t *stroker)
{
    cairo_status_t status;

    if (stroker->has_first_face) {
	status = _cairo_stroker_add_leading_cap (stroker, &stroker->first_face);
	if (status)
	    return status;
    }

    if (stroker->has_current_face) {
	status = _cairo_stroker_add_trailing_cap (stroker, &stroker->current_face);
	if (status)
	    return status;
    }

    return CAIRO_STATUS_SUCCESS;
}

static void
_compute_face (cairo_point_t *point, cairo_slope_t *slope, cairo_gstate_t *gstate, cairo_stroke_face_t *face)
{
    double mag, det;
    double line_dx, line_dy;
    double face_dx, face_dy;
    cairo_point_double_t usr_vector;
    cairo_point_t offset_ccw, offset_cw;

    line_dx = _cairo_fixed_to_double (slope->dx);
    line_dy = _cairo_fixed_to_double (slope->dy);

    /* faces are normal in user space, not device space */
    cairo_matrix_transform_distance (&gstate->ctm_inverse, &line_dx, &line_dy);

    mag = sqrt (line_dx * line_dx + line_dy * line_dy);
    if (mag == 0) {
	/* XXX: Can't compute other face points. Do we want a tag in the face for this case? */
	return;
    }

    /* normalize to unit length */
    line_dx /= mag;
    line_dy /= mag;

    usr_vector.x = line_dx;
    usr_vector.y = line_dy;

    /* 
     * rotate to get a line_width/2 vector along the face, note that
     * the vector must be rotated the right direction in device space,
     * but by 90° in user space. So, the rotation depends on
     * whether the ctm reflects or not, and that can be determined
     * by looking at the determinant of the matrix.
     */
    _cairo_matrix_compute_determinant (&gstate->ctm, &det);
    if (det >= 0)
    {
	face_dx = - line_dy * (gstate->line_width / 2.0);
	face_dy = line_dx * (gstate->line_width / 2.0);
    }
    else
    {
	face_dx = line_dy * (gstate->line_width / 2.0);
	face_dy = - line_dx * (gstate->line_width / 2.0);
    }

    /* back to device space */
    cairo_matrix_transform_distance (&gstate->ctm, &face_dx, &face_dy);

    offset_ccw.x = _cairo_fixed_from_double (face_dx);
    offset_ccw.y = _cairo_fixed_from_double (face_dy);
    offset_cw.x = -offset_ccw.x;
    offset_cw.y = -offset_ccw.y;

    face->ccw = *point;
    _translate_point (&face->ccw, &offset_ccw);

    face->point = *point;

    face->cw = *point;
    _translate_point (&face->cw, &offset_cw);

    face->usr_vector.x = usr_vector.x;
    face->usr_vector.y = usr_vector.y;

    face->dev_vector = *slope;
}

static cairo_status_t
_cairo_stroker_add_sub_edge (cairo_stroker_t *stroker, cairo_point_t *p1, cairo_point_t *p2,
			     cairo_stroke_face_t *start, cairo_stroke_face_t *end)
{
    cairo_status_t status;
    cairo_gstate_t *gstate = stroker->gstate;
    cairo_polygon_t polygon;
    cairo_slope_t slope;

    if (p1->x == p2->x && p1->y == p2->y) {
	/* XXX: Need to rethink how this case should be handled, (both
           here and in _compute_face). The key behavior is that
           degenerate paths should draw as much as possible. */
	return CAIRO_STATUS_SUCCESS;
    }

    _cairo_slope_init (&slope, p1, p2);
    _compute_face (p1, &slope, gstate, start);

    /* XXX: This could be optimized slightly by not calling
       _compute_face again but rather  translating the relevant
       fields from start. */
    _compute_face (p2, &slope, gstate, end);

    /* XXX: I should really check the return value of the
       move_to/line_to functions here to catch out of memory
       conditions. But since that would be ugly, I'd prefer to add a
       status flag to the polygon object that I could check only once
       at then end of this sequence, (like we do with cairo_t
       already). */
    _cairo_polygon_init (&polygon);
    _cairo_polygon_move_to (&polygon, &start->cw);
    _cairo_polygon_line_to (&polygon, &start->ccw);
    _cairo_polygon_line_to (&polygon, &end->ccw);
    _cairo_polygon_line_to (&polygon, &end->cw);
    _cairo_polygon_close (&polygon);

    /* XXX: We can't use tessellate_rectangle as the matrix may have
       skewed this into a non-rectangular shape. Perhaps it would be
       worth checking the matrix for skew so that the common case
       could use the faster tessellate_rectangle rather than
       tessellate_polygon? */
    status = _cairo_traps_tessellate_polygon (stroker->traps,
					      &polygon, CAIRO_FILL_RULE_WINDING);

    _cairo_polygon_fini (&polygon);

    return status;
}

static cairo_status_t
_cairo_stroker_move_to (void *closure, cairo_point_t *point)
{
    cairo_status_t status;
    cairo_stroker_t *stroker = closure;

    status = _cairo_stroker_add_caps (stroker);
    if (status)
	return status;

    stroker->first_point = *point;
    stroker->current_point = *point;
    stroker->has_current_point = 1;

    stroker->has_first_face = 0;
    stroker->has_current_face = 0;

    return CAIRO_STATUS_SUCCESS;
}

static cairo_status_t
_cairo_stroker_line_to (void *closure, cairo_point_t *point)
{
    cairo_status_t status;
    cairo_stroker_t *stroker = closure;
    cairo_stroke_face_t start, end;
    cairo_point_t *p1 = &stroker->current_point;
    cairo_point_t *p2 = point;

    if (!stroker->has_current_point)
	return _cairo_stroker_move_to (stroker, point);

    if (p1->x == p2->x && p1->y == p2->y) {
	/* XXX: Need to rethink how this case should be handled, (both
           here and in cairo_stroker_add_sub_edge and in _compute_face). The
           key behavior is that degenerate paths should draw as much
           as possible. */
	return CAIRO_STATUS_SUCCESS;
    }
    
    status = _cairo_stroker_add_sub_edge (stroker, p1, p2, &start, &end);
    if (status)
	return status;

    if (stroker->has_current_face) {
	status = _cairo_stroker_join (stroker, &stroker->current_face, &start);
	if (status)
	    return status;
    } else {
	if (!stroker->has_first_face) {
	    stroker->first_face = start;
	    stroker->has_first_face = 1;
	}
    }
    stroker->current_face = end;
    stroker->has_current_face = 1;

    stroker->current_point = *point;

    return CAIRO_STATUS_SUCCESS;
}

/*
 * Dashed lines.  Cap each dash end, join around turns when on
 */
static cairo_status_t
_cairo_stroker_line_to_dashed (void *closure, cairo_point_t *point)
{
    cairo_status_t status = CAIRO_STATUS_SUCCESS;
    cairo_stroker_t *stroker = closure;
    cairo_gstate_t *gstate = stroker->gstate;
    double mag, remain, tmp;
    double dx, dy;
    double dx2, dy2;
    cairo_point_t fd1, fd2;
    int first = 1;
    cairo_stroke_face_t sub_start, sub_end;
    cairo_point_t *p1 = &stroker->current_point;
    cairo_point_t *p2 = point;

    if (!stroker->has_current_point)
	return _cairo_stroker_move_to (stroker, point);
    
    dx = _cairo_fixed_to_double (p2->x - p1->x);
    dy = _cairo_fixed_to_double (p2->y - p1->y);

    cairo_matrix_transform_distance (&gstate->ctm_inverse, &dx, &dy);

    mag = sqrt (dx *dx + dy * dy);
    remain = mag;
    fd1 = *p1;
    while (remain) {
	tmp = stroker->dash_remain;
	if (tmp > remain)
	    tmp = remain;
	remain -= tmp;
        dx2 = dx * (mag - remain)/mag;
	dy2 = dy * (mag - remain)/mag;
	cairo_matrix_transform_distance (&gstate->ctm, &dx2, &dy2);
	fd2.x = _cairo_fixed_from_double (dx2);
	fd2.y = _cairo_fixed_from_double (dy2);
	fd2.x += p1->x;
	fd2.y += p1->y;
	/*
	 * XXX simplify this case analysis
	 */
	if (stroker->dash_on) {
	    status = _cairo_stroker_add_sub_edge (stroker, &fd1, &fd2, &sub_start, &sub_end);
	    if (status)
		return status;
	    if (!first) {
		/*
		 * Not first dash in this segment, cap start
		 */
		status = _cairo_stroker_add_leading_cap (stroker, &sub_start);
		if (status)
		    return status;
	    } else {
		/*
		 * First in this segment, join to any current_face, else
		 * if at start of sub-path, mark position, else
		 * cap
		 */
		if (stroker->has_current_face) {
		    status = _cairo_stroker_join (stroker, &stroker->current_face, &sub_start);
		    if (status)
			return status;
		} else {
		    if (!stroker->has_first_face) {
			stroker->first_face = sub_start;
			stroker->has_first_face = 1;
		    } else {
			status = _cairo_stroker_add_leading_cap (stroker, &sub_start);
			if (status)
			    return status;
		    }
		}
	    }
	    if (remain) {
		/*
		 * Cap if not at end of segment
		 */
		status = _cairo_stroker_add_trailing_cap (stroker, &sub_end);
		if (status)
		    return status;
	    } else {
		/*
		 * Mark previous line face and fix up next time
		 * through
		 */
		stroker->current_face = sub_end;
		stroker->has_current_face = 1;
	    }
	} else {
	    /*
	     * If starting with off dash, check previous face
	     * and cap if necessary
	     */
	    if (first) {
		if (stroker->has_current_face) {
		    status = _cairo_stroker_add_trailing_cap (stroker, &stroker->current_face);
		    if (status)
			return status;
		}
	    }
	    if (!remain)
		stroker->has_current_face = 0;
	}
	_cairo_stroker_step_dash (stroker, tmp);
	fd1 = fd2;
	first = 0;
    }

    stroker->current_point = *point;

    return status;
}

static cairo_status_t
_cairo_stroker_curve_to (void *closure,
			 cairo_point_t *b,
			 cairo_point_t *c,
			 cairo_point_t *d)
{
    cairo_status_t status = CAIRO_STATUS_SUCCESS;
    cairo_stroker_t *stroker = closure;
    cairo_gstate_t *gstate = stroker->gstate;
    cairo_spline_t spline;
    cairo_pen_t pen;
    cairo_stroke_face_t start, end;
    cairo_point_t extra_points[4];
    cairo_point_t *a = &stroker->current_point;

    status = _cairo_spline_init (&spline, a, b, c, d);
    if (status == CAIRO_INT_STATUS_DEGENERATE)
	return CAIRO_STATUS_SUCCESS;

    status = _cairo_pen_init_copy (&pen, &gstate->pen_regular);
    if (status)
	goto CLEANUP_SPLINE;

    _compute_face (a, &spline.initial_slope, gstate, &start);
    _compute_face (d, &spline.final_slope, gstate, &end);

    if (stroker->has_current_face) {
	status = _cairo_stroker_join (stroker, &stroker->current_face, &start);
	if (status)
	    return status;
    } else {
	if (!stroker->has_first_face) {
	    stroker->first_face = start;
	    stroker->has_first_face = 1;
	}
    }
    stroker->current_face = end;
    stroker->has_current_face = 1;
    
    extra_points[0] = start.cw;
    extra_points[0].x -= start.point.x;
    extra_points[0].y -= start.point.y;
    extra_points[1] = start.ccw;
    extra_points[1].x -= start.point.x;
    extra_points[1].y -= start.point.y;
    extra_points[2] = end.cw;
    extra_points[2].x -= end.point.x;
    extra_points[2].y -= end.point.y;
    extra_points[3] = end.ccw;
    extra_points[3].x -= end.point.x;
    extra_points[3].y -= end.point.y;
    
    status = _cairo_pen_add_points (&pen, extra_points, 4);
    if (status)
	goto CLEANUP_PEN;

    status = _cairo_pen_stroke_spline (&pen, &spline, gstate->tolerance, stroker->traps);
    if (status)
	goto CLEANUP_PEN;

  CLEANUP_PEN:
    _cairo_pen_fini (&pen);
  CLEANUP_SPLINE:
    _cairo_spline_fini (&spline);

    stroker->current_point = *d;

    return status;
}

/* We're using two different algorithms here for dashed and un-dashed
 * splines. The dashed alogorithm uses the existing line dashing
 * code. It's linear in path length, but gets subtly wrong results for
 * self-intersecting paths (an outstanding but for self-intersecting
 * non-curved paths as well). The non-dashed algorithm tessellates a
 * single polygon for the whole curve. It handles the
 * self-intersecting problem, but it's (unsurprisingly) not O(n) and
 * more significantly, it doesn't yet handle dashes.
 *
 * The only reason we're doing split algortihms here is to
 * minimize the impact of fixing the splines-aren't-dashed bug for
 * 1.0.2. Long-term the right answer is to rewrite the whole pile
 * of stroking code so that the entire result is computed as a
 * single polygon that is tessellated, (that is, stroking can be
 * built on top of filling). That will solve the self-intersecting
 * problem. It will also increase the importance of implementing
 * an efficient and more robust tessellator.
 */
static cairo_status_t
_cairo_stroker_curve_to_dashed (void *closure,
				cairo_point_t *b,
				cairo_point_t *c,
				cairo_point_t *d)
{
    cairo_status_t status = CAIRO_STATUS_SUCCESS;
    cairo_stroker_t *stroker = closure;
    cairo_gstate_t *gstate = stroker->gstate;
    cairo_spline_t spline;
    cairo_point_t *a = &stroker->current_point;
    cairo_line_join_t line_join_save;
    int i;

    status = _cairo_spline_init (&spline, a, b, c, d);
    if (status == CAIRO_INT_STATUS_DEGENERATE)
	return CAIRO_STATUS_SUCCESS;

    /* If the line width is so small that the pen is reduced to a
       single point, then we have nothing to do. */
    if (gstate->pen_regular.num_vertices <= 1)
	goto CLEANUP_SPLINE;

    /* Temporarily modify the gstate to use round joins to guarantee
     * smooth stroked curves. */
    line_join_save = gstate->line_join;
    gstate->line_join = CAIRO_LINE_JOIN_ROUND;

    status = _cairo_spline_decompose (&spline, gstate->tolerance);
    if (status)
	goto CLEANUP_GSTATE;

    for (i = 1; i < spline.num_points; i++) {
	if (stroker->dashed)
	    status = _cairo_stroker_line_to_dashed (stroker, &spline.points[i]);
	else
	    status = _cairo_stroker_line_to (stroker, &spline.points[i]);
	if (status)
	    break;
    }

  CLEANUP_GSTATE:
    gstate->line_join = line_join_save;

  CLEANUP_SPLINE:
    _cairo_spline_fini (&spline);

    return status;
}

static cairo_status_t
_cairo_stroker_close_path (void *closure)
{
    cairo_status_t status;
    cairo_stroker_t *stroker = closure;

    if (stroker->has_current_point) {
	if (stroker->dashed)
	    status = _cairo_stroker_line_to_dashed (stroker, &stroker->first_point);
	else
	    status = _cairo_stroker_line_to (stroker, &stroker->first_point);
	if (status)
	    return status;
    }

    if (stroker->has_first_face && stroker->has_current_face) {
	status = _cairo_stroker_join (stroker, &stroker->current_face, &stroker->first_face);
	if (status)
	    return status;
    }

    stroker->has_first_face = 0;
    stroker->has_current_face = 0;
    stroker->has_current_point = 0;

    return CAIRO_STATUS_SUCCESS;
}

cairo_status_t
_cairo_path_fixed_stroke_to_traps (cairo_path_fixed_t *path,
				   cairo_gstate_t     *gstate,
				   cairo_traps_t      *traps)
{
    cairo_status_t status = CAIRO_STATUS_SUCCESS;
    cairo_stroker_t stroker;

    _cairo_stroker_init (&stroker, gstate, traps);

    if (gstate->dash)
	status = _cairo_path_fixed_interpret (path,
					      CAIRO_DIRECTION_FORWARD,
					      _cairo_stroker_move_to,
					      _cairo_stroker_line_to_dashed,
					      _cairo_stroker_curve_to_dashed,
					      _cairo_stroker_close_path,
					      &stroker);
    else
	status = _cairo_path_fixed_interpret (path,
					      CAIRO_DIRECTION_FORWARD,
					      _cairo_stroker_move_to,
					      _cairo_stroker_line_to,
					      _cairo_stroker_curve_to,
					      _cairo_stroker_close_path,
					      &stroker);
    if (status)
	goto BAIL;

    status = _cairo_stroker_add_caps (&stroker);

BAIL:
    _cairo_stroker_fini (&stroker);

    return status;
}