/* cairo - a vector graphics library with display and print output * * Copyright © 2003 University of Southern California * * This library is free software; you can redistribute it and/or * modify it either under the terms of the GNU Lesser General Public * License version 2.1 as published by the Free Software Foundation * (the "LGPL") or, at your option, under the terms of the Mozilla * Public License Version 1.1 (the "MPL"). If you do not alter this * notice, a recipient may use your version of this file under either * the MPL or the LGPL. * * You should have received a copy of the LGPL along with this library * in the file COPYING-LGPL-2.1; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * You should have received a copy of the MPL along with this library * in the file COPYING-MPL-1.1 * * The contents of this file are subject to the Mozilla Public License * Version 1.1 (the "License"); you may not use this file except in * compliance with the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY * OF ANY KIND, either express or implied. See the LGPL or the MPL for * the specific language governing rights and limitations. * * The Original Code is the cairo graphics library. * * The Initial Developer of the Original Code is University of Southern * California. * * Contributor(s): * Carl D. Worth */ #include "cairoint.h" typedef struct cairo_hull { cairo_point_t point; cairo_slope_t slope; int discard; int id; } cairo_hull_t; static cairo_hull_t * _cairo_hull_create (cairo_pen_vertex_t *vertices, int num_vertices) { int i; cairo_hull_t *hull; cairo_point_t *p, *extremum, tmp; extremum = &vertices[0].point; for (i = 1; i < num_vertices; i++) { p = &vertices[i].point; if (p->y < extremum->y || (p->y == extremum->y && p->x < extremum->x)) extremum = p; } /* Put the extremal point at the beginning of the array */ tmp = *extremum; *extremum = vertices[0].point; vertices[0].point = tmp; hull = malloc (num_vertices * sizeof (cairo_hull_t)); if (hull == NULL) return NULL; for (i = 0; i < num_vertices; i++) { hull[i].point = vertices[i].point; _cairo_slope_init (&hull[i].slope, &hull[0].point, &hull[i].point); /* give each point a unique id for later comparison */ hull[i].id = i; /* Don't discard by default */ hull[i].discard = 0; /* Discard all points coincident with the extremal point */ if (i != 0 && hull[i].slope.dx == 0 && hull[i].slope.dy == 0) hull[i].discard = 1; } return hull; } static int _cairo_hull_vertex_compare (const void *av, const void *bv) { cairo_hull_t *a = (cairo_hull_t *) av; cairo_hull_t *b = (cairo_hull_t *) bv; int ret; ret = _cairo_slope_compare (&a->slope, &b->slope); /* In the case of two vertices with identical slope from the extremal point discard the nearer point. */ if (ret == 0) { cairo_fixed_48_16_t a_dist, b_dist; a_dist = ((cairo_fixed_48_16_t) a->slope.dx * a->slope.dx + (cairo_fixed_48_16_t) a->slope.dy * a->slope.dy); b_dist = ((cairo_fixed_48_16_t) b->slope.dx * b->slope.dx + (cairo_fixed_48_16_t) b->slope.dy * b->slope.dy); /* * Use the point's ids to ensure a total ordering. * a well-defined ordering, and avoid setting discard on * both points. */ if (a_dist < b_dist || (a_dist == b_dist && a->id < b->id)) { a->discard = 1; ret = -1; } else { b->discard = 1; ret = 1; } } return ret; } static int _cairo_hull_prev_valid (cairo_hull_t *hull, int num_hull, int index) { do { /* hull[0] is always valid, so don't test and wraparound */ index--; } while (hull[index].discard); return index; } static int _cairo_hull_next_valid (cairo_hull_t *hull, int num_hull, int index) { do { index = (index + 1) % num_hull; } while (hull[index].discard); return index; } static cairo_status_t _cairo_hull_eliminate_concave (cairo_hull_t *hull, int num_hull) { int i, j, k; cairo_slope_t slope_ij, slope_jk; i = 0; j = _cairo_hull_next_valid (hull, num_hull, i); k = _cairo_hull_next_valid (hull, num_hull, j); do { _cairo_slope_init (&slope_ij, &hull[i].point, &hull[j].point); _cairo_slope_init (&slope_jk, &hull[j].point, &hull[k].point); /* Is the angle formed by ij and jk concave? */ if (_cairo_slope_compare (&slope_ij, &slope_jk) >= 0) { if (i == k) return CAIRO_STATUS_SUCCESS; hull[j].discard = 1; j = i; i = _cairo_hull_prev_valid (hull, num_hull, j); } else { i = j; j = k; k = _cairo_hull_next_valid (hull, num_hull, j); } } while (j != 0); return CAIRO_STATUS_SUCCESS; } static cairo_status_t _cairo_hull_to_pen (cairo_hull_t *hull, cairo_pen_vertex_t *vertices, int *num_vertices) { int i, j = 0; for (i = 0; i < *num_vertices; i++) { if (hull[i].discard) continue; vertices[j++].point = hull[i].point; } *num_vertices = j; return CAIRO_STATUS_SUCCESS; } /* Given a set of vertices, compute the convex hull using the Graham scan algorithm. */ cairo_status_t _cairo_hull_compute (cairo_pen_vertex_t *vertices, int *num_vertices) { cairo_hull_t *hull; int num_hull = *num_vertices; hull = _cairo_hull_create (vertices, num_hull); if (hull == NULL) return CAIRO_STATUS_NO_MEMORY; qsort (hull + 1, num_hull - 1, sizeof (cairo_hull_t), _cairo_hull_vertex_compare); _cairo_hull_eliminate_concave (hull, num_hull); _cairo_hull_to_pen (hull, vertices, num_vertices); free (hull); return CAIRO_STATUS_SUCCESS; }